An Oil Well Dataset Derived from Satellite-Based Remote Sensing

Zhibao Wang, Lu Bai, Guangfu Song, Jie Zhang, Jinhua Tao, Maurice Mulvenna, RR Bond, Liangfu Chen

Research output: Contribution to journalArticlepeer-review

7 Downloads (Pure)

Abstract

Estimation of the number and geo-location of oil wells is important for policy holders considering their impact on energy resource planning. With the recent development in optical remote sensing, it is possible to identify oil wells from satellite images. Moreover, the recent advancement in deep learning frameworks for object detection in remote sensing makes it possible to automatically detect oil wells from remote sensing images. In this paper, we collected a dataset named Northeast Petroleum University–Oil Well Object Detection Version 1.0 (NEPU–OWOD V1.0) based on high-resolution remote sensing images from Google Earth Imagery. Our database includes 1192 oil wells in 432 images from Daqing City, which has the largest oilfield in China. In this study, we compared nine different state-of-the-art deep learning models based on algorithms for object detection from optical remote sensing images. Experimental results show that the state-of-the-art deep learning models achieve high precision on our collected dataset, which demonstrate the great potential for oil well detection in remote sensing.
Original languageEnglish
Article number1132
Pages (from-to)1-21
Number of pages21
JournalRemote Sensing
Volume13
Issue number6
DOIs
Publication statusPublished - 16 Mar 2021

Keywords

  • Deep learning
  • Oil well dataset
  • Oil well detection
  • Optical remote sensing
  • Satellite imagery

Fingerprint Dive into the research topics of 'An Oil Well Dataset Derived from Satellite-Based Remote Sensing'. Together they form a unique fingerprint.

Cite this