Individual calibration of accelerometers in children and their health-related 2 implications

Lynne Boddy, Conor Cuningham, Stuart Fairclough, MH Murphy, Gavin Breslin, Laurence Foweather, Dagger Rebecca, Lee Graves

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
15 Downloads (Pure)

Abstract

This study compared children’s physical activity (PA) levels, the prevalence of children 73 meeting current guidelines of ≥60 minutes of daily moderate to vigorous PA (MVPA), and 74 PA-health associations using individually calibrated (IC) and empirical accelerometer 75 cutpoints. Data from 75 (n = 32 boys) 10-12 year old children were included in this study. 76 Clustered cardiometabolic (CM) risk, directly measured cardiorespiratory fitness (CRF), 77 anthropometric and 7 day accelerometer data were included within analysis. PA data were 78 classified using Froude anchored IC, Evenson et al., 2008 (Ev) and Mackintosh et al., 2012 79 (Mack) cutpoints. The proportion of the cohort meeting ≥60mins MVPA/day ranged from 80 37%-56% depending on the cutpoints used. Reported PA differed significantly across the 81 cutpoint sets. IC LPA and MPA were predictors of CRF (LPA: standardised β = 0.32, p = 82 0.002, MPA: standardised β = 0.27 p = 0.013). IC MPA also predicted BMI Z-score 83 (standardised β = -0.35, p = 0.004). Ev VPA was a predictor of BMI Z-score (standardised β 84 = -0.33, p = 0.012). Cutpoint choice has a substantial impact on reported PA levels though no 85 significant associations with CM risk were observed. Froude IC cut points represent a 86 promising approach towards classifying children’s PA data.
Original languageEnglish
JournalJournal of Sport Sciences
Volume36
DOIs
Publication statusAccepted/In press - 5 Sep 2017

Bibliographical note

Reference text: Alexander, R. M. (1989). Optimization and gaits in the locomotion of vertebrates. Physiol 389 Rev, 69(4), 1199-1227 390
Andersen, L. B., Hasselstrom, H., Gronfeldt, V., Hansen, S. E., & Karsten, F. (2004). The 391 relationship between physical fitness and clustered risk, and tracking of clustered 392 risk from adolescence to young adulthood: eight years follow-up in the Danish 393 Youth and Sport Study. Int J Behav Nutr Phys Act, 1(1), 6 394
Andersen, L. B., Riddoch, C., Kriemler, S., & Hills, A. P. (2011). Physical activity and 395 cardiovascular risk factors in children. Br J Sports Med, 45(11), 871-876. doi: 396 10.1136/bjsports-2011-090333 397
Anderssen, S. A., Cooper, A. R., Riddoch, C., Sardinha, L. B., Harro, M., Brage, S., & 398 Andersen, L. B. (2007). Low cardiorespiratory fitness is a strong predictor for 399 clustering of cardiovascular disease risk factors in children independent of country, 400 age and sex. Eur J Cardiovasc Prev Rehabil, 14(4), 526-531. doi: 401 10.1097/HJR.0b013e328011efc1 402
Bailey, D. P., Boddy, L. M., Savory, L. A., Denton, S. J., & Kerr, C. J. (2013). Choice of activity-403 intensity classification thresholds impacts upon accelerometer-assessed physical 404 activity-health relationships in children. PLoS One, 8(2), e57101. doi: 405 10.1371/journal.pone.0057101 406
Baquet, G., Stratton, G., Van Praagh, E., & Berthoin, S. (2007). Improving physical activity 407 assessment in prepubertal children with high-frequency accelerometry monitoring: 408 a methodological issue. Prev Med, 44(2), 143-147. doi: 409 10.1016/j.ypmed.2006.10.004 410
Biddle, S. J., & Asare, M. (2011). Physical activity and mental health in children and 411 adolescents: a review of reviews. Br J Sports Med, 45(11), 886-895. doi: 412 10.1136/bjsports-2011-090185 413
Boddy, L. M., Murphy, M. H., Cunningham, C., Breslin, G., Foweather, L., Gobbi, R., . . . 414 Stratton, G. (2014). Physical activity, cardiorespiratory fitness, and clustered 415 cardiometabolic risk in 10- to 12-year-old school children: The REACH Y6 study. Am 416 J Hum Biol, 26(4), 446-451. doi: 10.1002/ajhb.22537 417
Boreham, C. A., & McKay, H. A. (2011). Physical activity in childhood and bone health. Br J 418 Sports Med, 45(11), 877-879. doi: 10.1136/bjsports-2011-090188 419
Buchan, D. S., Young, J. D., Boddy, L. M., & Baker, J. S. (2014). Independent associations 420 between cardiorespiratory fitness, waist circumference, BMI, and clustered 421 cardiometabolic risk in adolescents. Am J Hum Biol, 26(1), 29-35. doi: 422 10.1002/ajhb.22466 423
Cain, K., Sallis, J. F., Conway, T. L., Van Dyck, D., & Calhoon, L. (2013). Using accelerometers 424 in youth physical activity studies: a review of methods. Journal of Physical Activity 425 & Health, 10, 437-450 426
Catellier, D. J., Hannan, P. J., Murray, D. M., Addy, C. L., Conway, T. L., Yang, S., & Rice, J. C. 427 (2005). Inputation of missing data when measuring activity by accelerometry. Med 428 Sci Sports Exerc, 37(Suppl 11), S555-S562 429
Chu, E. Y., McManus, A. M., & Yu, C. C. (2007). Calibration of the RT3 accelerometer for 430 ambulation and nonambulation in children. Med Sci Sports Exerc, 39(11), 2085-431 2091. doi: 10.1249/mss.0b013e318148436c 432
Cole, T. J., Freeman, J. V., & Preece, M. A. (1995). Body mass index reference curves for the 433 UK, 1990. Arch Dis Child, 73(1), 25-29 434
Ekelund, U., Tomkinson, G., & Armstrong, N. (2011). What proportion of youth are 435 physically active? Measurement issues, levels and recent time trends. Br J Sports 436 Med, 45(11), 859-865. doi: 10.1136/bjsports-2011-090190 437
16
Evenson, K. R., Catellier, D. J., Gill, K., Ondrak, K. S., & McMurray, R. G. (2008). Calibration of 438 two objective measures of physical activity for children. J Sports Sci, 26(14), 1557-439 1565. doi: 10.1080/02640410802334196 440
Fischer, C., Yildirim, M., Salmon, J., & Chinapaw, M. J. M. (2012). Comparing different 441 accelerometer cut-points for sedentary time in children. Pediatric Exercise Science, 442 24(2), 220-228 443
Freedson, P., Pober, D., & Janz, K. F. (2005). Calibration of accelerometer output for 444 children. Med Sci Sports Exerc, 37(11 Suppl), S523-530 445
Harrell, J. S., McMurray, R. G., Baggett, C. D., Pennell, M. L., Pearce, P. F., & Bangdiwala, S. I. 446 (2005). Energy costs of physical activities in children and adolescents. Med Sci 447 Sports Exerc, 37(2), 329-336 448
Hislop, J., Bulley, C., Mercer, T., & Reilly, J. (2012). Comparison of accelerometry cut points 449 for physical activity and sedentary behavior in preschool children: a validation 450 study. Pediatric Exercise Science, 24(4), 563-576 451
Kram, R., Domingo, A., & Ferris, D. P. (1997). Effect of reduced gravity on the preferred 452 walk-run transition speed. J Exp Biol, 200(Pt 4), 821-826 453
Kristensen, P. L., Moeller, N. C., Korsholm, L., Kolle, E., Wedderkopp, N., Froberg, K., & 454 Andersen, L. B. (2010). The association between aerobic fitness and physical 455 activity in children and adolescents: the European youth heart study. Eur J Appl 456 Physiol, 110(2), 267-275. doi: 10.1007/s00421-010-1491-x 457
Lohman, T., Roche, A. F., & Martorell, R. (1988). Anthropometric standardization reference 458 manual. Champaign, Illinois: Human Kinetics. 459
Mackintosh, K. A., Fairclough, S. J., Stratton, G., & Ridgers, N. D. (2012). A calibration 460 protocol for population-specific accelerometer cut-points in children. PLoS One, 461 7(5), e36919. doi: 10.1371/journal.pone.0036919 462
Mattocks, C., Ness, A., Leary, S., Tilling, K., Blair, S., Shield, J., . . . Riddoch, C. (2008). Use of 463 accelerometers in a large field-based study of children: Protocols, design issues, 464 and effects on precision. Journal of Physical Activity & Health, 5(S1), S98-S111 465
McMurray, R. G., & Ondrak, K. S. (2013). Cardiometabolic risk factors in children: The 466 importance of physical activity. American Journal of Lifestyle Medicine, 7(5), 292-467 303 468
Minetti, A. E. (2001). Walking on other planets. Nature, 409(6819), 467-469 469
Mirwald, R., Baxter-Jones, A., Bailey, D., & Beunen, G. (2002). An assessment of maturity 470 from anthropometric measurements. Medicine & Science in Sports & Exercise, 471 34(4), 689-694 472
Reilly, J. J., Penpraze, V., Hislop, J., Davies, G., Grant, S., & Paton, J. (2008). Objective 473 measurement of physical activity and sedentary behaviour: review with new data. 474 Arch Dis Child, 93(7), 614-619 475
Ridley, K., & Olds, T. S. (2008). Assigning energy costs to activities in children: a review and 476 synthesis. Med Sci Sports Exerc, 40(8), 1439-1446. doi: 477 10.1249/MSS.0b013e31817279ef 478
Rowlands, A. V. (2007). Accelerometer assessment of physical activity in children: an 479 update. Pediatr Exerc Sci, 19(3), 252-266 480
Rowlands, A. V., Thomas, P. W., Eston, R. G., & Topping, R. (2004). Validation of the RT3 481 triaxial accelerometer for the assessment of physical activity. Med Sci Sports Exerc, 482 36(3), 518-524 483
Trost, S. G., Loprinzi, P. D., Moore, R., & Pfeiffer, K. A. (2011). Comparison of accelerometer 484 cut points for predicting activity intensity in youth. Med Sci Sports Exerc, 43(7), 485 1360-1368. doi: 10.1249/MSS.0b013e318206476e 486
Vanhelst, J., Beghin, L., Rasoamanana, P., Theunynck, D., Meskini, T., Iliescu, C., . . . 487 Gottrand, F. (2010). Calibration of the RT3 accelerometer for various patterns of 488
17
physical activity in children and adolescents. J Sports Sci, 28(4), 381-387. doi: 489 10.1080/02640410903508821 490
WHO. (2010). Global Recommendations on Physical Activity for Health. Geneva, 491 Switzerland.

Keywords

  • physical activity
  • accelerometry
  • threshold
  • children

Fingerprint

Dive into the research topics of 'Individual calibration of accelerometers in children and their health-related 2 implications'. Together they form a unique fingerprint.

Cite this