Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project

G. Zimmermann, L. Sturz, H. Nguyen-Thi, N. Mangelinck-Noel, Y. Z. Li, C.-A. Gandin, R. Fleurisson, G. Guillemot, S. McFadden, R. P. Mooney, P. Voorhees, A. Roosz, A. Ronaföldi, C. Beckermann, A. Karma, C.-H. Chen, N. Warnken, A. Saad, G.-U. Grün, M. GrohnI. Poitrault, T. Pehl, I. Nagy, D. Todt, O. Minster, W. Sillekens

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

During casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.% Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton–finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements.
Original languageEnglish
Pages (from-to)1269-1279
JournalJOM Journal of the Minerals, Metals and Materials Society
Volume69
Issue number8
Early online date1 Jun 2017
DOIs
Publication statusE-pub ahead of print - 1 Jun 2017

Bibliographical note

Reference text: 1. G. Zimmermann, L. Sturz, B. Billia, N. Mangelinck-Noe¨ l, H. Nguyen Thi, C.-A. Gandin, D.J. Browne, and W.U. Mirihanage, JOP Conference Series 327 (2011).
2. G. Zimmermann, L. Sturz, B. Billia, N. Mangelinck-Noe¨ l, D.R. Liu, H. Nguyen Thi, N. Bergeon, C.-A .Gandin, D.J. Browne, Ch Beckermann, D. Tourret, and A. Karma, Mater. Sci. Forum 790, 12 (2014).
3. D.R. Liu, N. Mangelinck-Noe¨l, C.A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen Thi, and B. Billia, Acta Mater. 64, 253 (2014).
4. W.U. Mirihanage, D.J. Browne, G. Zimmermann, and L. Sturz, Acta Mater. 60, 6362 (2012).
5. Y.Z. Li, N. Mangelinck-Noe¨ l, H. Nguyen-Thi, G. Zimmermann, L. Sturz, T. Cool, E.B. Gulsoy, and P.W. Voorhees, in Proceedings of the 6th Decennial International Conference on Solidification SP17, in press (2017).
6. C.A. Gandin, Acta Mater. 48, 2483 (2000).
7. J.D. Hunt, Mater. Sci. Eng. 65, 75 (1984).
8. D.J. Browne and J.D. Hunt, Numer. Heat Trans. B 45, 395 (2004).
9. W.U. Mirihanage and D.J. Browne, Comput. Mater. Sci. 46, 777 (2009).
10. W.U. Mirihanage, D.J. Browne, L. Sturz, and G. Zimmermann, IOP Conf. Ser. Mater. Sci. Eng. 27 (2011).
11. R.P. Mooney, S. McFadden, M. Rebow, and D.J. Browne, Trans. Indian Inst. Met. 65, 527 (2012).
12. R.P. Mooney, S. McFadden, Z. Gabalcova´ , and J. Lapin,
Appl. Therm. Eng. 67, 61 (2014).
13. W.A. Johnson and R.F. Mehl, Trans. Aime 135, 396 (1939).
14. M. Avrami, J. Chem. Phys. 9, 177 (1941).
15. A.N. Kolmogorov, Bull. Acad. Sci. URSS (Sci. Math. Nat.) 3, 355 (1937).
16. T. Carozzani, H. Digonnet, and C.-A. Gandin, Model. Simul. Mater. Sci. Eng. 20, 015010 (2012).
17. T. Carozzani, Ch.-A. Gandin, H. Digonnet, M. Bellet, K. Zaidat, and Y. Fautrelle, Metall. Mater. Trans. A 44, 873 (2013).
18. T. Carozzani, Ch.-A. Gandin, and H. Digonnet, Model. Simul. Mater. Sci. Eng. 22, 015012 (2014).
19. Ch.-A. Gandin, T. Carozzani, H. Digonnet, S. Chen, and G. Guillemot, JOM 65, 1122 (2013).
20. D.R. Liu, N. Mangelinck-Noe¨ l, Ch.-A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen-Thi, and B. Billia, Acta Mater. 93, 24 (2015).
21. D.R. Liu, N. Mangelinck-Noe¨ l, Ch.-A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen-Thi, B. Billia, and I.O.P. Series, Mater. Sci. Eng. 117, 012009 (2016).
22. D. Tourret, A. Karma, A.J. Clarke, P.J. Gibbs, and S.D. Imhoff, IOP Conf. Ser. Mater. Sci. Eng. 84, 012082 (2015).
23. D. Tourret and A. Karma, Acta Mater. 120, 240 (2016).
24. D. Tourret, A.J. Clarke, S.D. Imhoff, P.J. Gibbs, J.W. Gibbs, and A. Karma, JOM 67, 1776 (2015).
25. J.L. Fife and P.W. Voorhees, Acta Mater. 57, 2418 (2009).
26. J. Alkemper and P.W. Voorhees, Acta Mater. 49, 897 (2001).
27. L. Sturz, M. Hamacher, and G. Zimmermann, in Proceedings of the 6th Decennial International Conference on Solidification SP17, in press (2017).
28. A. Ludwig, J. Mogerisch, M. Kolbe, G. Zimmermann, L. Sturz, N. Bergeon, B. Billia, G. Faivre, S. Akamatsu, S. Bottin-Rousseau, and D. Voss, JOM 64, 1097 (2012).

Keywords

  • Solidification
  • Alloy
  • microgravity

Fingerprint

Dive into the research topics of 'Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project'. Together they form a unique fingerprint.

Cite this