Abstract
In order to develop new bioactive calcium phosphate (CaP) materials to repair bone defects, it is important to ensure these materials more closely mimic the non-stoichiometric nature of biological hydroxyapatite (HA). Typically, biological HA combines various CaP phases with different impurity ions, which substitute within the HA lattice, including strontium (Sr2+), zinc (Zn2+), magnesium (Mg2+), carbonate (CO32-) and fluoride (F-), but to name a few. In addition to this biological HA have dimensions in the nanometre (nm) range, usually 60 nm in length by 5–20 nm wide. Both the effects of ion substitution and the nano-size crystals are seen as important factors for enhancing their potential biofunctionality. The driving hypothesis was to successfully synthesise nanoscale hydroxyapatite (nHA), co-substituted with strontium (Sr2+) and zinc (Zn2+) ions in varying oncentrations using an aqueous precipitation method and to understand their chemical and physical properties. The materials were characterised using Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM) techniques. The FTIR, XRD and XPS results confirmed that the nHA was successfully co-substituted with Sr2+ and Zn2+, replacing Ca2+ within the nHA lattice at varying concentrations. The FTIR results confirmed that all of the samples were carbonated, with a significant loss of hydroxylation as a consequence of the incorporation of Sr2+ and Zn2+ into the nHA lattice. The TEM results showed that each sample produced was nano-sized, with the Sr/Zn-10% nHA having the smallest sized crystals approximately 17.6±3.3 nm long and 10.2±1.4 nm wide. None of the materials synthesised here in this study contained any other impurity CaP phases. Therefore, this study has shown that co-substituted nHA can be prepared, and that the degree of substitution (and the substituting ion) can have a profound effect on the attendant materials’ properties.
Original language | English |
---|---|
Pages (from-to) | 7761-7770 |
Journal | Ceramics International |
Volume | 44 |
Issue number | 7 |
Early online date | 4 Feb 2018 |
DOIs | |
Publication status | Published - 31 May 2018 |
Bibliographical note
Compliant in UIR; evidence uploaded to 'Other files'Reference text: [1] K. Fox, P.A. Tran, N. Tran, Recent advances in research applications of nanophase
hydroxyapatite, ChemPhysChem 13 (2012) 2495–2506, http://dx.doi.org/10.
1002/cphc.201200080.
[2] H. Zhou, J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering,
Acta Biomater. 7 (2011) 2769–2781, http://dx.doi.org/10.1016/j.actbio.2011.03.
019.
[3] A. Siddharthan, S.K. Seshadri, T.S.S. Kumar, Rapid synthesis of calcium deficient
hydroxyapatite nanoparticles by microwave irradiation, Trends Biomater. Artif.
Organs 18 (2005) 110–113, http://dx.doi.org/10.1016/j.ssc.2004.02.045.
[4] I.R. de Lima, G.G. Alves, C.A. Soriano, A.P. Campaneli, T.H. Gasparoto, E. Schnaider
Ramos, L.Á. de Sena, A.M. Rossi, J.M. Granjeiro, Understanding the impact of divalent
cation substitution on hydroxyapatite: an in vitro multiparametric study on
biocompatibility, J. Biomed. Mater. Res. Part A 98A (2011) 351–358, http://dx.doi.
org/10.1002/jbm.a.33126.
[5] E. Bonnelye, A. Chabadel, F. Saltel, P. Jurdic, Dual effect of strontium ranelate:
stimulation of osteoblast differentiation and inhibition of osteoclast formation and
resorption in vitro, Bone 42 (2008) 129–138, http://dx.doi.org/10.1016/j.bone.
2007.08.043.
[6] M. Roy, G.A. Fielding, A. Bandyopadhyay, S. Bose, Effects of zinc and strontium
substitution in tricalcium phosphate on osteoclast differentiation and resorption,
Biomater. Sci. (2013) 74–82, http://dx.doi.org/10.1039/c2bm00012a.
[7] D.V. Shepherd, K. Kauppinen, R.A. Brooks, S.M. Best, An in vitro study into the
effect of zinc substituted hydroxyapatite on osteoclast number and activity, J.
Biomed. Mater. Res. – Part A 102 (2014) 4136–4141, http://dx.doi.org/10.1002/
jbm.a.35089.
[8] J.H. Shepherd, D.V. Shepherd, S.M. Best, Substituted hydroxyapatites for bone repair,
J. Mater. Sci. Mater. Med. 23 (2012) 2335–2347, http://dx.doi.org/10.1007/
s10856-012-4598-2.
[9] V. Aina, L. Bergandi, G. Lusvardi, G. Malavasi, F.E. Imrie, I.R. Gibson, G. Cerrato,
D. Ghigo, Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity
on osteoblast cells, Mater. Sci. Eng. C 33 (2013) 1132–1142, http://dx.doi.
org/10.1016/j.msec. 2012.12.005.
[10] N. Lowry, Y. Han, B.J. Meenan, A.R. Boyd, Strontium and zinc co-substituted nanophase
hydroxyapatite, Ceram. Int. 43 (2017) 12070–12078, http://dx.doi.org/
10.1016/j.ceramint.2017.06.062.
[11] L. Robinson, K. Salma-Ancane, L. Stipniece, B.J. Meenan, A.R. Boyd, The deposition
of strontium and zinc Co-substituted hydroxyapatite coatings, J. Mater. Sci. Mater.
Med. 28 (2017), http://dx.doi.org/10.1007/s10856-017-5846-2.
[12] L. Tortet, J.R. Gavarri, G. Nihoul, Study of Protonic Mobility in CaHPO4·2H2O
(Brushite) and CaHPO4 (Monetite) By Infrared Spectroscopy and Neutron
Scattering, 16, 1997, pp. 6–16.
[13] A.R. Boyd, C. O’Kane, B.J. Meenan, Control of calcium phosphate thin film stoichiometry
using multi-target sputter deposition, Surf. Coat. Technol. 233 (2013)
131–139, http://dx.doi.org/10.1016/j.surfcoat.2013.04.017.
[14] C.-J. Chung, H.-Y. Long, Systematic strontium substitution in hydroxyapatite
coatings on titanium via micro-arc treatment and their osteoblast/osteoclast responses,
Acta Biomater. 7 (2011) 4081–4087, http://dx.doi.org/10.1016/j.actbio.
2011.07.004.
[15] A.R. Boyd, B.J. Meenan, N.S. Leyland, Surface characterisation of the evolving
nature of radio frequency (RF) magnetron sputter deposited calcium phosphate thin
films after exposure to physiological solution, Surf. Coat. Technol. 200 (2006)
6002–6013, http://dx.doi.org/10.1016/j.surfcoat.2005.09.032.
[16] I.R. Gibson, W. Bonfield, Novel synthesis and characterization of an AB-type carbonate-
substituted hydroxyapatite, J. Biomed. Mater. Res. 59 (2002) 697–708,
http://dx.doi.org/10.1002/jbm.10044.
[17] A.R. Boyd, L. Rutledge, L.D. Randolph, B.J. Meenan, Strontium-substituted hydroxyapatite
coatings deposited via a co-deposition sputter technique, Mater. Sci. Eng.
C 46 (2015) 290–300, http://dx.doi.org/10.1016/j.msec. 2014.10.046.
[18] A. Costescu, I. Pasuk, F. Ungureanu, A. Dinischiotu, F. Huneau, S. Galaup, P.L.E.
Coustumer, D. Predoi, C. Ftir, Physico-Chemical Properties of Nano-Sized
Hexagonal Hydroxyapatite Powder Synthesized by Sol-Gel, 5, 2010, pp. 89–1000.
[19] A.R. Boyd, L. Rutledge, L.D. Randolph, I. Mutreja, B.J. Meenan, The deposition of
strontium-substituted hydroxyapatite coatings, J. Mater. Sci. Mater. Med. 26 (2015)
65, http://dx.doi.org/10.1007/s10856-014-5377-z.
[20] W. Xia, C. Lindahl, C. Persson, P. Thomsen, J. Lausmaa, H. Engqvist, Changes of
Surface Composition and Morphology after Incorporation of Ions into Biomimetic
Apatite Coatings, 2010, 2010, pp. 7–16. ⟨https://dx.doi.org/10.4236/jbnb.2010.
11002⟩.
[21] Y. Zhao, D. Guo, S. Hou, H. Zhong, J. Yan, C. Zhang, Y. Zhou, Porous Allograft Bone
Scaffolds: Doping with Strontium, 8, 2013, pp. 1–10. ⟨https://dx.doi.org/10.1371/
journal.pone.0069339⟩.
[22] Y.Y. Özbek, F.E. Baştan, F. Üstel, Synthesis and characterization of strontium-doped
hydroxyapatite for biomedical applications, J. Therm. Anal. Calorim. 125 (2016)
745–750, http://dx.doi.org/10.1007/s10973-016-5607-3.
[23] L. Li, X. Lu, Y. Meng, C.M. Weyant, Comparison study of biomimetic strontiumdoped
calcium phosphate coatings by electrochemical deposition and air plasma
spray: morphology, composition and bioactive performance, J. Mater. Sci. Mater.
Med. 23 (2012) 2359–2368, http://dx.doi.org/10.1007/s10856-012-4633-3.
[24] A. Anwar, S. Akbar, A. Sadiqa, M. Kazmi, Novel continuous flow synthesis, characterization
and antibacterial studies of nanoscale zinc substituted hydroxyapatite
bioceramics, Inorg. Chim. Acta 453 (2016) 16–22, http://dx.doi.org/10.1016/j.ica.
2016.07.041.
[25] I. Pereiro, C. Rodriguez-Valencia, C. Serr, C. Solla, J. Serra, P. Gonzalez, Structural
properties of ZnO films grown by picosecond pulsed-laser deposition, Appl. Surf.
Sci. 258 (2012) 9192–9197.
[26] M. Kavitha, R. Subramanian, R. Narayanan, V. Udhayabanu, Solution combustion
synthesis and characterization of strontium substituted hydroxyapatite nanocrystals,
Powder Technol. 253 (2014) 129–137, http://dx.doi.org/10.1016/j.powtec.
2013.10.045.
[27] V. Krishnan, A. Bhatia, H. Varma, Development, characterization and comparison of
two strontium doped nano hydroxyapatite molecules for enamel repair / regeneration,
Dent. Mater. 32 (2016) 646–659, http://dx.doi.org/10.1016/j.dental.
2016.02.002.
[28] K.P. Tank, P. Sharma, D.K. Kanchan, M.J. Joshi, FTIR, Powder XRD, TEM and
Dielectric Studies of Pure and Zinc Doped Nano-Hydroxyapatite, 1316, 2011, pp.
1309–1316. ⟨https://dx.doi.org/10.1002/crat.201100080⟩.
[29] S.V. Dorozhkin, Nanosized and nanocrystalline calcium orthophosphates, Acta
Biomater. 6 (2010) 715–734, http://dx.doi.org/10.1016/j.actbio.2009.10.031.
[30] H. Zreiqat, Y. Ramaswamy, C. Wu, A. Paschalidis, Z. Lu, B. James, O. Birke,
M. McDonald, D. Little, C.R. Dunstan, The incorporation of strontium and zinc into
a calcium–silicon ceramic for bone tissue engineering, Biomaterials 31 (2010)
3175–3184, http://dx.doi.org/10.1016/j.biomaterials.2010.01.024.
[31] V. Mourino, J.P. Cattalini, A.R. Boccaccini, Metallic ions as therapeutic agents in
tissue engineering scaffolds: an overview of their biological applications and strategies
for new developments, J. R. Soc. Interface 9 (2012) 401–419, http://dx.doi.
org/10.1098/rsif.2011.0611.
N. Lowry et al. Ceramics International xxx (xxxx) xxx–xxx
9
[32] F. Yang, D. Yang, J. Tu, Q. Zheng, L. Cai, L. Wang, Strontium enhances osteogenic
differentiation of mesenchymal stem cells and in vivo bone formation by activating
Wnt/catenin signaling, Stem Cells (2011), http://dx.doi.org/10.1002/stem.646.
[33] T. Kubota, T. Michigami, K. Ozono, Wnt signaling in bone metabolism, J. Bone
Miner. Metab. 27 (2009) 265–271, http://dx.doi.org/10.1007/s00774-009-0064-8.
[34] M. Arioka, F. Takahashi-Yanaga, M. Sasaki, T. Yoshihara, S. Morimoto, M. Hirata,
Y. Mori, T. Sasaguri, Acceleration of bone regeneration by local application of lithium:
Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression
of osteoclastogenesis, Biochem. Pharmacol. 90 (2014) 397–405, http://dx.
doi.org/10.1016/j.bcp.2014.06.011.
[35] S.C. Cox, P. Jamshidi, L.M. Grover, K.K. Mallick, Preparation and characterisation
of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation,
Mater. Sci. Eng. C 35 (2014) 106–114, http://dx.doi.org/10.1016/j.msec. 2013.10.
015.
[36] F. Ren, R. Xin, X. Ge, Y. Leng, Characterization and structural analysis of zincsubstituted
hydroxyapatites, Acta Biomater. 5 (2009) 3141–3149, http://dx.doi.
org/10.1016/j.actbio.2009.04.014.
[37] H. Storrie, S.I. Stupp, Cellular Response to Zinc-Containing Organoapatite: An In
Vitro Study of Proliferation, Alkaline Phosphatase Activity and Biomineralization,
26, 2005, pp. 5492–5499. ⟨https://dx.doi.org/10.1016/j.biomaterials.2005.01.
043⟩.
[38] G.S. Kumar, A. Thamizhavel, Y. Yokogawa, S.N. Kalkura, E.K. Girija, Synthesis,
characterization and in vitro studies of zinc and carbonate co-substituted nanohydroxyapatite
for biomedical applications, Mater. Chem. Phys. 134 (2012)
1127–1135, http://dx.doi.org/10.1016/j.matchemphys.2012.04.005.
[39] R.J. Friederichs, H.F. Chappell, D.V. Shepherd, S.M. Best, Synthesis, characterization
and modelling of zinc and silicate co-substituted hydroxyapatite, J. R. Soc.
Interface 12 (2015) 20150190, http://dx.doi.org/10.1098/rsif.2015.0190.
[40] L. Stipniece, K. Salma-Ancane, N. Borodajenko, M. Sokolova, D. Jakovlevs,
L. Berzina-Cimdina, Characterization of Mg-substituted hydroxyapatite synthesized
by wet chemical method, Ceram. Int. 40 (2014) 3261–3267, http://dx.doi.org/10.
1016/j.ceramint.2013.09.110.
[41] M. Vandrovcova, T.E.L. Douglas, W. Mróz, O. Musial, D. Schaubroeck, B. Budner,
R. Syroka, P. Dubruel, L. Bacakova, Pulsed laser deposition of magnesium-doped
calcium phosphate coatings on porous polycaprolactone scaffolds produced by
rapid prototyping, Mater. Lett. 148 (2015) 178–183, http://dx.doi.org/10.1016/j.
matlet.2015.02.074.
[42] K. Salma-Ancane, L. Stipniece, A. Putnins, L. Berzina-Cimdina, Development of Mgcontaining
porous β-tricalcium phosphate scaffolds for bone repair, Ceram. Int. 41
(2015) 4996–5004, http://dx.doi.org/10.1016/j.ceramint.2014.12.065.
[43] G.A. Fielding, M. Roy, A. Bandyopadhyay, S. Bose, Antibacterial and biological
characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite
coatings, Acta Biomater. 8 (2012) 3144–3152, http://dx.doi.org/10.
1016/j.actbio.2012.04.004.
[44] A. Zamani, G.R. Omrani, M.M. Nasab, Lithium's effect on bone mineral density,
Bone 44 (2009) 331–334, http://dx.doi.org/10.1016/j.bone.2008.10.001.
[45] H.D. Jang, J.H. Shin, D.R. Park, J.H. Hong, K. Yoon, R. Ko, C.Y. Ko, H.S. Kim,
D. Jeong, N. Kim, S.Y. Lee, Inactivation of glycogen synthase kinase-3?? Is required
for osteoclast differentiation, J. Biol. Chem. 286 (2011) 39043–39050, http://dx.
doi.org/10.1074/jbc.M111.256768.
[46] J. Albers, J. Keller, A. Baranowsky, F.T. Beil, P. Catala-Lehnen, J. Schulze,
M. Amling, T. Schinke, Canonical Wnt signaling inhibits osteoclastogenesis independent
of osteoprotegerin, J. Cell Biol. 200 (2013) 537–549, http://dx.doi.org/
10.1083/jcb.201207142.
[47] W. Wei, D. Zeve, J.M. Suh, X. Wang, Y. Du, J.E. Zerwekh, P.C. Dechow, J.M. Graff,
Y. Wan, Biphasic and dosage-dependent regulation of osteoclastogenesis by -catenin,
Mol. Cell. Biol. 31 (2011) 4706–4719, http://dx.doi.org/10.1128/MCB.
05980-11.
[48] V. Stanic, S. Dimitrijevic, J. Antic-Stankovic, M. Mitric, B. Jokic, I.B. Plecac,
S. Raicevic, Synthesis, characterization and antimicrobial activity of copper and
zinc-doped hydroxyapatite nanopowders, Appl. Surf. Sci. 256 (2010) 6083–6089,
http://dx.doi.org/10.1016/j.apsusc.2010.03.124.
[49] W.-L. Du, Y.-L. Xu, Z.-R. Xu, C.-L. Fan, Preparation, characterization and antibacterial
properties against E. coli K(88) of chitosan nanoparticle loaded copper
ions, Nanotechnology 19 (2008) 85707, http://dx.doi.org/10.1088/0957-4484/
19/8/085707.
[50] R.J. Friederichs, R.A. Brooks, M. Ueda, S.M. Best, In vitro osteoclast formation and
resorption of silicon-substituted hydroxyapatite ceramics, J. Biomed. Mater. Res. –
Part A 103 (2015) 3312–3322, http://dx.doi.org/10.1002/jbm.a.35470.
[51] D.M. Reffitt, N. Ogston, R. Jugdaohsingh, H.F.J. Cheung, B.A.J. Evans, R.P.H.
Thompson, J.J. Powell, G.N. Hampson, Orthosilicic Acid Stimulates Collagen Type
1 Synthesis and Osteoblastic Differentiation in Human Osteoblast-Like Cells In
Vitro, 32, 2003, pp. 127–135. ⟨https://dx.doi.org/10.1016/S8756-3282(02)
00950-X⟩.
[52] R. Ferro De Godoy, S. Hutchens, C. Campion, G. Blunn, Silicate-substituted calcium
phosphate with enhanced strut porosity stimulates osteogenic differentiation of
human mesenchymal stem cells, J. Mater. Sci. Mater. Med. 26 (2015) 5387, http://
dx.doi.org/10.1007/s10856-015-5387-5.
[53] J.C. Merry, I.R. Gibson, S.M. Best, W. Bonfield, Synthesis and characterization of
carbonate hydroxyapatite, J. Mater. Sci. Mater. Med. 9 (1998) 779–783, http://dx.
doi.org/10.1023/A:1008975507498.
[54] V. Stanic, S. Dimitrijevic, D.G. Antonovic, B.M. Jokic, S.P. Zec, S.T. Tanaskovic,
S. Raicevicc, Synthesis of fluorine substituted hydroxyapatite nanopowders and
application of the central composite design for determination of its antimicrobial
effects, Appl. Surf. Sci. 290 (2014) 346–352, http://dx.doi.org/10.1016/j.apsusc.
2013.11.081.
N. Lowry et al. Ceramics International xxx (xxxx) xxx–xxx
10
Keywords
- Bioceramic
- Nano-hydroxyapatite
- Co-substitution
- Strontium
- Zinc