Affective and perceptual responses during reduced-exertion high-intensity interval training (REHIT)

Preeyaphorn Songsorn, Noel Brick, Ben Fitzpatrick, Sinead Fitzpatrick, Gary McDermott, CM McClean, Gareth Davison, Niels B J Vollaard, Richard Metcalfe

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
28 Downloads (Pure)

Abstract

We have previously demonstrated that reduced-exertion high-intensity interval training (REHIT) is a genuinely time-efficient exercise strategy for improving cardiometabolic health. Here, we examined the affective and perceptual responses to REHIT. Eight young men and women (age 21 ± 1 y, BMI 24.9 ± 2.1 m/kg2, V̇O2max 39 ± 10 ml/kg/min) and 11 men with type 2 diabetes (T2D; age 52 ± 6 y, BMI 29.7 ± 3.1 m/kg2, V̇O2max 29 ± 5 ml/kg/min) took part in three-arm crossover trials with RPE and affective valence measured during, and enjoyment and exercise preferences measured following either: 1) REHIT (2 × 20-s sprints in a 10-min exercise session), 2) HIIT (10 × 1-min efforts) and 3) 30 min MICT. Furthermore, 19 young men and women (age 25 ± 6 y, BMI 24 ± 4 m/kg2, V̇O2max 34 ± 8 ml/kg/min) completed a 6-week REHIT intervention with affective valence during an acute REHIT session measured before and after training. Affect decreases (briefly) during REHIT, but recovers rapidly, and the decline is not significantly different when compared to MICT or HIIT in either healthy participants or T2D patients. Young sedentary participants reported similar levels of enjoyment for REHIT, MICT and HIIT, but 7 out of 8 had a preference for REHIT. Conversely, T2D patients tended to report lower levels of enjoyment with REHIT compared with MICT. The decrease in affective valence observed during an acute REHIT session was significantly attenuated following training. We conclude that affective and perceptual responses to REHIT are no more negative compared to those associated with MICT or HIIT, refuting claims that supramaximal sprint interval training protocols are associated with inherent negative responses.
Original languageEnglish
Pages (from-to)717-732
Number of pages16
JournalInternational Journal of Sport and Exercise Psychology
Volume18
Issue number6
Early online date19 Mar 2019
DOIs
Publication statusE-pub ahead of print - 19 Mar 2019

Bibliographical note

Bay, A., Sandberg, C., Thilén, U., Wadell, K., & Johansson, B. (2018). Exercise self-efficacy in adults with congenital heart disease. International Journal of Cardiology. Heart & Vasculature, 18, 7–11. doi:10. 1016/j.ijcha.2017.12.002
Biddle, S. J., & Batterham, A. M. (2015). High-intensity interval exercise training for public health: A big HIT or shall we HIT it on the head? The international Journal of Behavioral Nutrition and Physical Activity, 12(95), doi:10.1186/s12966-015-0254-9
Blair, S. N., LaMonte, M. J., & Nichaman, M. Z. (2004). The evolution of physical activity recommendations: How much is enough? American Journal of Clinical Nutrition, 79(5), 913S–920S.
Booth, F. W., Roberts, C. K., & Laye, M. J. (2012). Lack of exercise is a major cause of chronic diseases.
Comprehensive Physiology, 2(2), 1143–1211. doi:10.1002/cphy.c110025
Booth, F. W., Roberts, C. K., Thyfault, J. P., Ruegsegger, G. N., & Toedebusch, R. G. (2017). Role of inactivity in chronic diseases: Evolutionary insight and Pathophysiological mechanisms. Physiological reviews, 97(4), 1351–1402. doi:10.1152/physrev.00019.2016
Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 377–381.
Brand, R., & Ekkekakis, P. (2018). Affective-reflective theory of physical inactivity and exercise: Foundations and preliminary evidence. German Journal of Exercise and Sport Research, 48(1), 48–58. doi:10.1007/s12662-017-0477-9
Burgomaster, K. A., Heigenhauser, G. J., & Gibala, M. J. (2006). Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. Journal of Applied Physiology, 100(6), 2041–2047. doi:01220.2005 [pii]10.1152/japplphysiol.01220.2005
Burgomaster, K. A., Hughes, S. C., Heigenhauser, G. J., Bradwell, S. N., & Gibala, M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Journal of Applied Physiology, 98(6), 1985–1990. doi:01095.2004 [pii]10.1152/japplphysiol.01095.2004
Ciolac, E. G., Bocchi, E. A., Bortolotto, L. A., Carvalho, V. O., Greve, J. M., & Guimarães, G. V. (2010). Effects of high-intensity aerobic interval training vs. Moderate exercise on hemodynamic, metabolic and
neuro-humoral abnormalities of young normotensive women at high familial risk for hypertension. Hypertension Research, 33(8), 836–843. doi:10.1038/hr.2010.72
Colley, R. C., Garriguet, D., Janssen, I., Craig, C. L., Clarke, J., & Tremblay, M. S. (2011). Physical activity of Canadian adults: Accelerometer results from the 2007 to 2009 Canadian health measures survey.
Health Reports, 22(1), 7–14.
Craig, C. L., Marshall, A. L., Sjostrom, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E., … Oja, P. (2003). International physical activity questionnaire: 12-country reliability and validity. Medicine & Science in Sports & Exercise, 35(8), 1381–1395. doi:10.1249/01.MSS.0000078924.61453.FB
Dekker, E., & Ekkekakis, P. (2017). More efficient, perhaps, but at what price? Pleasure and enjoyment responses to high-intensity interval exercise in low-active women with obesity. Psychology of Sport and Exercise, 28, 1–10. doi:10.1016/j.psychsport.2016.09.005
Ekkekakis, P., Hall, E. E., & Petruzzello, S. J. (2005). Variation and homogeneity in affective responses to physical activity of varying intensities: An alternative perspective on dose-response based on evolutionary considerations. Journal of Sports Sciences, 23(5), 477–500. doi:10.1080/02640410400021492
Ekkekakis, P., Hall, E. E., & Petruzzello, S. J. (2008). The relationship between exercise intensity and affective responses demystified: To crack the 40-year-old nut, replace the 40-year-old nutcracker!. Annals of Behavioral Medicine, 35(2), 136–149. doi:10.1007/s12160-008-9025-z
Ekkekakis, P., Lind, E., & Vazou, S. (2010). Affective responses to increasing levels of exercise intensity in normal-weight, overweight, and obese middle-aged women. Obesity (Silver Spring), 18(1), 79–85. doi:10.1038/oby.2009.204
Ekkekakis, P., Parfitt, G., & Petruzzello, S. J. (2011). The pleasure and displeasure people feel when they exercise at different intensities: Decennial update and progress towards a tripartite rationale for exercise intensity prescription. Sports Medicine, 41(8), 641–671. doi:10.2165/11590680-000000000-00000
Frazão, D. T., de Farias Junior, L. F., Dantas, T. C., Krinski, K., Elsangedy, H. M., Prestes, J., … Costa, E. C. (2016). Feeling of Pleasure to high-intensity interval exercise Is dependent of the number of work bouts and physical activity status. PLoS One, 11(3), e0152752. doi:10.1371/journal.pone.0152752
Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., … Medicine, A. C. o. S. (2011). American college of sports medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently
healthy adults: Guidance for prescribing exercise. Medicine & Science in Sports & Exercise, 43(7), 1334–1359. doi:10.1249/MSS.0b013e318213fefb
Gibala, M. J., Little, J. P., van Essen, M., Wilkin, G. P., Burgomaster, K. A., Safdar, A., … Tarnopolsky, M. A. (2006). Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. Journal of Physiology, 575(Pt 3), 901–911. doi:10.
1113/jphysiol.2006.112094
Gillen, J. B., Martin, B. J., MacInnis, M. J., Skelly, L. E., Tarnopolsky, M. A., & Gibala, M. J. (2016). Twelve weeks of sprint interval training improves indices of cardiometabolic health similar to traditional endurance training despite a five-fold lower exercise volume and time commitment. PLoS One, 11(4), e0154075. doi:10.1371/journal.pone.0154075
Gillen, J. B., Percival, M. E., Ludzki, A., Tarnopolsky, M. A., & Gibala, M. J. (2013). Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women.
Obesity (Silver Spring), 21(11), 2249–2255. doi:10.1002/oby.20379
Gillen, J. B., Percival, M. E., Skelly, L. E., Martin, B. J., Tan, R. B., Tarnopolsky, M. A., & Gibala, M. J. (2014). Three minutes of all-out intermittent exercise per week increases skeletal muscle oxidative capacity
and improves cardiometabolic health. PLoS One, 9(11), e111489. doi:10.1371/journal.pone.0111489
Green, N., Wertz, T., LaPorta, Z., Mora, A., Serbas, J., & Astorino, T. A. (2017). Comparison of acute physiological and psychological responses between moderate intensity continuous exercise and three regimes
of high intensity training. Journal of Strength and Conditioning Research, doi:10.1519/JSC. 0000000000002154
Hallal, P. C., Andersen, L. B., Bull, F. C., Guthold, R., Haskell, W., Ekelund, U., & Group, L. P. A. S. W. (2012). Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet, 380(9838), 247–257. doi:10.1016/S0140-6736(12)60646-1
Hardcastle, S. J., Ray, H., Beale, L., & Hagger, M. S. (2014). Why sprint interval training is inappropriate for
a largely sedentary population. Frontiers in Psychology, 5, 1505–1505. doi:10.3389/fpsyg.2014.01505
Hardy, C., & Rejeski, W. (1989). Not what, but how one feels: The measurement of affect during exercise. Journal of Sport and Exercise Psychology, 11, 304–317.
Hargreaves, E., & Stych, K. (2013). Exploring the peak and end rule of past affective episodes within the exercise context. Psychology of Sport and Exercise, 14(2), 169–178. doi:10.1016/j.psychsport.2012.10.003
Heisz, J. J., Tejada, M. G., Paolucci, E. M., & Muir, C. (2016). Enjoyment for high-intensity interval exercise increases during the first six weeks of training: Implications for promoting exercise adherence in sedentary Adults. PLoS One, 11(12), e0168534. doi:10.1371/journal.pone.0168534
Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41(1), 3–13. doi:10. 1249/MSS.0b013e31818cb278
Howell, D. (1997). Statistical methods for pyschology. Florence, Kentucky: Brooks Cole.
Hu, L., Motl, R. W., McAuley, E., & Konopack, J. F. (2007). Effects of self-efficacy on physical activity enjoyment in college-aged women. International Journal of Behavioral Medicine, 14(2), 92–96.
Jung, M. E., Bourne, J. E., & Little, J. P. (2014). Where does HIT fit? An examination of the affective response to high-intensity intervals in comparison to continuous moderate- and continuous vigorousintensity exercise in the exercise intensity-affect continuum. PLoS One, 9(12), e114541. doi:10.1371/
journal.pone.0114541
Kearon, M. C., Summers, E., Jones, N. L., Campbell, E. J., & Killian, K. J. (1991). Effort and dyspnoea during work of varying intensity and duration. European Respiratory Journal, 4(8), 917–925.
Kendzierski, D., & DeCarlo, K. J. (1991). Physical activity enjoyment scale: Two validation studies. Journal of Sport and Exercise Psychology, 13(1), 50–64. doi:10.1123/jsep.13.1.50
Kilpatrick, M. W., Martinez, N., Little, J. P., Jung, M. E., Jones, A. M., Price, N. W., & Lende, D. H. (2015). Impact of high-intensity interval duration on perceived exertion. Medicine & Science in Sports & Exercise, 47(5), 1038–1045. doi:10.1249/MSS.0000000000000495
Korkiakangas, E. E., Alahuhta, M. A., & Laitinen, J. H. (2009). Barriers to regular exercise among adults at high risk or diagnosed with type 2 diabetes: A systematic review. Health Promotion International, 24(4), 416–427. doi:10.1093/heapro/dap031
Little, J. P., Gillen, J. B., Percival, M. E., Safdar, A., Tarnopolsky, M. A., Punthakee, Z., …
Gibala, M. J. (2011). Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. Journal of Applied Physiology, 111(6), 1554–1560.
doi:japplphysiol.00921.2011 [pii] 10.1152/japplphysiol.00921.2011
MacInnis, M. J., Zacharewicz, E., Martin, B. J., Haikalis, M. E., Skelly, L. E., Tarnopolsky, M. A., … Gibala, M. J. (2017). Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work. Journal of Physiology, 595(9), 2955–2968.
doi:10.1113/JP272570
Malik, A. A., Williams, C. A., Bond, B., Weston, K. L., & Barker, A. R. (2017). Acute cardiorespiratory, perceptual and enjoyment responses to high-intensity interval exercise in adolescents. European Journal of Sport Science, 17(10), 1335–1342. doi:10.1080/17461391.2017.1364300
Martinez, N., Kilpatrick, M. W., Salomon, K., Jung, M. E., & Little, J. P. (2015). Affective and enjoyment responses to high-intensity interval training in overweight-to-obese and insufficiently active Adults. Journal of Sport & Exercise Psychology, 37(2), 138–149. doi:10.1123/jsep.2014-0212
Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: A model comparison perspective (2nd ed.). Mahwah, N.J.. London: Lawrence Erlbaum Associates.
McAuley, E., & Blissmer, B. (2000). Self-efficacy determinants and consequences of physical activity. Exercise and Sport Sciences Reviews, 28(2), 85–88.
Metcalfe, R. S., Babraj, J. A., Fawkner, S. G., & Vollaard, N. B. (2012). Towards the minimal amount of exercise for improving metabolic health: Beneficial effects of reduced-exertion high-intensity interval training. European Journal of Applied Physiology, 112(7), 2767–2775. doi:10.1007/s00421-011- 2254-z
Metcalfe, R., Fawkner, S., & Vollaard, N. (2016). No acute effect of reduced-exertion high-intensity interval training (REHIT) on insulin sensitivity. International Journal of Sports Medicine, doi:10.1055/s-0035- 1569450
Metcalfe, R. S., Fitzpatrick, B., Fitzpatrick, S., McDermott, G., Brick, N., McClean, C., & Davison, G. W. (2018). Extremely short duration interval exercise improves 24-h glycaemia in men with type 2 diabetes. European Journal of Applied Physiology, 12, 2551–2562. doi:10.1007/s00421-018-3980-2
Metcalfe, R. S., Koumanov, F., Ruffino, J. S., Stokes, K. A., Holman, G. D., Thompson, D., & Vollaard, N. B. (2015). Physiological and molecular responses to an acute bout of reduced-exertion high-intensity interval training (REHIT). European Journal of Applied Physiology, 115(11), 2321–2334. doi:10.
1007/s00421-015-3217-6
Metcalfe, R. S., Tardif, N., Thompson, D., & Vollaard, N. B. (2016). Changes in aerobic capacity and glycaemic control in response to reduced-exertion high-intensity interval training (REHIT) are not different between sedentary men and women. Applied Physiology, Nutrition and Metabolism, 41(11), 1117–1123.
doi:10.1139/apnm-2016-0253
Nalçakan, G. R., Songsorn, P., Fitzpatrick, B. L., Yüzbasioglu, Y., Brick, N. E., Metcalfe, R. S., & Vollaard, N. B. J. (2018). Decreasing sprint duration from 20 to 10 s during reduced-exertion high-intensity interval training (REHIT) attenuates the increase in maximal aerobic capacity but has no effect on affective
and perceptual responses. Applied Physiology, Nutrition and Metabolism, 43(4), 338–344. doi:10.1139/ apnm-2017-0597
Niven, A., Thow, J., Holroyd, J., Turner, A. P., & Phillips, S. M. (2018). Comparison of affective responses during and after low volume high-intensity interval exercise, continuous moderate- and continuous highintensity exercise in active, untrained, healthy males. Journal of Sports Sciences, 36(17), 1993–2001.
doi:10.1080/02640414.2018.1430984
Reichert, F. F., Barros, A. J., Domingues, M. R., & Hallal, P. C. (2007). The role of perceived personal barriers to engagement in leisure-time physical activity. American Journal of Public Health, 97(3), 515–
519. doi:10.2105/AJPH.2005.070144
Rhodes, R. E., & Kates, A. (2015). Can the affective response to exercise predict future motives and physical activity behavior? A systematic review of published evidence. Annals of Behavioral Medicine, 49(5), 715–731. doi:10.1007/s12160-015-9704-5
Ruffino, J. S., Songsorn, P., Haggett, M., Edmonds, D., Robinson, A. M., Thompson, D., & Vollaard, N. B. (2017). A comparison of the health benefits of reduced-exertion high-intensity interval training (REHIT) and moderate-intensity walking in type 2 diabetes patients. Applied Physiology, Nutrition and
Metabolism, 42(2), 202–208. doi:10.1139/apnm-2016-0497
Saanijoki, T., Nummenmaa, L., Koivumäki, M., Löyttyniemi, E., Kalliokoski, K. K., & Hannukainen, J. C. (2018). Affective adaptation to repeated SIT and MICT protocols in insulin-resistant Subjects. Medicine & Science in Sports & Exercise, 50(1), 18–27. doi:10.1249/MSS.0000000000001415
Stork, M. J., Banfield, L. E., Gibala, M. J., & Martin Ginis, K. A. (2017). A scoping review of the psychological responses to interval exercise: Is interval exercise a viable alternative to traditional exercise? Health Psychology Review, 11(4), 324–344. doi:10.1080/17437199.2017.1326011
Stork, M. J., Gibala, M. J., & Martin Ginis, K. A. (2018). Psychological and behavioral responses to interval and continuous exercise. Medicine & Science in Sports & Exercise, doi:10.1249/MSS. 0000000000001671
Thomas, S., Reading, J., & Shephard, R. J. (1992). Revision of the physical activity readiness questionnaire (PAR-Q). Canadian Journal of Sport Science, 17(4), 338–345.
Thum, J. S., Parsons, G., Whittle, T., & Astorino, T. A. (2017). High-intensity interval training Elicits higher enjoyment than moderate intensity continuous exercise. PLoS One, 12(1), e0166299. doi:10.1371/ journal.pone.0166299
Tjønna, A. E., Lee, S. J., Rognmo, Ø, Stølen, T. O., Bye, A., Haram, P. M., … Wisløff, U. (2008). Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: A pilot study. Circulation, 118(4), 346–354. doi:10.1161/CIRCULATIONAHA.108.772822
Townsend, L. K., Islam, H., Dunn, E., Eys, M., Robertson-Wilson, J., & Hazell, T. J. (2017). Modified sprint
interval training protocols. Part II. psychological responses. Applied Physiology, Nutrition and Metabolism, 42(4), 347–353. doi:10.1139/apnm-2016-0479
Vella, C. A., Taylor, K., & Drummer, D. (2017). High-intensity interval and moderate-intensity continuous training elicit similar enjoyment and adherence levels in overweight and obese adults. European Journal of Sport Science, 17(9), 1203–1211. doi:10.1080/17461391.2017.1359679
Vollaard, N. B., & Metcalfe, R. S. (2017). Research into the health benefits of sprint interval training should focus on protocols with fewer and shorter sprints. Sports Medicine, 47(12), 2443–2451. doi:10.1007/ s40279-017-0727-x
Vollaard, N. B. J., Metcalfe, R. S., & Williams, S. (2017). Effect of number of sprints in an SIT session on change in V̇ O2max: A meta-analysis. Medicine & Science in Sports & Exercise, 49(6), 1147–1156. doi:10.1249/MSS.0000000000001204
Wilkins, E., Wilson, L., Wickramasinghe, K., Bhatnagar, P., Leal, J., Luengo-Fernandez, R., … Townsend, N. (2017). Physical Activity. In European Cardiovascular Disease Statistics. Brussels: European Heart
Network.
Williams, D. M., Dunsiger, S., Ciccolo, J. T., Lewis, B. S., Albrecht, A. E., & Marcus, B. H. (2008). Acute affective response to a moderate-intensity exercise stimulus predicts physical activity participation 6 and 12 months later. Psychology of Sport and Exercise, 9(3), 231–245. doi:10.1016/j.psychsport.2007.04.002

Keywords

  • Exercise
  • Interval Training
  • Affect
  • Perceived Exertion

Fingerprint

Dive into the research topics of 'Affective and perceptual responses during reduced-exertion high-intensity interval training (REHIT)'. Together they form a unique fingerprint.

Cite this