Simulation of Smart Home Activity Datasets

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)


A globally ageing population is resulting in an increased prevalence of chronic conditions which affect older adults. Such conditions require long-term care and management to maximize quality of life, placing an increasing strain on healthcare resources. Intelligent environments such as smart homes facilitate long-term monitoring of activities in the home through the use of sensor technology. Access to sensor datasets is necessary for the development of novel activity monitoring and recognition approaches. Access to such datasets is limited due to issues such as sensor cost, availability and deployment time. The use of simulated environments and sensors may address these issues and facilitate the generation of comprehensive datasets. This paper provides a review of existing approaches for the generation of simulated smart home activity datasets, including model-based approaches and interactive approaches which implement virtual sensors, environments and avatars. The paper also provides recommendation for future work in intelligent environment simulation.
Original languageEnglish
Pages (from-to)14162-14179
Issue number6
Publication statusPublished - 16 Jun 2015

Bibliographical note

Reference text: United Nations. World Population Ageing. 2013. Available online: (accessed on 5 March 2015).
Pollack, M.E. Intelligent Technology for an Aging Population: The Use of AI to Assist Elders with Cognitive Impairment. AI Mag. 2005, 26, 9–24. [Google Scholar]
British Heart Foundation. Sedentary Behaviour Evidence Briefing. Available online: (accessed on 19 January 2015).
Sedentary Behaviour Research Network. Letter to the Editor: Standardized Use of the Terms “Sedentary” and “Sedentary Behaviours”. Appl. Physiol. Nutr. Metab. 2012, 37, 540–542. [Google Scholar]
Helal, S.; Lee, J.W.; Hossain, S.; Kim, E.; Hagras, H.; Cook, D. Persim—Simulator for Human Activities in Pervasive Spaces. In Proceedings of the 2011 Seventh International Conference on Intelligent Environments, Nottingham, UK, 25–28 July 2011; pp. 192–199.
Helal, S.; Kim, E.; Hossain, S. Scalable Approaches to Activity Recognition Research. In Proceedings of the 8th International Conference Pervasive Workshop, Helsinki, Finland, 17–20 May 2010; pp. 450–453.
Alzheimer’s Society. What Is Dementia? Available online: (accessed on 4 March 2015).
Von Strauss, E.; Viitanen, M.; de Ronchi, D.; Winblad, B.; Fratiglioni, L. Aging and the Occurrence of Dementia. Arch. Neurol. 1999, 56, 587–592. [Google Scholar] [CrossRef] [PubMed]
Alzheimer’s Disease International. World Alzheimer Report. 2009. Available online: (accessed on 14 April 2015).
Alzheimer’s Society. Alzheimer’s Society Dementia. 2012 Report. Available online: (accessed on 15 April 2015).
Skubic, M.; Alexander, G.; Popescu, M.; Rantz, M.; Keller, J. A smart home application to eldercare: Current status and lessons learned. Technol. Health Care 2009, 17, 183–201. [Google Scholar] [PubMed]
McGee-Lennon, M.R.; Gray, P. Keeping everyone happy: Multiple stakeholder requirements for home care technology. In Proceedings of the 3rd International ICST Conference on Pervasive Computing Technologies for Healthcare, London, UK, 1–3 April 2009; pp. 1–3.
World Health Organization. Global Recommendations on Physical Activity for Health; WHO: Gevena, Switzerland, 2010. [Google Scholar]
World Health Organization. What Is Moderate-Intensity and Vigorous-Intensity Physical Activity? Avaialble online: (accessed on 19 January 2015).
Matthews, C.E.; Chen, K.Y.; Freedson, P.S.; Buchowski, M.S.; Beech, B.M.; Pate, R.R.; Troiano, R.P. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am. J. Epidemiol. 2008, 167, 875–881. [Google Scholar] [CrossRef] [PubMed]
Katzmarzyk, P.T. Physical activity, sedentary behavior, and health: Paradigm paralysis or paradigm shift? Diabetes 2010, 59, 2717–2725. [Google Scholar] [CrossRef] [PubMed]
Pate, R.R.; O’Neill, J.R.; Lobelo, F. The evolving definition of “sedentary”. Exerc. Sport Sci. Rev. 2008, 36, 173–178. [Google Scholar] [CrossRef] [PubMed]
Owen, N.; Healy, G.N.; Matthews, C.E.; Dunstan, D.W. Too much sitting: The population health science of sedentary behavior. Exerc. Sport Sci. Rev. 2010, 38, 105–113. [Google Scholar] [CrossRef] [PubMed]
Healy, G.N.; Clark, B.K.; Winkler, E.A.; Gardiner, P.A.; Brown, W.J.; Matthews, C.E. Measurement of adults’ sedentary time in population-based studies. Am. J. Prev. Med. 2011, 41, 216–227. [Google Scholar] [CrossRef] [PubMed]
Cook, D.J.; Das, S.K. How smart are our environments? An updated look at the state of the art. Pervasive Mob. Comput. 2007, 3, 53–73. [Google Scholar] [CrossRef]
Noury, N.; Poujaud, J.; Fleury, A.; Nocua, R.; Haddidi, T.; Rumeau, P. Smart Sweet Home… A Pervasive Environment for Sensing our Daily Activity? In Activity Recognition in Pervasive Intelligent Environments; Chen, L., Nugent, C.D., Biswas, J., Hoey, J., Eds.; Atlantis Press: Paris, France, 2011; pp. 187–208. [Google Scholar]
Helal, S.; Mann, W.; El-Zabadani, H.; King, J.; Kaddoura, Y.; Jansen, E. The Gator Tech Smart House: A programmable pervasive space. Computer 2005, 38, 50–60. [Google Scholar] [CrossRef]
Niazmand, K.; Tonn, K.; Kalaras, A.; Kammermeier, S.; Boetzel, K.; Mehrkens, J.H.; Lueth, T.C. A measurement device for motion analysis of patients with Parkinson’s disease using sensor based smart clothes. In Proceedings of the 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), Dublin, Ireland, 23–26 May 2011; pp. 9–16.
Counsell, J.; Puybaraud, M.-C. Real-Time Data and Analysis of the Use of Office Space. In Proceedings of the 2007 11th International Conference Information Visualization (IV ’07), Zurich, Switzerland, 4–6 July 2007; pp. 579–583.
Ivanov, Y.A.; Wren, C.R.; Sorokin, A.; Kaur, I. Visualizing the History of Living Spaces. IEEE Trans. Vis. Comput. Graph. 2007, 13, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
Chowdhury, A.K.R.; Chellappa, R. A Factorization Approach for Activity Recognition. In Proceedings of the 2003 Conference on Computer Vision and Pattern Recognition Workshop, Madison, WI, USA, 16–22 June 2003; Volume 4, p. 41.
Georis, B. A video interpretation platform applied to bank agency monitoring. In Proceedings of the Intelligent Distributed Surveillance Systems (IDSS-04), London, UK, 23 February 2004; Volume 2004, pp. 46–50.
Demiris, G.; Hensel, B.K.; Skubic, M.; Rantz, M. Senior residents’ perceived need of and preferences for “smart home” sensor technologies. Int. J. Technol. Assess. Health Care 2008, 24, 120–124. [Google Scholar] [CrossRef] [PubMed]
Paré, G.; Jaana, M.; Sicotte, C. Systematic review of home telemonitoring for chronic diseases: The evidence base. J. Am. Med. Inform. Assoc. 2007, 14, 269–277. [Google Scholar] [CrossRef] [PubMed]
Gil, N.; Hine, N.; Judson, A. Lifestyle Monitoring System to Improve the Well-being of the Elderly. Rev. Av. Sist. Inform. 2006, 3, 39–44. [Google Scholar]
Chan, M.; Campo, E.; Estève, D.; Fourniols, J.-Y. Smart homes—Current features and future perspectives. Maturitas 2009, 64, 90–97. [Google Scholar] [CrossRef] [PubMed]
Findley, L.; Aujla, M.; Bain, P.G.; Baker, M.; Beech, C.; Bowman, C.; Holmes, J.; Kingdom, W.K.; MacMahon, D.G.; Peto, V.; et al. Direct economic impact of Parkinson’s disease: A research survey in the United Kingdom. Mov. Disord. 2003, 18, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
Stroulia, E.; Chodos, D.; Boers, N.M.; Gburzynski, P.; Nikolaidis, I. Software engineering for health education and care delivery systems: The Smart Condo project. In Proceedings of the 2009 ICSE Workshop on Software Engineering in Health Care, Vancouver, BC, Canada, 18–19 May 2009; pp. 20–28.
Ganev, V.; Chodos, D.; Nikolaidis, I.; Stroulia, E. The smart condo. In Proceeding of the 2nd Workshop on Software Engineering for Sensor Network Applications, SESENA ’11, Honolulu, HI, USA, 21–28 May 2011; ACM Press: New York, NY, USA, 2011; p. 49. [Google Scholar]
Tapia, E.M.; Intille, S.S.; Larson, K. Activity Recognition in the Home Using Simple and Ubiquitous Sensors. Lect. Notes Comput. Sci. 2004, 3001, 158–175. [Google Scholar]
Philipose, M.; Fishkin, K.P.; Perkowitz, M.; Patterson, D.J.; Fox, D.; Kautz, H.; Hahnel, D. Inferring Activities from Interactions with Objects. IEEE Pervasive Comput. 2004, 3, 50–57. [Google Scholar] [CrossRef]
Poland, M.P.; Nugent, C.D.; Wang, H.; Chen, L. Smart Home Research. Int. J. Ambient Comput. Intell. 2009, 1, 32–45. [Google Scholar] [CrossRef]
Intille, S.S.; Larson, K.; Tapia, E.M.; Beaudin, S.; Kaushik, P.; Nawyn, J.; Rockinson, R. Using a Live-In Laboratory for Ubiquitous Computing Research. Lect. Notes Comput. Sci. 2006, 3968, 349–365. [Google Scholar]
Cook, D.J.; Crandall, A.S.; Thomas, B.L.; Krishnan, N.C. CASAS: A Smart Home in a Box. Computer 2013, 46, 62–69. [Google Scholar] [CrossRef] [PubMed]
De Ruyter, B.; Aarts, E.; Markopoulos, P.; Ijsselsteijn, W. Ambient Intelligence Research in HomeLab: Engineering the User Experience. In Ambient Intelligence; Weber, W., Rabaey, J.M., Aarts, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 49–61. [Google Scholar]
Yamazaki, T. The Ubiquitous Home. Int. J. Smart Home 2007, 1, 17–22. [Google Scholar]
Nugent, C.; Mulvenna, M.; Hong, X.; Devlin, S. Experiences in the development of a Smart Lab. Int. J. Biomed. Eng. Technol. 2009, 2. [Google Scholar] [CrossRef]
Youngblood, M.; Cook, D.J.; Holder, L.B. Seamlessly Engineering a Smart Environment. In Proceeding of the 2005 IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, HI, USA, 10–12 October 2005; Volume 1, pp. 548–553.
Rodner, T.; Litz, L. Data-Driven generation of rule-based behavior models for an Ambient assisted living system. In Proceeding of the 2013 IEEE Third International Conference on Consumer Electronics, (ICCE-Berlin), Berlin, Germany, 9–11 September 2013; pp. 35–38.
Buchmayr, M.; Kurschl, W.; Küng, J. A Simulator for Generating and Visualizing Sensor Data for Ambient Intelligence Environments. Procedia Comput. Sci. 2011, 5, 90–97. [Google Scholar] [CrossRef]
Cook, D.J.; Holder, L.B. Sensor Selection to Support Practical Use of Health-Monitoring Smart Environments. Data Min. Knowl. Discov. 2011, 1, 339–351. [Google Scholar] [CrossRef] [PubMed]
Van Kasteren, T. Datasets for Activity Recognition. Available online: (accessed on 16 March 2015).
Van Kasteren, T.; Noulas, A.; Englebienne, G.; Kröse, B. Accurate activity recognition in a home setting. In Proceedings of the 10th International Conference on Ubiquitous Computing, UbiComp ’08, Seoul, South Korea, 21–24 September 2008; ACM Press: New York, NY, USA, 2008. [Google Scholar]
Mendez-Vazquez, A.; Helal, A.; Cook, D.J. Simulating Events to Generate Synthetic Data for Pervasive Spaces. In Proceedings of the Workshop on Developing Shared Home Behaviour Datasets to Advance HCI and Ubiquitous Computing Research in Conjunction with CHI 2009, Boston, MA, USA, 4–9 April 2009.
Zhang, L.; Suo, Y.; Chen, Y.; Shi, Y. SHSim: An OSGI-based smart home simulator. In Proceedings of the 2010 3rd IEEE International Conference on Ubi-Media Computing, Jinhua, China, 5–6 July 2010; pp. 87–90.
Armac, I.; Retkowitz, D. Simulation of Smart Environments. In Proceedings of the IEEE International Conference on Pervasive Services, Istanbul, Turkey, 15–20 July 2007; pp. 257–266.
Poland, M.P.; Nugent, C.D.; Wang, H.; Chen, L. Development of a smart home simulator for use as a heuristic tool for management of sensor distribution. Technol. Health Care 2009, 17, 171–182. [Google Scholar] [PubMed]
Qiang, F.; Li, P.; Chen, C.; Qi, L.; Lu, Y.; Yu, C. A configurable context-aware simulator for smart home systems. In Proceedings of the 2011 6th International Conference on Pervasive Computing and Applications, Port Elizabeth, South Africa, 26–28 October 2011; pp. 39–44.
Krzyska, C. Smart House Simulation Tool. Master’s Thesis, Technical University of Denmark, Copenhagen, Denmark, 2006. [Google Scholar]
Bouchard, K.; Ajroud, A.; Bouchard, B.; Bouzouane, A. SIMACT: A 3D Open Source Smart Home Simulator for Activity Recognition. Adv. Comput. Sci. Inf. Technol. 2010, 6059, 524–533. [Google Scholar]
Trimble. Trimble SketchUp. Available online: (accessed on 12 January 2015).
Kormanyos, B.; Pataki, B. Multilevel simulation of daily activities: Why and how? In Proceedings of the 2013 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), Milan, Italy, 15–17 July 2013; pp. 1–6.
Lertlakkhanakul, J.; Choi, J.W.; Kim, M.Y. Building data model and simulation platform for spatial interaction management in smart home. Autom. Constr. 2008, 17, 948–957. [Google Scholar] [CrossRef]
Stahl, C.; Schwartz, T. Modeling and simulating assistive environments in 3-D with the YAMAMOTO toolkit. In Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 15–17 September 2010; pp. 1–6.
Nazari Shirehjini, A.A.; Klar, F. 3DSim: Rapid prototyping ambient intelligence. In Proceedings of the 2005 Joint Conference on Smart Objects and Ambient Intelligence Innovative Context-Aware Services: Usages and technologies, Grenoble, France, 12–14 October 2005; ACM Press: New York, NY, USA, 2005; pp. 303–307. [Google Scholar]
Park, J.; Moon, M.; Hwang, S.; Yeom, K. CASS: A Context-Aware Simulation System for Smart Home. In Proceedings of the 5th ACIS International Conference on Software Engineering Research, Management & Applications (SERA 2007), Busan, Korea, 20–22 August 2007; pp. 461–467.
O’Neill, E.; Klepal, M.; Lewis, D.; O’Donnell, T.; O’Sullivan, D.; Pesch, D. A Testbed for Evaluating Human Interaction with Ubiquitous Computing Environments. In Proceedings of the First International Conference on Testbeds and Research Infrastructures for the DEvelopment of NeTworks and COMmunities, Trento, Italy, 23–25 February 2005; pp. 60–69.
Nishikawa, H.; Yamamoto, S.; Tamai, M.; Nishigaki, K.; Kitami, T.; Shibata, N.; Yasumoto, K.; Ito, M. UbiREAL: Realistic Smartspace Simulator for Systematic Testing. Lect. Notes Comput. Sci. 2006, 4206, 459–476. [Google Scholar]
Barton, J.; Vijayaraghavan, V. Ubiwise: A Ubiquitous Wireless Infrastructure Simulation Environment; HP Laboratories: Palo Alto, CA, USA, 2002. [Google Scholar]
McGinn, K.; O’Neil, E.; Gibney, A.; O’Sullivan, D.; Lewis, D. SimCon: A Tool to Support Rapid Evaluation of Smart Building Application Design using Context Simulation and Virtual Reality. J. Univers. Comput. Sci. 2010, 16, 1992–2018. [Google Scholar]
Ariani, A.; Redmond, S.J.; Chang, D.; Lovell, N.H. Simulation of a smart home environment. In Proceedings of the 2013 3rd International Conference on Instrumentation, Communications, Information Technology and Biomedical Engineering (ICICI-BME), Bandung, Indonesia, 7–8 November 2013; pp. 27–32.
Synnott, J.; Chen, L.; Nugent, C.D.; Moore, G. The creation of simulated activity datasets using a graphical intelligent environment simulation tool. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 4143–4146.
Synnott, J.; Chen, L.; Nugent, C.; Moore, G. IE Sim—A Flexible Tool for the Simulation of Data Generated within Intelligent Environments. Lect. Notes Comput. Sci. 2012, 7683, 373–378. [Google Scholar]
Lundstrom, J.; Synnott, J.; Jarpe, E.; Nugent, C.D. Smart Home Simulation using Avatar Control and Probabilistic Sampling. In Proceedings of the 2nd IEEE PerCom Workshop on Smart Environments: Closing the Loop in Conjunction with PerCom 2015, St. Louis, MO, USA, 23 March 2015.
Synnott, J.; Nugent, C.; Jeffers, P. A Thermal Data Simulation Tool for the Testing of Novel Approaches to Activity Recognition; Springer International Publishing: Cham, Switzerland, 2014; Volume 8868. [Google Scholar]
Unity. Technologies Unity. Available online: (accessed on 12 January 2015).
Szewcyzk, S.; Dwan, K.; Minor, B.; Swedlove, B.; Cook, D. Annotating smart environment sensor data for activity learning. Technol. Health Care 2009, 17, 161–169. [Google Scholar] [PubMed]


  • monitoring
  • simulation
  • smart environments
  • visualization


Dive into the research topics of 'Simulation of Smart Home Activity Datasets'. Together they form a unique fingerprint.

Cite this