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A Mobile Application for Easy Design and Testing of

Algorithms to Monitor Physical Activity in the Workplace

Susanna Spinsante, Alberto Angelici, Jens Lundström, Macarena Espinilla, Ian Cleland, and Christopher Nugent

Abstract

This paper addresses approaches to Human Activity Recognition (HAR) with the aim of monitoring the physical
activity of people in the workplace, by means of a smartphone application exploiting the available on-board accelerom-
eter sensor. In fact, HAR via a smartphone or wearable sensor can provide important information regarding the level
of daily physical activity, especially in situations where a sedentary behavior usually occurs, like in modern workplace
environments. Increased sitting time is significantly associated with severe health diseases, and the workplace is an
appropriate intervention setting, due to the sedentary behavior typical of modern jobs.

Within this paper, the state-of-the-art components of HAR are analyzed, in order to identify and select the
most effective signal filtering and windowing solutions for physical activity monitoring. The classifier development
process is based upon three phases; a feature extraction phase, a feature selection phase, and a training phase. In
the training phase, a publicly available dataset is used to test among different classifier types and learning methods.
A user-friendly Android-based smartphone application with low computational requirements has been developed to
run field tests, which allows to easily change the classifier under test, and to collect new datasets ready for use with
machine learning APIs. The newly created datasets may include additional information, like the smartphone position,
its orientation, and the user’s physical characteristics. Using the mobile tool, a classifier based on a decision tree
is finally set up and enriched with the introduction of some robustness improvements. The developed approach is
capable of classifying six activities, and to distinguish between not active (sitting) and active states, with an accuracy
near to 99%.

The mobile tool, which is going to be further extended and enriched, will allow for rapid and easy benchmarking
of new algorithms based on previously generated data, and on future collected datasets.

1 Introduction

The ubiquity of smartphones together with their ever increasing computing, networking, and sensing capa-
bilities has changed the landscape of people’s daily life. Among others, activity recognition, which takes the
raw sensor readings as input and predicts a user’s activity, has become an active research area in recent years
[1, 2, 3]. Activity recognition aims to understand the actions and goals of one or more humans, from a series
of observations on their actions and the environmental conditions. Indeed, Human Activity Recognition
(HAR) has become a task of great interest, especially for medical, military, and security applications. For
instance, patients with diabetes, obesity, or heart disease are often requested to perform a well-defined phys-
ical training as a part of their treatment. Therefore, the ability to automatically recognize activities such
as walking, running, or resting becomes a powerful tool, to encourage the patients and to provide feedback
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on their behavior to the caregivers. Application areas for HAR include [4]: daily life monitoring [5, 6, 7, 8],
personal biometric signature [9], elderly and youth care [10, 11, 12], and localization [13, 14].

A necessary prerequisite for systems aimed at stimulating Physical Activity (PA) is to have monitoring
capabilities enabled by HAR. The importance of promoting PA among people, through virtual coaching, is
motivated by recent research outcomes that correlate sedentary behaviors with ”an elevated risk of diabetes,
cardiovascular disease, and all-cause mortality” [15]. Worsening of other health conditions, like metabolic
syndrome, type-2 diabetes mellitus, and obesity, is also strongly associated with increased inactivity. Un-
fortunately, modern workplaces are typically populated by almost inactive adults who spend several hours
sitting [18], and a 2-hour increase of this kind of ”occupational” inactivity has been related to a 5-7% increase
of the health risks highlighted above [16]. Only a small part of the adult population (18 to 64 years old) in
developed countries meets the Global Physical Activity (GPA) guidelines, recommending at least 150 mins of
”moderate to vigorous” PA per week. Weight-gaining, up to obesity, is another side-effect of a lazy lifestyle:
in addition to medical costs, it also causes relevant economic losses, due to missed working hours, decreased
productivity, and disability [17].

According to the previous discussion, replacing the sitting time spent at the workplace with low-intensity
PA, may help preventing chronic diseases. Some exotic solutions have been proposed, such as workstations
that allow the worker to stand or walk, using a specially designed standing or treadmill desk [19]. Stimulating
PA through a virtual coach maybe a feasible solution, and, to this aim, a precise monitoring of daily activity
in the workplace is an extremely important task.

This work presents a mobile application, named Actimonitor Android, developed as a tool for rapid and
easy testing of algorithms designed to accurately monitor the daily activity in the workplace. The accelerom-
eter sensor on-board mainstream smartphones is used, and the feasibility of implementing even complex HAR
systems on a smartphone is demonstrated. The tool is first developed and tested in an offline learning phase.
Afterwards, it is executed on a mobile platform. Typical smartphone-related constraints, such as available
computational resources, memory, and battery power, raise specific challenges for high-demanding mobile ap-
plications, like HAR, that requires feature extraction, classification, and transmission of relevant amounts of
raw data. Moreover, current open source machine learning (ML) Application Programming Interfaces (API),
such as the Waikato Environment for Knowledge Analysis (WEKA) [20] and Java Data Mining (JDM), are
neither designed, nor optimized, to run with full functionality on mobile platforms. Thus, a relevant problem
addressed in this work is the mobile implementation of a HAR system, meeting response time and energy
consumption requirements.

The paper is organized as follows: Section 2 introduces the HAR problem, discussing the role of sensors
and the state-of-the-art algorithms for activity recognition. In Section 3 the datasets, tools, and methodolo-
gies used for experiments are presented, with the mobile application developed for HAR algorithms design.
Experimental results are discussed in Section 4; finally, Section 5 concludes the paper.

2 Human Activity Recognition

2.1 Review of literature

A classic ML approach is adopted in HAR systems, in which classification is performed upon features
extracted from raw sensor data, properly collected, preprocessed and arranged into time-based segments.
From data to features, an abstraction process takes place, based on which statistical or frequency-domain
properties capture sensible information over each data segment, to feed a classifier. A selection of features
may be necessary, to reduce the data dimension handled by the classification algorithm, that is designed on
a training data subset, and evaluated on a testing data subset.

Most of the research on HAR through mobile devices has been carried out using sensor data collected
from smartphones, but subsequently processed offline by means of ML toolboxes, such as WEKA [20]. As
previously mentioned, smartphones have been traditionally considered as devices with limited resources, in
terms of computational processing and battery lifetime [21]. While it is still important to consider these
limitations when developing HAR systems for smartphones, such devices have become increasingly capable of
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running complex HAR in real time. Nevertheless, challenges still remain in the evaluation of HAR solutions,
particularly across the wide variety of hardware and software components now available. Whilst a wide range
of studies have reported and reviewed offline HAR (e.g. [22, 23]), fewer have fully implemented HAR on
mobile phones for real-time processing [24]. This should include sensing, pre-processing and classification,
all carried out locally on the device.

Data provided by an accelerometer and a gyroscope on-board an Android smartphone carried in a pocket,
have been used by Dernbach et al. [25], to recognize simple actions (sitting, walking, running and standing),
and even more complex activities (cleaning, cooking, washing hands, and taking medication). Recognition
of simple actions has been attained with a 93% accuracy, by a Multi-layer Perceptron classifier and a two-
seconds time window. The inclusion of complex activities in the dataset reduced accuracy to 50%, but
still these results are promising for the current work, which seeks to identify simple physical activities
such as walking, standing and siting in an office environment, using data from a single smartphone sensor.
Classification for this study was however carried out offline using the WEKA toolkit and therefore needs to
be implemented and tested in real time. In the paper by Kim et al. [26] a HAR solution was developed to
assess physical activity and energy consumption in various buildings. This solution, developed for Android
devices, recognized walking, climbing and descending stairs, running, and no movement. A Support Vector
Machine (SVM) used data from accelerometer, gyroscope and magnetometer to provide the classification,
achieving high accuracies (98.26%).

Among the classifiers implemented and tested on mobile phones in the last few years, it is possible to
mention Decision Trees (DT) [23, 22], SVM [27], K-Nearest Neighbor (k-NN) [24], and näıve Bayes [28].
Multi-layer or hierarchical classification are obtained combining classifiers in different ways. Reddy et al.
[29] combined a DT and a Dynamic Hidden Markov model (DHMM), achieving an accuracy of 93.6% over
a dataset from sixteen actors. In the majority of studies, classifiers are trained offline, using representative
data, because training is computationally expensive and does not match real-time requirements. Then, the
classification is implemented in real-time. Recently, Google released a real-time activity recognition API
[30], however, this is limited to motion-related activities (walking, cycling, driving) and does not include
static activities such as standing still or sitting, which are of interest in this work.

Real-time feedback to the user is another important aspect of both context aware and healthcare ap-
plications, particularly when trying to promote PA. However, in a large amount of studies this feature is
missing [31]. A system developed by Lane et al. [28] provided real-time feedback through an animated user
interface, reflecting the user’s behavior, i.e. a slow motion for a static condition, and a more dynamic one
for an increased activity. In this work we aim to stimulate the subject’s PA by prompting, based on PA
self-monitoring through the Actimonitor Android app.

The following sections provide details of the HAR classification process discussing current practices within
the literature. These include data collection, preprocessing, feature extraction, and classification steps.

2.2 Problem definition

Resorting to [32] and borrowing the same notation, the HAR problem (HARP) may be mathematically and
formally defined, starting from sensor data collected and indexed over the time dimension, and assuming
non-simultaneous activities:

Definition 2.1 HARP: Given a set S = S0, . . . , Sk−1 of k time series, each one from a particular measured
attribute, and all defined within time interval I =

[

tα, tω
]

, the goal is to find a temporal partition 〈I0, . . . , Ir−1〉
of I, based on the data in S, and a set of labels representing the activity performed during each interval Ij
(e.g., sitting, walking, etc.). This implies that time intervals Ij are consecutive, non-empty, non-overlapping,

and such that
⋃r−1

j=0
Ij = I.

The very large (or even infinite) amount of combinations of attribute values and activities, and their
generally unknown duration, prevent a deterministic solution to the HARP and require the use of ML tools.
A relaxed version of the problem is consequently introduced, in which time series are divided into fixed
length time windows, as follows:
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Tab. 1: Main characteristics of HAR systems

Type Characteristic

Execution Offline

Online

Generalisation User independent

User specific

Temporal

Recognition Continuous

Isolated

Activities Periodic

Sporadic

Static

System model Stateless

Stateful

Definition 2.2 Relaxed HARP: Given a set W = W0, . . . ,Wm−1 of m equally sized time windows, totally or
partially labeled, and such that each Wi contains a set of time series Si = {Si,0, . . . , Si,k−1} from each of the
k measured attributes, and a set A = {a0, . . . , an−1} of activity labels, the goal is to find a mapping function
f : Si → A that can be evaluated for all possible values of Si, such that f(Si) is as similar as possible to the
actual activity performed during Wi.

The relaxation introduces some errors into the model, which are however negligible for most applications.
A relevant approach in activity recognition is to combine the output of different models to produce more
accurate predictions. This leads to multi-classifier systems, which are shown to be effective, at the expense
of an increase in computational complexity. The formal definition of combining predictions from several
learners follows as:

Definition 2.3 HARP with multi-classifier: Given a classification problem with a feature space X ∈ Rn

and a set of classes Ω = {ω0, . . . , ωn−1}, an instance x ∈ X to be classified, and a set of predictions
S = {s0, . . . sk−1} for x, from k classifiers, the goal of a multi-classifier system is to return the correct label
ω∗ iff ∃si ∈ S|ω∗ = si.

Some of the challenges faced in activity recognition are common to other fields too, but there are several
specific issues for which dedicated computational methods have been developed. The recognition of highly
diverse human activities requires to select and combine several heterogenous sensors, that can be dinamically
added or removed, based on application-driven requirements. Suitable metrics are finally defined to evaluate
the HAR system performance. Table 1 summarizes the options in HAR system design and implementation.

2.2.1 Activities

Activities recognized from sensor data can be classified in different ways, for example, in terms of their
complexity. A simple locomotion could be walking, jogging, walking downstairs, taking elevator, etc. Com-
plex activities are usually related to a combination of actions (e.g., taking bus and driving), but may even
correspond to the movements of certain body parts (e.g., typing and waving hand). Some activities may be
referred to the general context of healthcare, such as falling, exercise, rehabilitations, etc. Location-based
activities include dining, shopping, watching movies, etc. Vision-based activities include leaving or entering
a place. An IR sensor could detect a user moving or being still, whereas a home assisting robot could
understand when the person is sleeping, taking pills, or doing cleaning [4, 33, 34].

Solutions developed for HAR must be robust to ”intraclass” and ”interclass” variability, the former
occurring when the same activity is performed differently by different individuals, or even by the same
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Tab. 2: The different categories and types of activities in the current literature

Category Activity type

Simple activities Walking, Jogging, Sitting, Standing, Lying, Walking
upstairs, Walking downstairs, Jumping, Taking esca-
lator up, Taking escalator down, Taking elevator up,
Taking elevator down

Complex activities Shopping, Taking buses, Moving by walking, Driving
a car, Living activities Brushing teeth, Vacuuming,
Typing, Eating, Cooking, Washing hand, Meditation,
Clapping, Watering plants, Sweeping, Shaving, Dry
blowing the hair, Washing dishes, Ironing, Flushing
the toilet

Working activities Working, Relaxing, Cleaning, On a break, Meeting,
Home talking, Home entertaining

Health activities Exercising, Fall, Rehabilitation activities, Following
routines

one in different times, and the latter due to data showing very similar characteristics even if belonging
to fundamentally different classes. When not all the data in a continuous stream are relevant for HAR,
the so-called NULL class problem may occur, which is difficult to model, as it represents a theoretically
infinite space of arbitrary activities. A taxonomy of the most common activities targeted by HAR systems
is summarized in Table 2.

2.2.2 Sensors, data preprocessing and segmentation

Sensors are the source for raw data collection in activity recognition, and they may be classified into three
categories: video, environmental, and wearable sensors. Wearable sensors are small size mobile devices
designed to be worn on human body in daily activities. They can record users’ physiological states, such
as location changes, moving directions, speed. Many wearable sensors are available on-board smartphones:
Table 3 summarizes real (hardware) and virtual (software) sensors that are provided in current mainstream
mobile devices [4, 35, 34].

Due to the intrinsic characteristics of accelerometers, the sensor orientation and the way the device is
carried by the subject may heavily affect the raw data value. The most common positions of worn sensors
used in the literature are: hand-held, on the belt, in the pants pocket, on the pelvic area. Sensitivity to
orientation may be addressed by adding another sensor, through an aggregation technique.

Raw data collected from sensors are preprocessed, to reduce the effects of noise by means of filtering
methods, like average smoothing. Additionally, preprocessing enables data synchronization when samples
arrive from multiple sensors, or artifacts removal.

Preprocessing of wearable sensors signals like acceleration, may involve calibration, unit conversion,
normalization, resampling, synchronization, or signal-level fusion [37]. Data segmentation allows to identify
segments of the preprocessed data streams that are likely to contain information about activities (activity
detection or spotting). This is usually a critical step in HAR, due to the intrinsic complexity of separating
and identifying activities that humans typically perform with no separation in time.

2.3 Features and state-of-the-art algorithms

Activity recognition relies on processing features, that are extracted and selected from signals, through
proper operations like conversion or transformation, to and from different domains. Feature computation
may be automatic or derived from expert knowledge. A ”feature space” is composed by the total number of
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Tab. 3: Hardware (HW) and software (SW) sensors in Android [36]

Sensor Description

HW

Accelerometer Measures acceleration force applied to the device, in-
cluding gravity

Ambient temperature sensor Measures ambient room temperature

Magnetometer Measures ambient geomagnetic field along three axes
(x; y; z)

Barometer Measures ambient air pressure

Gyroscope Measures device rotation along three axes (x; y; z)

Light sensor Measures ambient light level (illumination)

Proximity sensor Measures proximity of an object relative to the screen
of a device

Humidity sensor Measures humidity of ambient environment

SW

Linear acceleration Measures acceleration force applied to the device
(gravity excluded)

Gravity sensor Measures gravity force applied to the device, along
three axes (x; y; z)

Rotation Measures the orientation of a device by providing the
3 elements of the devices’ rotation vector

features extracted from the data. If the extraction has been well executed, features corresponding to the same
activity should appear clearly clustered in the space, as well as they should be clearly separated, if pertaining
to different activities. Similarly, selected features are good if they are robust to intraclass variability and
to different subjects performing the same activity. A wide range of features have been identified in the
literature, according to the data type from which they are extracted. Among them, it is possible to mention:
signal-based, body-model, event-based, and multi-level features. Another classification of the features is
based on the domain to which the inspected data pertain, as detailed in Table 4.

In order to limit the computational complexity of the classification process, and the amount of training
data needed for parameter estimations, the feature space dimensionality should be kept at the minimum, by
identifying the core set of features that still allows to target the desired performance. This reduces also the
memory and bandwidth requirements for real-time processing on embedded systems.

Once the most effective features are extracted, a fundamental part of a HAR system is the algorithm

Tab. 4: Common features used in HAR systems classified by domain

Type Feature

Time and Statistical Mean, Median, Maximum, Minimum, Variance, Standard
Deviation, Cross-Correlation, Root Mean Square (RMS),
Signal Magnitude Area (SMA), Median Absolute Devia-
tion (MAD), Time Between Peaks (TBP), Max-delta be-
tween axis, Skewness, Kurtosis, Displacement

Frequency Discrete Fourier Transform (DFT), Discrete Cosine Trans-
form (DCT), Energy, Max-coefficient, Mean-frequency,
Skewness, Kurtosis, Interquartile Range (IRQ)

Structural Autoregressive (AR)

Transient Trend, Magnitude Of Change (MOC)
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Tab. 5: Taxonomy of classifiers proposed in state-of-the-art HAR systems

Type Classifiers

Decision Tree C4.5, ID3, REPTree [39]

Bayesian Näıve Bayes and Bayesian Networks [40]

Instance Based k-Nearest Neighbors [41]

Neural Networks Multilayer Perceptron [42]

Domain transform Support Vector Machines [43]

Fuzzy Logic Fuzzy Basis Function, Fuzzy Inference System [44, 45]

Regression methods MLR, ALR [33, 46]

Markov models Hidden Markov Models (HMM), Conditional Random
Fields [47]

Classifier ensembles Boosting and Bagging [48, 49]

needed to classify new instances of recorded data [38]. The algorithm that outputs the classification label is
represented by a model that has to be trained. Several inference methods have been proposed in ML and
computational statistics, as listed in Table 5. In supervised ML algorithms, a function is inferred from a set
of ground truth-labeled training examples, with the aim of minimizing the classification error and being able
to map new examples (the testing ones).

3 Materials and Methods

3.1 Datasets

The lab and real-world recorded datasets, upon which this work is based, are taken from [50], used by
Kwapisz et al. in [51], which contains the accelerometer data recorded with Android smartphones placed in
the pants pocket, at an average sampling frequency of 20 Hz. This dataset is actually divided in two parts:
a smaller one recorded in a controlled laboratory environment, and a bigger one recorded and labeled by the
users, in real-world settings.

The lab dataset was recorded using three types of smartphones: Nexus One, HTC Hero, and Motorola
Backflip. The 36 volunteers performed a specific set of activities (walking, jogging, ascending and descending
stairs, sitting, and standing for given periods of time) while carrying an Android smartphone in their front
pants leg pocket. The total length in time of the dataset recordings is ≈ 15h, corresponding to an average
of ≈ 25min recording for each user.

The real-world dataset was recorded and labeled freely by the users during their everyday life and without
a specific protocol. For this dataset there are also some demographics information about almost all the 563
users (372 male and 191 female) involved in the test; they are summarized in Figures 1, 2, and 3. Among
the users, 67 of them declared to have an injury affecting the way they walk. The total length in time of
this dataset is ≈ 42h. In this dataset, the Upstairs and Downstairs activities are grouped into Stairs, and a
new activity is introduced, i.e. Lying Down

Since both the datasets are recorded with a smartphone, the sampling frequency is not regular and can
vary during the recordings. The main problem is that the classifier, to express its best performances, has
to work on features extracted from time windows with the same sampling frequency. Some of them can
vary too much when the sampling frequency is different, even if calculated for the same activity. For this
reason all the time windows with a mean sampling frequency of ± 2Hz around the target value have been
discarded.

Another aspect to consider is the windowing technique: since all the raw data are written sequentially
on a text file, it is important to split them correctly, because the extracted time windows have to belong
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to the same user and the same activity. Since overlapping has not been used, the designed solution was
to incrementally fill in the window during the file reading operation (line by line, since they are ordered
in time), and truncate the window when an activity or user change is detected. All the windows with less
than 90% the target samples have been discarded. Table 6 summarizes the configuration used to process
the datasets. The calculated features are then written on a file ready to be used with the WEKA toolkit.
Figures 4 and 5 summarize the class distribution of the processed datasets, once the non-compliant time
windows have been discarded.
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Fig. 1: Age distribution among the subjects for the real-world recorded database
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Fig. 2: Height distribution among the subjects for the real-world recorded database

3.2 Training and test methods

To train and test different classifiers, a common procedure has been used. Each classifier was selected through
the Classify tab of the WEKA explorer, and a standard 10-folds cross-validation has been used to obtain
more reliable results.
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Fig. 3: Weight distribution among the subjects for the real-world recorded database

Tab. 6: Summary of the time windows and processing parameters

Parameter Settings

Sampling frequency 20± 2Hz

Time window size 128 samples - min. 115 (90%)

Discarded windows << 1%

Filter Butterworth 3◦ ord. HP filter at 0.3Hz

PROCESSED LAB DATASET

Walking 2,910 43.2%

Jogging 1,724 25.6%

Upstairs 743 11.1%

Downstairs 618 9.2%

Sitting 390 5.8%

Standing 342 5.1%

Total time windows 6,727 100%

Users 36

43.2%

Walking

25.6%

Jogging

11.1%

Upstairs

9.2%

Downstairs

5.8 %

Sitting

5.1%

Standing

Fig. 4: Class distribution for the laboratory recorded processed dataset

No particular instance filtering techniques have been used, in fact all the windows for a certain activity
have been used. The classifiers have been evaluated for the performances, the training time, the generated
model interpretability, and the model file size. This last feature is relevant for the aim of implementing the
classifier in a mobile application. In fact, once trained, the model has to be serialized, deserialized, and
stored in the smartphone app. In particular, the performances have been evaluated via the most common
indexes used in ML: precision, recall and F-score, but also by analysing the obtained confusion matrices, to
investigate possible classification problems and algorithm shortcomings.
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PROCESSED RW DATASET

Walking 7,599 42.5%

Jogging 2,079 11.8%

Stairs 419 2.3%

Sitting 4,083 22.8%

Standing 1,947 10.9%

Lying Down 1,751 9.7%

Total time windows 17,878 100%

Users 563

42.5%

Walking

11.8%

Jogging

2.3%

Stairs 9.7%

Lying Down

22.8%

Sitting

10.9%

Standing

Fig. 5: Class distribution for the real-world recorded processed dataset

3.3 Implementation of the Mobile App for the Rapid Design of Physical Activity

Monitoring Algorithms in the Workplace

The main use cases for the developed Actimonitor Android application are tracking the user’s PA, and
allowing to record and collect new data, with the aim to create and populate a new and more complete
dataset, with respect to the one retrieved from the literature [50]. The mobile application is just a part
of a bigger intended system, designed to collect data from many users, so it has to allow the management
of a user profile too (setting password, email, login). Moreover, the app is intended to be used also for
synchronizing the data, collected and stored in the smartphone, to an online remote web server.

3.3.1 Data acquisition and manipulation

Classes dealing with data acquisition and manipulation are the most important ones, because they are
responsible for retrieving data from sensors, calculating the features, classifying the instance, and writing
the final results on the application internal database, and on files. The main class that manages all the
operations is the BackgroundSensorsService one, whose structure is shown in Figure 6, that extends a
regular Android Service class. The class is created and started once the user activates the recording, and it
runs in background performing the sensors data collection and activity tracking, even once the app is closed.
The class can be started or stopped only through the app. It also performs the loading and deserialization
of the WEKA trained model.

The tracking is active only when the screen is off and the proximity sensor detects a near object (i.e. the
smartphone is recognized as being in the pocket). A separate thread is in charge of writing the collected
data in files (both raw and processed data), managing the creation of the directories where the files will be
stored, and updating the smartphone file system.

Performance of the app are an important requirement, in particular with respect to the real-time con-
straint. The problem is solved by splitting and running the processes in different threads; this results in a
larger real-time margin, and does not affect the smartphone stability.

3.3.2 User interface

The app user interface is developed following the principle of Material Design [52]. The app allows the
user to access functions from a top and a side selection menu (Figure 7). Clicking on an item in one of
the two menus, starts a new interface for the desired function or visualization. In particular, in the current
implementation, the side menu is used to access the settings of the app and the top menu provides all the
actual functions. The different interfaces are implemented through independent Android fragments that
replace each other.

The app is capable of classifying and tracking the activity of the user, using a previously trained classifier.
The classifier is trained for the case of a user placing the smartphone in the trousers pocket, with the upper
part of the device directed to the ground, and the screen facing the leg. As a consequence, the user has
to select the correct settings about the smartphone position, as shown in Figure 8. Then, by accessing the
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Fig. 6: Data acquisition and manipulation classes of the backgroud service (BackgroundSensorsService class)

Fig. 7: Mobile app user interface
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Fig. 8: Selection of the smartphone position setting through the application interface

tracking section of the interface, the recording may be started, as shown in Figure 9. Afterwards, the user
may put the smartphone in the pocket. The app will stop recording when it detects that the smartphone
is not in a pocket anymore, and will restart automatically when this condition is detected again. Also, a
notification will appear on the smartphone locked-screen.

3.3.3 Data Structures

To accomplish all the requirements and easily manage the workflow of the system it was necessary to design
some useful data structures, to hold both the data collected from the sensors and those generated by the app
itself. Moreover, also the internal database structure has to be designed, to permanently store the tracking
data in an efficient way.

The internal database is mainly used to store the tracking and the training data (raw data), in separate
tables. One of the main problems to address was the growing size of the database during the everyday
recordings. The database has been then designed to store only the essential data. In particular, the table
to store the tracking data contains only the absolute timestamp of the window, the label and a small set of
information about it. For the raw data, every row contains a timestamp, the value for the three axes of the
accelerometer (optionally, also the barometric value), and a small set of additional information; 128 of these
rows are stored for each window. So not all the features calculated are stored, since they require a huge
amount of memory and can be recalculated later in a simple way, if necessary.

The size growth of the database was estimated by leaving the app working for many hours, and it was
possible to verify that for the activity tracking only, over a standard 8 hours working day, the growing is of
the order of hundreds of KBs, while, if saving the raw data, this value could raise to ten MBs. For these
reasons it has been chosen to leave the user free to choose to store or not the raw data, via an option in the
app settings. Moreover, this way, assuming a regular sync with a remote web server at least once a week,
the database size does not yet represent a problem. Another problem to address is the time required to
quickly write a group of tuples at once in the database. When using the helper classes provided by Android
SDK, this operation is very slow (≈ 1.5s). For this reason, to store the 128 tuples of raw data per windows
at once, a low level approach based on the SQLite JDBC driver was adopted. This way, it was possible to
lower the time to only ≈ 100ms.

13



Fig. 9: Activity tracking

3.3.4 Classification system implementation

The features extraction phase is implemented by four classes (one for each group of features), to easily choose
only a sub-set of them if necessary. These classes are named: TimeDomainFeatureExtractor, FrequencyDo-
mainFeatureExtractor, Structural Feature Extractor and TransientFeatureExtractor. They all extend the
abstract class FeatureExtractor. The computed features are stored, progressively for each sub-group, in the
main FeatureSet class instance.

The classification phase is the one for which the WEKA library has been used more extensively. Once ob-
tained the FeatureSet from the target time window, it is necessary to translate it into a WEKA Instance, that
represents the single example to be classified. This has been done through the method toInstance(Instances
es) of the FeatureSet class. This method takes as input a WEKA Instances class (a Java interface for a
dataset and its instances, to be not confused with the Instance). In particular, the idea is to provide a dummy
(empty) dataset with the same header of the one used to train the WEKA model. This way the software
can check if the FeatureSet contains all the features required, and throw an exception if not. The Instances
class representing the dummy dataset is obtained by reading a simple file stored in the app resources.

Since both the dummy dataset and the model are stored in files, they have to be loaded at the startup
of the app (precisely, at the startup or the BackgroundSensorsService). The WEKA tool provides helper
classes for this kind of operations. It is possible to obtain a representation of the dataset by means of an
Instances class. Moreover, to deserialize the model, the read method of the helper class SeralizationHelper
has been applied: by reading the model file, it gives back the already trained Classifier class implementation
for the stored model.

The classification is simply done by the classifier’s method classifyInstance(Instance is), that takes as
input the instance to classify and gives as output a double value ranging from 0 to n − 1, where n is the
number of classes. The following pseudocode shows a simplified implementation of the classification process
adopted, that clarifies the use of the already mentioned classes.
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Tab. 7: Deafult parameters for base classifiers: k-NN, NN, and DT

Classifier Parameters

k-NN search algorithm: linear search with euclidean distance

number of neighbours: 25

NN number of hidden layers: (# attributes + # classes)/2

learning rate: 0.3

momentum: 0.2

max number of epochs to train through: 500

attributes normalized between -1 and 1

DT (REPTree) no depth restrictions

minimum total weight of the instances in a leaf: 2

minimum variance on all the data needed for splitting:
0.01

pruning

number of folds used for pruning: 3

Data: dataset header file, serialized classifier, unclassified time window
Result: classified time window

load dataset header;
get attributes position and properties;
deserialize WEKA trained model;

while true do

collect data from sensors;
if time window ready to process then

create valid instance from feature set data;
classify instance;
set corrisponding label;

end

end

Algorithm 1: Simplified classification process in the smartphone app implementation

4 Results and Discussion

4.1 Base classifier selection

A first step in the classifier selection was the choice of the base one to start from. Therefore, before moving
to the implementation of the mobile app, three of the most common algorithms used in the literature have
been tested: DT, k-NN and NN. In particular, the ones implemented in the WEKA classes have been used,
all of them with the default parameters, summarized in Table 7. To train the classifier, all the time windows
extracted from the laboratory recorded dataset (see Figure 4) have been used.

Performance evaluation considering the weighted average F-score, shows that the NN classifier is the best
among the three, with an index of 0.996. The difference in performance is mostly due to the misclassification
of only a subset of activities. In particular, the most problematic ones are the Upstairs and Downstairs
activities, often classified as simple Walking. Even if the overall performance indexes are good for all the
classifiers, as given in Table 8, the DT shows the worst performance for these two activities, with an F-
score equal to 0.712 and 0.7, respectively. Also the confusion matrices given in Table 9 show a frequent
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Fig. 10: Summary of the characteristics shown by each base classifier

misclassification among this subset of activities.
About the time required to train the models, the faster is the k-NN with only 0.1s, because it is a lazy

classifier. The DT is also fast, with 2.88s needed to train the classifier. The NN training is a way slower, with
967.16s needed. The model interpretability is another aspect to consider, in view of the mobile application
tool development.

Finally, since the selected model has to be serialized and stored in a smartphone app, also the file size is
an important characteristic. Both the DT and the NN produce a model of ≈ 1MB size, with a slightly bigger
one for the NN. The k-NN gives a model of ≈ 10MB. In fact, the disadvantages with lazy learning include
the large space required to store the entire training dataset. Moreover, particularly noisy data increase the
needed set unnecessarily, because no abstraction is made during the training phase.

Figure 10 shows a summary of the characteristics of the three classifiers. The DT gives a good compromise
for all the considered characteristics, traded off with performance. Then, this is the base classifier chosen to
build up the final PA monitoring system, to be implemented in the mobile app tool.

4.2 Activities misclassification problem

As stated above, the main performance loss is due to the wrong classification of some activities. Classes
in this subset will be called small displacement activities ; in contrast with the static activities (Sitting
and Standing) and the big displacement activity (Jogging). Activities in this subset feature very similar
characteristics and movements, then also the extracted features have similar values, leading to a weak and
error prone model.

Another problem, that comes out mainly in the test phase, is the wrong classification of the slow walking
activity. This is probably due to the fact that the walking data was recorded in a controlled setup, i.e. on a
treadmill at a fixed pace, then a walking activity with a different or irregular pace sometimes is misclassified
as Upstairs or Downstairs.

For these reasons, the need for a more accurate and stronger model to better distinguish between the
small displacement activities clearly emerges, but also to generalize the walking data, to recognize a larger
range of paces. To produce a better classifier two solutions have been tested, a hierarchical approach and a
generalized data approach, and one of them has been chosen.

4.2.1 Hierarchical approach

The first approach tested is the hierarchical one, that allows to split the original problem in multiple, smaller
sub-problems. The idea is to create simpler but stronger classifiers to select between few activities. In
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Tab. 8: Base classifiers accuracy by class

Precision Recall F-score Class

0.938 0.942 0.94 Walking

0.969 0.971 0.97 Jogging

0.72 0.705 0.712 Upstairs

0.7 0.699 0.7 Downstairs

0.984 0.972 0.978 Sitting

0.98 0.988 0.984 Standing

0.905 0.905 0.905 Weighted Avg.

(a) DT

Precision Recall F-score Class

0.959 0.993 0.976 Walking

0.99 0.992 0.991 Jogging

0.911 0.855 0.882 Upstairs

0.915 0.833 0.872 Downstairs

0.995 0.979 0.987 Sitting

0.988 0.991 0.99 Standing

0.961 0.962 0.961 Weighted Avg.

(b) k-NN

Precision Recall F-score Class

0.981 0.987 0.984 Walking

0.991 0.988 0.989 Jogging

0.896 0.913 0.904 Upstairs

0.906 0.869 0.887 Downstairs

0.99 0.982 0.986 Sitting

0.985 0.991 0.988 Standing

0.968 0.968 0.968 Weighted Avg.

(c) NN
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Tab. 9: Base classifiers confusion matrices

Classified as

Walking Jogging Upstairs Downstairs Sitting Standing

Walking 2742 15 84 68 1 0

Jogging 27 1674 18 5 0 0

Upstairs 75 32 524 112 0 0

Downstairs 80 7 96 432 3 0

Sitting 0 0 4 0 379 7

Standing 0 0 2 0 2 338

(a) DT

Classified as

Walking Jogging Upstairs Downstairs Sitting Standing

Walking 2890 2 14 4 0 0

Jogging 4 1710 7 3 0 0

Upstairs 54 14 635 40 0 0

Downstairs 63 2 38 515 0 0

Sitting 0 0 3 1 382 4

Standing 1 0 0 0 2 339

(b) k-NN

Classified as

Walking Jogging Upstairs Downstairs Sitting Standing

Walking 2871 6 15 17 1 0

Jogging 12 1703 6 3 0 0

Upstairs 20 10 678 35 0 0

Downstairs 24 0 57 537 0 0

Sitting 0 0 1 1 383 5

Standing 0 0 0 0 3 339

(c) NN
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Fig. 11: Hierarchical models used to solve the misclassification problem

Figure 11, the two hierarchical schemes proposed and tested are shown, but only the results of the 11b) are
reported, because it performs better than the 11a). The selected hierarchical classifier is based on simple
DTs, the dimensions of which are related to the difficulty in classifying the target activities. As an example,
the model used for Walking - Upstairs has an average number of nodes equal to 90, whilst the Jogging -
Standing has only 3 nodes.

Considering that the main impact on performance was given only by the small displacement activities,
the model that involves these three activities is the most important one, that affects the overall performance.
Tables 10 a), b) and c) show the performance of this smaller classifier but, considering the F-score values,
it is clear that there is not an improvement with a ”smaller” model. The real problem is in the data chosen
to train the classifier, and not in the classification scheme used. In particular, they have to be generalized.

4.2.2 Data generalization approach

One of the solutions to generalize the training data is to use also the data from the real-world dataset, since
they are collected by the users in real life conditions and can give a better and comprehensive model of the
activities. Assuming the most problematic activities are the ones related to walking actions, and that the
real-world dataset does not contain the Upstairs and Downstairs classes, only the Walking windows have
been used. Figure 12 shows the new class distribution, once the Walking time windows taken from the
real-world dataset have been included. Even if the class distribution is now strongly unbalanced, adding new
time windows is necessary, to identify all the different walking patterns and paces as Walking, as confirmed
by experiments.

The new results provided in Table 11 show an improvement of the weighted average F-score value, from
0.864 to 0.923, but two classes are affected by a noticeable performance loss, i.e. Upstairs and Downstairs.
The reason is that some users collected the data by placing the smartphone with a different orientation
compared to the laboratory dataset. This fact can give rise to misclassification and performance reduction
for those activities particularly affected by the smartphone position and orientation. There is the need to
strengthen the model and restore the classification performances on the Upstairs and Downstairs activities,
but keeping the generalization yet introduced.
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Tab. 10: Small displacement sub-classifier performances

Correctly Classified Instances 86.65 %

Incorrectly Classified Instances 13.35 %

Kappa statistic 0.719

Mean absolute error 0.116

Root mean squared error 0.269

Relative absolute error 35.91 %

Root relative squared error 66.92 %

(a) Performance by cumulative indexes

Classified as

Walking Upstairs Downstairs

Walking 2787 65 58

Upstairs 105 515 123

Downstairs 96 123 399

(b) Confusion matrix

Precision Recall F-score Class

0.933 0.958 0.945 Walking

0.733 0.693 0.712 Upstairs

0.688 0.646 0.666 Downstairs

0.862 0.867 0.864 Weighted Avg.

(c) Detailed accuracy by class
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Tab. 11: Classifier performance when trained with generalized walking data

Correctly Classified Instances 92.68 %

Incorrectly Classified Instances 7.32 %

Kappa statistic 0.829

Mean absolute error 0.034

Root mean squared error 0.143

Relative absolute error 23.16 %

Root relative squared error 52.71 %

(a) Performance by cumulative indexes

Classified as

Walking Jogging Upstairs Downstairs Sitting Standing

Walking 10221 15 125 116 15 17

Jogging 46 1662 7 9 0 0

Upstairs 253 33 385 70 0 2

Downstairs 231 6 53 328 0 0

Sitting 15 0 1 1 366 7

Standing 14 0 0 0 12 316

(b) Confusion matrix

Precision Recall F-score Class

0.948 0.973 0.96 Walking

0.969 0.964 0.966 Jogging

0.674 0.518 0.586 Upstairs

0.626 0.531 0.574 Downstairs

0.931 0.938 0.935 Sitting

0.924 0.924 0.924 Standing

0.921 0.927 0.923 Weighted Avg.

(c) Detailed accuracy by class
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Fig. 12: Resulting class distribution with the Walking time windows taken from both laboratory and real-
world dataset

4.3 Robustness improvements

The classifier has to be made more insensitive to the varying smartphone orientation, and to possible labeling
errors for the real-world dataset. It has to be also more insensitive regarding the way people use to perform
the same activity, but still retain the class separation properties. To this aim, bootstrap aggregating and
pairwise classification have been used. The former identifies ensemble learning techniques, among which
the bagging one was used, and applied to DT classifiers. The latter decomposes the classifier into several
two-classes problems, and combines their outputs through voting techniques (as for bagging). If the classes
are evenly populated, a pairwise classifier is at least as quick to train as any other multi-class method [54, 55].
Moreover, since the DT performs an intrinsic feature selection, having simpler two classes-classifier allows
to create models of adequate complexity, considered the difficulty to distinguish the two selected activities.
The number of nodes in the DTs has the same order of magnitude as discussed before.

4.4 Final results on the dataset

Once the described methods and techniques are applied, it is possible to appreciate an overall performance
improvement of the weighted average F-score, up to a value of 0.988. In particular, it changes from 0.712
and 0.7, to 0.676 and 0.71, for Upstairs and Downstairs, respectively.

An important perspective to analyse is the sensitivity of the algorithm to the smartphone orientation. To
test this aspect, both the datasets have been processed inverting the axis of the accelerometer and simulating
the smartphone in a different orientation (upside down). Then the trained model has been tested with this
data. As expected, the performance dropped down to an F-score of 0.729, due to Upstairs and Downstairs,
but in particular for the Standing class, where the orientation highly affects the classification.

For these reasons it was useful to create a reduced model with only two activities. Considering the goal
of monitoring the PA in a workplace, the minimum target is to identify between Not active (sitting) and
Active (all the others activities). Since the class distribution would become even too unbalanced, the Sitting
instances from the real-world dataset have been also added to the test and training set; the new class distri-
bution is shown in Figure 13. This setup shows improved performances, according to Table 12, and achieves
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Fig. 13: Resulting class distribution with the Walking and the Sitting time windows taken from both labo-
ratory and real-world dataset

an average weighted F-score of 0.988, even for the test done with the upside down smartphone orientation.
Given these results, the model is suitable to be implemented even when the smartphone orientation is not
fixed, or there is no information about the orientation at all. A further solution could be to estimate the
orientation from features that are not affected by orientation, like the acceleration magnitude [56, 57, 58],
and then use a different classifier for each relevant position.

5 Conclusion

The aim of this research was to address the easy and rapid development and testing of classifiers to be used
in physical activity monitoring systems, targeted to individuals in their workplaces. Such a result has been
obtained through the design of an Android-based mobile application, which also demonstrates the feasibility
of implementing even complex HAR solutions on a mainstream device like smartphones. The paper offered
a complete overview of the activities classification problem from multiple points of view, starting from the
type of sensors to use and their position, to a taxonomy of the most used techniques in this field. A mobile
app for HAR algorithms design has been presented, using state-of-the-art tools for machine learning, like
the WEKA toolkit. It was then possible to offer an extensive performance evaluation of some of the most
common classifiers. Afterwards, an analysis of the main problems which occurred was carried out. This led
to the design of a system capable of overcoming these problems in a simple and effective way.

In particular, the implemented HAR system was designed to be used in a workplace environment to
monitor the physical activity of the workers, equipped with the capability to recognize between six activities.
The chosen classifier is based on a hierarchy of DTs to which some improvements, like boosting and pairwise
classification, have been applied, to increase the average performance. The final classifier reaches a weighted
average F-score of around 92%. A simplified approach capable to classify between active and not active
states was studied, which provides much reduced sensitivity to the device orientation; it is capable of an
F-score up to 99%. This last approach could be used, for example, in an elderly monitoring system since it
guarantees very high performance on the classification of simple activities, useful to detect the state of the
patient in a room.
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Tab. 12: Final bagging Active/Not active classifier performance, also considering the same classifier with a
different smartphone position (upside down)

Correctly Classified Instances 98.82 % (98.83 %)

Incorrectly Classified Instances 1.18 % (1.17 %)

Kappa statistic 0.969 (0.968)

Mean absolute error 0.019 (0.023)

Root mean squared error 0.09 (0.1)

Relative absolute error 5.26 % (6.17 %)

Root relative squared error 21.94 % (23.18 %)

(a) Performance by cumulative indexes

Classified as

Active Not active

Active 13853 (13825) 83 (111)

Not active 134 (105) 4339 (4368)

(b) Confusion matrix

Precision Recall F-score Class

0.99 (0.992) 0.994 (0.992) 0.992 (0.992) Active

0.981 (0.975) 0.97 (0.977) 0.976 (0.976) Not active

0.988 (0.988) 0.988 (0.988) 0.988 (0.988) Weighted Avg.

(c) Detailed accuracy by class
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The final algorithm has been tuned by exploiting rapid test and development through an Android smart-
phone application developed ad hoc. All the software components in the app have been implemented following
the Android design patterns, and using the WEKA API as the core of the classification system. Such an
app sets the basis for the design of new algorithms, since it allows a very easy replacement of the classifiers,
only by changing the file in which they have been serialized. It could be a practical and easy tool for bench-
marking new algorithms, even applicable and extensible to different domains than PA monitoring. The app
is even provided with the capability of recording the collected sensors data, to create future new and richer
datasets for HAR.
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