Soft IP Core Implementation of Recursive Least Squares Filter using Only Multplicative and Additive Operators

G Lightbody, R Woods, J Francey

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Citations (Scopus)
52 Downloads (Pure)

Abstract

Soft IP cores can be realized as parameterisable HDL descriptions of circuit architecture where the performance comes from efficiently mapping system functionality. However, special arithmetic operations e.g. division, reciprocal, can restrict this mapping. An approach is presented that maps the system onto foundation operations, multiplication and addition, thereby giving a freer mapping of the full system. The methodology and results are given for a QR-based recursive least squares filter design on a Xilias Virtex 4 FPGA giving a 5 GFLOPS performance.
Original languageEnglish
Title of host publicationUnknown Host Publication
PublisherIEEE
Pages597-600
Number of pages4
ISBN (Print)978-1-4244-1060-6
DOIs
Publication statusPublished - 2007
Event2007 International Conference on Field Programmable Logic and Applications - Amsterdam
Duration: 1 Jan 2007 → …

Conference

Conference2007 International Conference on Field Programmable Logic and Applications
Period1/01/07 → …

Bibliographical note

Reference text: [1] P. S. Zuchowski et el., “A hybrid ASIC and FPGA architecture” Proc. IEEE/ACM Int’l Conf. on Computer- Aided Design, pp. 187--194, 2002.
[2] J. G. McWhirter, “Recursive least squares minimisation using systolic array”, Proc. SPIE (Real-Time Signal Processing IV), vol. 431, pp. 105-112, 1983.
[3] R. L. Walke, High Sample Rate Givens Rotations for Recursive Least Squares, PhD Thesis, University of Warwick, 1997.
[4] G. Lightbody, R. Woods and R. Walke, “Design of a parameterisable silicon intellectual property core for QR based RLS filtering”, IEEE Trans. on VLSI Systems, vol. 11, No. 4, pp.659-678, August 2003.
[5] C. M. Rader “VLSI systolic arrays for adaptive nulling”, IEEE Signal Proc. Mag., vol. 13, no. 4, pp. 29-49, Jul 1996.
[6] M. J. Flynn, “On Division by Functional Iteration”, IEEE Trans. on Comp., vol. C-19, No. 8, pp. 702-706, 1970.
[7] T. J. Shephard and J. G. McWhirter, “Systolic Adaptive Beamforming”, chapter 5, Array Processing, Eds. S. Haykin, J. Litva and T. J. Shephard, Springer-Verlag, ISBN 3-540-55224, pp. 153-243, 1993.
[8] K. D. Tocher, “Techniques of Multiplication and Division for Automatic Binary Computers”, Quart. J. Mech. Appl. Math., vol. XI, Pt. 3, pp364-384, 1958.
[9] J. E. Robertson, “A new Class of Division Methods”, IRE Trans. on Electronic Comp., vol. EC-7, pp. 218-222, 1958.
[10] M. J. Schulte, J. E. Stine and K. E. Wires, “High-Speed reciprocal Approximations,” Proceedings of the 14th Symposium on Computer Arithmetic, pp. 1183-1187, 1999.
[11] “Variable Precision Floating Point Modules” available from NorthEastern University, http://www.ece.neu.edu/groups/ rpl/projects/ floatingpoint/index.html.

Keywords

  • QR
  • RLS
  • VLSI
  • multiplicative division
  • mapping architectures

Fingerprint

Dive into the research topics of 'Soft IP Core Implementation of Recursive Least Squares Filter using Only Multplicative and Additive Operators'. Together they form a unique fingerprint.

Cite this