TY - JOUR
T1 - Image Texture Analysis for Medical Image Mining: A Comparative Study Direct to Osteoarthritis Classification using Knee X-ray Image
AU - Chan, Sophal
AU - Dittakan, Kwankamon
AU - Garcia-Constantino, Matias
PY - 2020/12/31
Y1 - 2020/12/31
N2 - Knee Osteoarthritis (OA) is one of the most prominent diseases in an ageing society and has affected over 10 million people in Thailand. When people suffer from OA, it is very difficult to recover. Therefore, early detection and prevention are important. The typical way to detect OA is by using X-ray imaging. This research study is focused on early detection of OA by applying image processing and classification techniques to knee X-ray imagery. The fundamental concept is to find a region of interest, use feature extraction techniques and build a classifier that can classify between OA or non-OA imageries. There are four regions of interest obtained from each image: (i) Medial Femur (MF), (ii) Lateral Femur (LF), (iii) Medial Tibia (MT), and (iv) Lateral Tibia (LT). The ten texture analysis techniques are then adopted to generate the embedded properties of the bone surface. Once the feature vector has been generated the variety of techniques of machine learning mechanisms are applied to generate the desired classifiers, which can be used to distinguish between OA and non-OA images. From the conducted experiments, a total of 131 images (68 OA cases and 63 non-OA cases) was used, the results obtained show that LF region with Local Binary Pattern descriptor produced the most appropriate classifier with an AUC value of 0.912.
AB - Knee Osteoarthritis (OA) is one of the most prominent diseases in an ageing society and has affected over 10 million people in Thailand. When people suffer from OA, it is very difficult to recover. Therefore, early detection and prevention are important. The typical way to detect OA is by using X-ray imaging. This research study is focused on early detection of OA by applying image processing and classification techniques to knee X-ray imagery. The fundamental concept is to find a region of interest, use feature extraction techniques and build a classifier that can classify between OA or non-OA imageries. There are four regions of interest obtained from each image: (i) Medial Femur (MF), (ii) Lateral Femur (LF), (iii) Medial Tibia (MT), and (iv) Lateral Tibia (LT). The ten texture analysis techniques are then adopted to generate the embedded properties of the bone surface. Once the feature vector has been generated the variety of techniques of machine learning mechanisms are applied to generate the desired classifiers, which can be used to distinguish between OA and non-OA images. From the conducted experiments, a total of 131 images (68 OA cases and 63 non-OA cases) was used, the results obtained show that LF region with Local Binary Pattern descriptor produced the most appropriate classifier with an AUC value of 0.912.
KW - Texture Analysis
KW - Osteoarthritis
KW - Knee OA
KW - Image Classification
U2 - 10.18517/ijaseit.10.6.8279
DO - 10.18517/ijaseit.10.6.8279
M3 - Article
VL - 10
SP - 2189
EP - 2199
JO - International Journal on Advanced Science, Engineering and Information Technology
JF - International Journal on Advanced Science, Engineering and Information Technology
SN - 2088-5334
IS - 6
ER -