Exogenous Plant-Based Nutraceutical Supplementation and Peripheral Cell Mononuclear DNA Damage Following High Intensity Exercise

    Research output: Contribution to journalArticlepeer-review

    6 Citations (Scopus)
    12 Downloads (Pure)


    Plant-based nutraceuticals are categorised as nutritional supplements which contain a high concentration of antioxidants with the intention of minimising the deleterious effect of an oxidative insult. The primary aim of this novel study was to determine the effect of exogenous barley-wheat grass juice (BWJ) on indices of exercise-induced oxidative stress. Ten (n = 10) apparently healthy, recreationally trained (˙VO2max 55.9 _ 6 mL_kg&#x100000;1_min&#x100000;1), males (age 22 _ 2 years, height 181 _ 6 cm, weight 87 _ 8 kg, body mass index (BMI) 27 _ 1) volunteered to participant in the study. In a randomised, double-blinded, placebo-controlled crossover design, participants consumed either a placebo, a low dose (70 mL per day) of BWJ, or a high dose (140 mL per day) of BWJ for 7-days. Experimental exercise consisted of a standard maximal oxygen uptake test until volitional fatigue. DNA damage, as assessed by the single cell gel electrophoresis comet assay, increased following high intensity exercise across all groups (time _ group; p < 0.05, Effect Size (ES) = 0.7), although there was no selective difference for intervention (p > 0.05). There was a main effect for time in lipid hydroperoxide concentration (pooled-group data, pre- vs. post-exercise, p < 0.05, ES = 0.2) demonstrating that exercise increased lipid peroxidation. Superoxide dismutase activity (SOD) increased by 44.7% following BWJ supplementation (pooled group data, pre- vs. post). The ascorbylfree radical (p < 0.05, ES = 0.26), _-tocopherol (p = 0.007, ES = 0.2), and xanthophyll (p = 0.000, ES = 0.5), increased between the pre- and post-exercise time points indicating a main effect of time. This study illustrates that a 7-day supplementation period of a novel plant-derived nutraceutical product is insufficient at attenuating exercise-induced oxidative damage. It is possible that with a larger sample size, and longer supplementation period, this novel plant-based nutraceutical could potentially offer effective prophylaxis against exercise-induced oxidative stress; as such, this justifies the need for further research.
    Original languageEnglish
    Number of pages14
    Issue number70
    Publication statusPublished - 21 May 2018

    Bibliographical note

    1. Elokda, A.S.; Nielsen, D.H. Effects of exercise training on the glutathione antioxidant system. Eur. J. Cardiovasc. Prev. Rehabil. 2007, 14, 630–637. [CrossRef] [PubMed]
    2. Radak, Z.; Marton, O.; Nagy, E.; Koltai, E.; Goto, S. The complex role of physical exercise and reactive oxygen species on brain. J. Sport Health Sci. 2013, 2, 87–93. [CrossRef]
    3. Alfadda, A.A.; Sallam, R.M. Reactive oxygen species in health and disease. J. Biomed. Biotechnol. 2012, 2012. [CrossRef] [PubMed]
    4. Sweazea, K.L.; Johnston, C.S.; Knurick, J.; Bliss, C.D. Plant-based nutraceutical increases plasma catalase activity in healthy participants: A small double-blind, randomised, placebo-controlled, proof of concept trial. J. Diet. Suppl. 2017, 14, 200–213. [CrossRef] [PubMed]
    5. Ji, L.L. Exercise, oxidative stress, and antioxidants. Am. J. Sports Med. 1996, 24, S20–S24. [CrossRef] [PubMed]
    6. Jackson, M.J. Handbook of Oxidants and Antioxidants in Exercise. Hanninen, O., Packer, L., Sen, C.K., Eds.;
    Elsevier: Amsterdam, The Netherlands, 2000; pp. 57–68.
    7. Davison, G.W.; Hughes, C.M.; Bell, R.A. Exercise and Mononuclear Cell DNA Damage: The Effects of Antioxidant Supplementation. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 480–492. [CrossRef] [PubMed]
    8. Silva, N.A.; Lima, L.C.F. The Association between Physical Exercise and Reactive Oxygen Species (ROS) Production. J. Sports Med. Doping Stud. 2014, 5, 152.
    9. Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative Stress and Antioxidant Defence. World Allergy Organ. J. 2012, 5, 9–19. [CrossRef] [PubMed]
    10. Bouayed, J.; Bohn, T. Exogenous Antioxidants—Double-Edged Swords in Cellular Redox State. Oxid. Med. Cell. Longev. 2010, 3, 228–237. [CrossRef] [PubMed]
    11. Sasazuki, S.; Hayashi, T.; Nakachi, K.; Tsubono, Y.; Okubo, S.; Hayashi, M.; Tsugane, S. Protective Effect of Vitamin C on Oxidative Stress: A Randomized Controlled Trial. Int. J. Vitam. Nutr. Res. 2008, 78, 121–128. [CrossRef] [PubMed]
    12. Niki, E. Role of Vitamin E as a Lipid-Soluble Peroxyl Radical Scavenger: In Vitro and In Vivo. Free Radic. Biol. Med. 2014, 66, 3–12. [CrossRef] [PubMed]
    13. Keong, C.C.; Singh, H.J.; Singh, R. Effects of Palm Vitamin E Supplementation on Exercise-Induced Oxidative Stress and Endurance Performance in the Heat. J. Sports Sci. Med. 2006, 5, 629–639. [PubMed]
    14. Taghiyar, M.; Darvishi, L.; Askari, G.; Feizi, A.; Hariri, M.; Mashhadi, N.S.; Ghiasvand, R. The Effects of Vitamin C and E Supplementation on Muscle Damage and Oxidative Stress in Female Athletes: A Clinical Trial. Int. J. Prev Med. 2013, 4, S16–S23. [PubMed]
    15. Morillas-Ruiz, J.M.; Villegas Garcia, J.A.; Lopez, F.J.; Vidal-Guevara, M.L.; Zafrilla, P. Effects of Polyphenolic Antioxidants on Exercise-Induced Oxidative Stress. Clin. Nutr. 2006, 25, 444–453. [CrossRef] [PubMed]
    16. Lee, S.H.; Jew, S.S.; Chang, P.S.; Hong, I.J.; Hwang, E.S.; Kim, K.S.; Kim, K.T. Free radical scavenging effect and antioxidant activities of barley leaves. Food Sci. Biotechnol. 2003, 12, 268–273.
    17. Paulíˇcková, I.; Ehrenbergerová, J.; Fiedlerová, V.; Gabrovska, D.; Havlova, P.; Holasova, M.; Kopáˇcek, J.; Ouhrabková, J.; Pinkrová, J.; Rysová, J.; et al. Evaluation of barley grass as a potential source of some nutritional substances. Czech J. Food Sci. 2007, 25, 65–72. [CrossRef]
    18. Ghavami, L.; Goliaei, B.; Taghizadeh, B.; Nikoofar, A. Effects of barley -glucan on radiation damage in the human hepatoma cell line HepG2. Mutat. Res. 2014, 775–776, 1–6. [CrossRef] [PubMed]
    19. Kulkami, S.D.; Tilak, J.C.; Acharya, R.; Rajurkar, N.S.; Devasagayam, T.P.; Reddy, A.V. Evaluation of the antioxidant activity of wheatgrass (Triticum aestivum, L.) as a function of growth under different conditions. Phytother. Res. 2006, 20, 218–227.
    20. Sethi, J.; Yadav, M.; Dahiya, K.; Sood, S.; Singh, V.; Bhattacharya, S.B. Antioxidant effect of Triticum aestivium (wheat grass) in high-fat diet-induced oxidative stress in rabbits. Methods Find. Exp. Clin. Pharmacol. 2010, 32, 233–235. [CrossRef] [PubMed]
    21. Simundic, A.; Cornes, M.; Grankvist, K.; Lippi, G.; Nybo, M. Standardization of collection requirements for fasting samples: For theWorking Group on Preanalytical Phase (WG-PA) of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM). Clin. Chim. Acta. 2013, 432, 33–37. [CrossRef]
    22. Boorsma, R.K.; Whitfeld, J.; Spriett, L.L. Beetroot juice supplementation does not improve performance of elite 1500-m runners. Med. Sci. Sport Exerc. 2014, 46, 2326–2334. [CrossRef] [PubMed]
    23. Dill, D.B.; Costill, D.L. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J. Appl. Physiol. 1974, 37, 247–248. [CrossRef] [PubMed]
    24. Dacie, J.V.; Lewis, S.M. Practical Haematology; Churchill: London, UK, 1968.
    25. Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [CrossRef]
    26. Wolff, S.P. Ferrous Ion Oxidation in Presence of Ferric Ion Indicator Xylenol Orange for Measurement of Hydroperoxides. Methods Enzymol. 1994, 223, 182–189.
    27. Thurnham, D.I.; Smith, E.; Flora, P.S. Concurrent Lipid-Chromatpgraphic Assay of Retinol, -Tocopherol, -Carotene, -Carotene, Lycopene, and -Cryptoxanthin in Plasma, with Tocopherol Acetate as an Internal Standard. Clin. Chem. 1988, 34, 377–381. [PubMed]
    28. Clliford, T.; Berntzen, B.; Davison, G.W.;West, D.J.; Howatson, G.; Steevenson, E.J. Effects of Beetroot Juice on Recovery of Muscle Function and Performance between Bouts of Repeated Sprint Exercise. Nutrients 2016, 8, E506. [CrossRef] [PubMed]
    29. Fogarty, M.C.; Hughes, C.M.; Burke, G.; Brown, J.C.; Trinick, T.R.; Duly, E.; Bailey, D.M.; Davison, G.W. Exercise-induced lipid peroxidation: Implications for deoxyribonucleic acid damage and systemic free radical generation. Environ. Mol. Mutagen. 2011, 52, 35–42. [CrossRef] [PubMed]
    30. Lambertucci, R.H.; Levada-Pires, A.C.; Rossoni, L.V.; Curi, R.; Pithon-Curi, T.C. Effects of aerobic exercise training on antioxidant enzyme activities and mRNA levels in soleus muscle from young and aged rats. Mech. Ageing Dev. 2007, 128, 267–75. [CrossRef] [PubMed]
    31. Collins, A.R.; Oscoz, A.A.; Brunborg, G.; Gaivão, I.; Giovannelli, L.; Kruszewski, M.; Smith, C.C.; Stetina, R. The comet assay: Topical issues. Mutagenesis 2008, 23, 143–151. [CrossRef] [PubMed]
    32. Davison, G.W. Exercise and Oxidative Damage in Nucleoid DNA Quantified Using Single Cell Gel Electrophoresis: Present and Future Application. Front. Physiol. 2016, 7, 249. [CrossRef] [PubMed]
    33. Jackson, M.J.; Vasilaki, A.; McArdle, A. Cellular mechanisms underlying oxidative stress in human exercise. Free Radic. Biol. Med. 2016, 98, 13–17. [CrossRef] [PubMed]
    34. Urso, M.L.; Clarkson, P.M. Oxidative stress, exercise, and antioxidant supplementation. Toxicology 2003, 189, 41–54. [CrossRef]
    35. Andreyev, A.Y.; Kushnareva, Y.E.; Murphy, A.N.; Starkov, A.A. Mitochondrial ROS metabolism: 10 years later. Biochemistry 2015, 80, 517–531. [CrossRef] [PubMed]
    36. Saint-Pierre, J.; Buckingham, J.A.; Roebuck, S.J.; Brand, M.D. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem. 2002, 227, 44784–44790. [CrossRef]
    37. Goncalves, R.L.S.; Quinlan, C.L.; Perevoshchikova, I.V.; Hey-Mogensen, M.; Brand, M.D. Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J. Biol. Chem. 2015, 290, 209–227. [CrossRef] [PubMed]
    38. Austin, S.; Klimcakova, E.; St-Pierre, J. Impact of PGC-1alpha on the topology and rate of superoxide production by the mitochondrial electron transport chain. Free Radic. Biol. Med. 2011, 51, 2243–2248. [CrossRef] [PubMed]
    39. Saint-Pierre, J.; Drori, S.; Uldry, M.; Silvaggi, J.M.; Rhee, J.; Jäger, S.; Handschin, C.; Zheng, K.; Lin, J.; Yang, W.; et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional cofactors. Cell 2006, 127, 397–408. [CrossRef] [PubMed]
    40. Tsai, K.; Hsu, T.G.; Hsu, K.M.; Cheng, H.; Liu, T.Y.; Hsu, C.F.; Kong, C.W. Oxidative DNA damage in human peripheral leukocytes induced by massive aerobic exercise. Free Radic. Biol. Med. 2001, 31, 1465–1472. [CrossRef]
    41. Guetens, G.; De Boeck, G.; Highley, M. Oxidative DNA damage: Biological significance and methods of analysis. Crit. Rev. Clin. Lab. Sci. 2002, 39, 331–457. [CrossRef] [PubMed]
    42. Zhang, M.; Izumi, I.; Kagamimori, S.; Sokejima, S.; Yamagami, T.; Liu, Z.; Qi, B. Role of taurine supplementation to prevent exercise-induced oxidative stress in healthy young men. Amino Acids 2004, 26, 203–207. [PubMed]
    43. Bo, H.; Jiany, N.; Ji, L.L.; Zhang, Y. Mitochondrial redox metabolism in aging: Effects of exercise interventions. J. Sport Health Sci. 2013, 2, 67–74. [CrossRef]
    44. Langmaier, J.; Samec, Z.; Samcova, E.; Hobza, P.; Reha, D. Origin of difference between one-electron redox potentials of guanosine and guanine: Electrochemical and quantum chemical study. J. Phys. Chem. 2004, 108, 15896–15899. [CrossRef]
    45. Roszkowski, K.; Jozwicki, W.; Blaszcyk, P.; Mucha-Malecka, A.; Siomek, A. Oxidative damage DNA: 8-oxoGua and 8-oxodG as molecular markers of cancer. Med. Sci. Monit. 2011, 17, CR329–CR333. [CrossRef] [PubMed]
    46. Lindahl, T.; Barnes, D.E. Repair of endogenous DNA damage. Cold Spring Harb. Symp. Quant. Biol. 2000, 65, 127–133. [CrossRef] [PubMed]
    47. Pan, L.; Zhu, B.; Hao, W.; Zeng, X.; Vlahopoulos, S.A.; Hazra, T.K.; Hegde, M.L.; Radak, Z.; Bacsi, A.; Brasier, A.R.; et al. Oxidized guanine base lesions function in 8-oxoguanine DNA gylcosylase1-mediated epigenetic regulation of nuclear factor kappaB-driven gene expression. J. Biol. Chem. 2016, 291, 25553–25566. [CrossRef] [PubMed]
    48. Nishiyama, T.; Hagiwara, Y.; Hagiwara, H.; Shibamoto, T. Inhibitory effect of 20 0-O-glycosyl isovitexin and -tocopherol on genotoxic glyoxal formation in a lipid peroxidation system. Food Chem. Toxicol. 1994, 32, 1047–1051. [CrossRef]
    49. McClean, C.; Harris, R.A.; Brown, M.; Brown, J.C.; Davison, G.W. Effects of Exercise Intensity on Post-Exercise Endothelial Function and Oxidative Stress. Oxid. Med. Cell. Longev. 2015, 2015. [CrossRef] [PubMed]
    50. Marnett, L.J. Oxy radicals, lipid peroxidation and DNA damage. Toxicology 2002, 181–182, 219–222. [CrossRef]
    51. Halliwell, B.; Gutteridge, J. Free Radicals in Biology and Medicine; Oxford Press: Oxford, UK, 2007.
    52. Davison, G.W.; Ashton, T.; George, L.; Young, I.S.; McEneny, J.; Davies, B.; Jackson, S.K.; Peters, J.R.; Bailey, D.M. Molecular detection of exercise-induced free radicals following ascorbate prophylaxis in type 1 diabetes mellitus: A randomised controlled trial. Diabetologia 2008, 51, 2049–2059. [CrossRef] [PubMed]
    53. Bamforth, C.W. Superoxide dismutase in barley. J. Inst. Brew. 1983, 89, 420–423. [CrossRef]
    54. Markham, K.R.; Mitchell, K.A. The mis-identification of the major antioxidant flavonoids in young barley (Hordeum vulgare) leaves. J. Biosci. 2003, 58, 53–56. [CrossRef]
    55. Janda, T.; Szalai, G.; Rios-Gonzalez, K.; Veisz, O.; Paldi, E. Comparative study of frost tolerance and antioxidant activity in cereals. Plant Sci. 2003, 164, 301–306. [CrossRef]
    56. Yu, Y.M.; Chang,W.C.; Chang, C.T.; Hsieh, C.L.; Tsai, C.E. Effects of young barley leaf extract and antioxidant vitamins on LDL oxidation and free radical scavenging activities in type 2 diabetes. Diabetes Metab. 2002, 28, 107–114. [PubMed]
    57. Yi, B.; Kasai, H.; Lee, H.S.; Kang, Y.; Park, J.Y.; Yang, M. Inhibition by wheat sprout (Triticum aestivum) Juice of bisphenol A-Induced oxidative stress in young women. Mutat. Res. 2011, 724, 64–68. [CrossRef] [PubMed]
    58. Ben-Ayre, E.; Goldin, E.;Wengrower, D.; Stamper, A.; Kohn, R.; Berry, E. Wheat Grass Juice in the Treatment of Active Distal Ulcerative Colitis: A Randomised Double-Blind Placebo-Controlled Trial. Scand. J. Gastroenterol. 2002, 37, 444–449. [CrossRef]
    59. Fogarty, M.C.; Hughes, C.M.; Burke, G.; Brown, J.C.; Davison, G.W. Acute and chronic watercress supplementation attenuates exercise-induced peripheral mononuclear cell DNA damage and lipid peroxidation. Br. J. Nutr. 2012, 109, 293–301. [CrossRef] [PubMed]
    60. Traber, M.G.; Atkinson, J. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med. 2007, 43, 4–15. [CrossRef] [PubMed]
    61. McAnulty, S.R.; McAnulty, L.S.; Nieman, D.C.; Morrow, J.D.; Shooter, L.A.; Holmes, S.; Heward, C.; Henson, D.A. Effect of alpha-tocopherol supplementation on plasma homocysteine and oxidative stress in highly trained athletes before and after exhaustive exercise. J. Nutr. Biochem. 2005, 16, 530–537. [CrossRef] [PubMed]
    62. Rokitzki, L.; Logemann, E.; Huber, G.; Keck, E.; Keul, J. Alpha-tocopherol supplementation in racing cyclists during extreme endurance training. Int. J. Sport Nutr. Exerc. Metab. 1994, 4, 253–264. [CrossRef]
    63. Subudhi, A.W.; Mattson, J.P. Effects of Antioxidant Supplementation on Oxidative Stress in Trained Cyclists; USANA Health Sciences: Salt Lake City, UT, USA, 2000.
    64. Davison, G.W.; George, L.; Jackson, S.K.; Young, I.S.; Davies, B.; Bailey, D.M.; Peters, J.R.; Ashton, T. Exercise, Free Radicals, and Lipid Peroxidation in Type 1 Diabetes Mellitus. Free Radic. Biol. Med. 2002, 33, 1543–1551. [CrossRef]
    65. Long, W.; Wells, K.; Englert, V. Does prior acute exercise affect post exercise substrate oxidation in response
    to a high carbohydrate meal? Nutr. Metab. 2008, 5, 2–5. [CrossRef] [PubMed]
    66. Haegele, A.D.; Gillette, C.; O’Neill, C. Plasma xanthophyll carotenoids correlate inversely with indices of oxidative DNA damage and lipid peroxidation. Cancer Epidemiol. Biomark. Prev. 2000, 9, 421–425.
    67. Eastep, J.; Chen, G. The Relationships of High-Fat and Metabolism of Lipophilic Vitamins. Integr. Food Nutr. Metab. 2015, 2, 174–179. [CrossRef]
    68. Mayne, S.T. Antioxidant Nutrients and Chronic Disease: Use of Biomarkers of Exposure and Oxidative Stress Status in Epidemiologic Research. J. Nutr. 2003, 133, 933S–940S. [CrossRef] [PubMed]
    69. Bouzid, M.A.; Hammouda, O.; Matran, R.; Robin, S.; Fabre, C. Changes in Oxidative Stress Markers and Biological Markers of Muscle Injury with Aging at Rest and in Response to an Exhaustive Exercise. PLoS ONE 2014, 9, e90420. [CrossRef] [PubMed]
    70. Khassaf, M.; Child, R.B.; McArdle, A.; Brodie, D.A.; Esanu, C.; Jackson, M.J. Time course of responses of human skeletal muscle to oxidative stress induced by nondamaging exercise. J. Appl. Physiol. 2001, 90, 1031–1035. [CrossRef] [PubMed]


    • reactive oxygen species
    • nutritional supplement
    • comet assay
    • oxidative stress


    Dive into the research topics of 'Exogenous Plant-Based Nutraceutical Supplementation and Peripheral Cell Mononuclear DNA Damage Following High Intensity Exercise'. Together they form a unique fingerprint.

    Cite this