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Abstract 
 

An existing multiple phenotype predator-prey model is expanded to include mutation 

amongst the predator phenotypes. Two unimodal maps are used for the underlying dynamics 

of the prey. A predation strategy is also defined which differs for each of the predators in the 

model. Results show that the introduction of predator mutation enhances predator survival 

both in terms of the number of phenotypes and total population for a range of values of the 

predation rate. In general, the dominant predator phenotype is the one which is most focused 

on the prey phenotype with the largest population.  

 

 

1. Introduction 

The mathematical modelling of predator-prey population dynamics goes back to the work of 

Lotka [1] and Volterra [2] and their independent discovery of the pair of coupled non-linear 

differential equations which now bears their names [3]. Since this work predator-prey 

systems have been modelled via a wide range of mathematical and computational techniques, 

including the use of discrete time population models, spatial models, and individual agent 

based models, with the sophistication of the modelling increasing with the rise in computer 

power.  

 

In the field of ecological modelling significant research has focused on two species predator-

prey models, which have been used to investigate chaotic population dynamics [4-8], the 

effect of the prey growth rate [9] and spatial dispersal [10-12]. Two species models have been 

generalized to multiple predator-prey systems, including the study of resulting chaotic 

behaviour, and the effect of implementing various functional responses (the effect of 

predation, per predator, upon the prey species) upon the dynamics [13-16]. However, in 
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general less work has been undertaken looking at multiple species predator-prey models 

where the system has been expanded to allow for multiple competing predators and prey. 

 

The modelling of the functional response is one of the most studied aspects of mathematical 

ecology, with Holling’s Type II disc equation [17] proving particularly popular. Several 

sophisticated forms have been proposed, and their relative ecological merits have been 

debated [18]. Other studies have suggested that models featuring nonlinear functional 

responses and adaptive foraging may be essential for the maintenance of stable, complex 

ecosystems [19]. The relationship between complexity and stability [20] has remained a 

significant issue within theoretical ecology since May’s 1973 [21] work on random graphs 

challenged the intuitive belief that greater complexity increases the stability of an ecosystem. 

The issue has been explored in some detail using both models and empirical data. Various 

definitions of stability [22] have been investigated in the context of ecological networks in 

which predator-prey ratios, the proportion of possible feeding links in the network [23], the 

effects of competition between species, and the proportion of weak feeding links [24] are 

varied. 

 

A key area of the study presented in this paper is the inclusion of mutation in a predator-prey 

ecosystem.  Mutation has previously been introduced into both single species predator-prey 

ecosystems [25,26] where it was used to simulate adaption towards the environment, and in 

multiple species predator-prey models [27] where the various traits of the predator and prey 

are allowed to evolve, introducing new phenotypes into the ecosystem.  Several eco-

evolutionary models have been developed that combine random mutation and resulting 

natural selection within population dynamics models [28-33]. A key feature of these models 

is that the species themselves are not pre-selected, and the trophic relationships that are 

present in the resulting food web are an emergent result of the selection process operating on 

population dynamics. An overview of the development of one such model in the light of 

historical food web research can be found in [34]. 

 

A further approach is to allow populations to occupy a spatially extended region, thus 

producing a predator-prey system that models the dynamics of the species in both space and 

time. Such models have been developed in continuous space and time, via reaction-diffusion 

based predator-prey models [35,36], and in discrete space and time via coupled map lattice 

(CML) based models [37-39], with the latter being the approach taken in the current paper. 
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Studies in the physics literature have considered the dynamics on such models [40-41], and 

they have been applied to modelling population dynamics on spatial systems of plants [42] 

and insects [43]. Multiple-species predator-prey relationships on a lattice are studied using 

the discrete generalised Lotka-Volterra equations in [44]. Using a lattice has the advantage of 

being relatively simple to compute, whilst providing an approach to the modelling of 

neighbouring ecological environments. How these ideas are implemented in the present study 

will be discussed in more detail later. 

 

This paper uses a generalised multiple phenotype form of a discrete time predator-prey model 

proposed by Neubert and Kot [4] that has been previously studied by Mullan et al [45]. Here 

it is further expanded to allow mutation amongst the various predator and prey phenotypes 

that occupy the ecosystem, forming a mutating predator-prey model with much 

heterogeneity. A variation of the model studied here where a single predator predates upon a 

set of mutating prey has been studied by Mullan et al [46].  

 

The work presented here expands on [46] to consider mutation for both the predators and the 

prey. Results from a 10 predator – 10 prey ecosystem, both with and without mutating 

predators are discussed, first showing a broad overview of where survival occurs in the model 

based on the assigned control parameters, and then with a focus being placed on the 

underlying dynamic behaviour of the phenotypes within the model as its configuration 

changes. Both the Ricker model and logistic map are used to model the prey dynamics with 

comparisons being drawn between the two unimodal maps. 

 

2. Multiple phenotype predator-prey model 

 

In [46] a multiple phenotype model based on work  by Neubert and Kot [4] was defined as 

 

𝑁𝑡+1
(𝑗)

= exp(−(∑ (𝑓(𝑖𝑗)𝑐𝑖𝑗)𝑚
𝑖=1 𝑃𝑡

(𝑖)
)) 𝑁𝑡

(𝑗)
exp(𝑟𝑗 (1 − 𝑁𝑡

(𝑗)
)) 

𝑃𝑡+1
(𝑖)

=  ∑ (𝑓(𝑖𝑗)𝑐𝑖𝑗)𝑁𝑡
(𝑗)

𝑃𝑡
(𝑖)𝑛

𝑗=1                                              

 

where  𝑁𝑡
(𝑗)

represents the population density of the j
th

 prey phenotype at time step t and 

𝑃𝑡
(𝑖)

represents the i
th

 predator phenotype at time step t , with cij and 𝑟𝑗 acting as the control 

(1a) 

(1b) 
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parameters. The two generalised equations allow for m predators and n prey to occupy the 

ecosystem, with each prey having an individual r value corresponding to its growth rate, and 

a cij term, which measures the predatorial effectiveness of the i
th 

predator at predating upon 

the j
th

 prey. The term f 
(ij)

 models how predator i divides its effort hunting the j
th

 prey 

phenotype.  

 

Here the model is further expanded with the introduction of mutation amongst the predators 

and prey. This has been achieved by introducing CML based mutation. A variation of (1) 

which utilizes the Ricker model to govern the dynamics of the prey is as follows: 

 

   ( ) ( )

1

1

( ( )

1

)exp( ( ) )  exp( 1 )
mn

ij prey ik

t kj i

k

k t

k i

k

t k tN p f c P N r N

 

 
   

 
 

 

( ) ( ) (( )

1

(

11

) )max(0, ) 
t t

n
k k

m
i p j jred

t kj

k

k

j t

j

P p P f c N P






   

with the variables understood to be as for (1a) and (1b) but with the inclusion of two mutation 

matrices, one for the predator, and one for the prey. Here the probability of prey k mutating 

into prey j is defined as
prey

kjp and the probability of predator k mutating into predator j is 

defined as
pred

kjp .  

 

Note that equation (2b) is a variant of (1b) which effectively introduces a carrying capacity 

on the prey. This change is introduced to prevent a pathological scenario discussed in [46], 

whereby a predator can focus on one prey, resulting in an increase of its own population and 

corresponding  depletion of the prey population, then at the next time step move on to another 

prey, again increasing its population and so on. At each time step prey which are not being 

hunted have a chance to recover their population levels, and then can be predated on at a later 

time. In some cases this allows the predator population to increase without bound. The use of 

the carrying capacity term in (2b) prevents this. 

 

Further a logistic map based model where the logistic map governs the underlying dynamics 

of the prey phenotypes is defined as 

     ( ) (k) (k) (k) (k) (i

1

1

)

1

1 ( )
n

prey

kj

n
ij k

t t k t t t k t

ik

N N r N N N f c Pp




 
    

 
  (3a) 

(2b) 

(2a) 
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( ) ( ) (( )

1

(
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) )max(0, ) 
t t
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t kj
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k

j t
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P p P f c N P





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where the terms are understood to be as for (2a). 

 

2.1 Mutation 

It is necessary that that the sum of the probabilities for each possible mutation of prey or 

predator phenotype k to any of the other phenotypes, plus the probability that it does not 

mutate must sum to one. In what follows we discuss mutation in terms of prey phenotype, 

noting that the statements apply equally to predator mutation via the simple substitution of 

pred

kjp  for prey

kjp  . Thus for prey mutation, 

1

 1     
n

prey

kj

j

p k


 
  

subject to 

[0,1] j,kprey

kjp   .                                                     

 

Using nearest neighbour (N-N) mutation to the probability matrix takes the form: 

1

1 2 1 or n

1 1 or n

0

prey

kj

p j k

p j k
p

p j k

otherwise

  

  

 
  



 

 

where p is the probability of a prey mutating into a neighbouring phenotype, n being the total 

number of prey phenotypes and the term 1-p accounting for the prey phenotypes at the edges 

of the system. The fact that 0prey

kjp   means the maximum probability of a prey mutating into 

a neighbouring prey is 0.5. Here each phenotype will contribute half of its population to each 

of its neighbouring phenotype in the next iteration of the model. This means that those 

populations that are not along the edges make no contributions to their own population at the 

next time step. 

  

In the case of no mutation, equation (6) reduces to, 

prey

kj kjp   

(6) 

(4) 

(5) 

(7) 

(3b) 
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where  kj is the Kronecker delta, which is defined as 

1   

0   



 


ij

if i j

f i j
 

 

Although high mutation rates ( prey

kjp  > 0.1) would not be considered biologically relevant, if 

we were considering the model spatially, with increased reproductive or predator fitness 

being determined by the ecological environment, these higher probabilities would correspond 

to the probability of a geographical move, and hence may be relevant. Hence the whole range 

of possible probabilities is considered here. 

 

2.2 Assignment of control parameters 

The rj control parameter dictates the growth rate of the j
th

 prey phenotype in the model. We 

consider a class of models for rj which give monotonic growth of rj with respect to j via 

 
maxj

j
r r

n


 

  
 

                                                         (9)  

where 𝑗𝜖{1, … , 𝑛} and rj is the control parameter corresponding to the j
th

 prey. We consider 

three values of β = 0.5,1,2 corresponding to concave, linear, and convex increase 

respectively.  

 

The c values have all been set equal, meaning that the predators all have an equal efficiency 

of predating upon all the prey phenotypes,  

𝑐𝑖𝑗 = 𝑐.                                                                  (10) 

We choose a predation strategy f 
(ij)

 for how predator i divides its effort hunting the j
th

 prey 

phenotype to be based on the relative sizes of prey populations via  

( ) ( )
( )

( ) ( )

1

( )

( )

j i
ij t

k i

t

k

N
f

N










 

where the exponent α specifies the degree of focus of the i
th

 predator.  

We set 

   1i i   .                                                           (12) 

Thus, with increasing i the i
th

 predator focuses an increasing proportion of its effort on the 

prey phenotype with the largest population. For the first predator phenotype (i=1), α = 0 

corresponding to the predator spending an equal amount of effort hunting each of the 

(11) 

(8) 
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surviving prey phenotypes, regardless of their current population density. For the second 

predator phenotype, α = 1 corresponding to the predator distributing its effort in linear 

proportion to the relative sizes of prey populations, then as α increases further the predator 

focuses more sharply towards the prey phenotype with the highest current population density. 

3. Numerical Results  

The Ricker based model (2a), (2b) and logistic based model (3a), (3b) have been run for a 10 

prey – 10 predator ecosystem. In the logistic model the maximum value for which the prey 

will survive is r = 3, and so rmax has therefore been fixed to rmax = 3 for all runs in both the 

logistic and Ricker based models. This allows for a direct comparison to be made between the 

two unimodal discrete time maps.  

 

For all runs N0
(1)

 is populated with an initial population density of N0
(1)

 = 0.5. The system is 

then run for 1000 time steps to allow all prey phenotypes to be populated, after which the 

predators are introduced as discussed below.  This means that at the time of introduction of 

the predators, all prey phenotypes are populated, and behaving as they would in their CML 

form with no predation. After the introduction of the predators, the predator-prey ecosystem 

is then run for 9000 time steps before results are collected over the next 1000 time steps. 

10000 time steps were deemed to be sufficient for the system to converge upon its post 

transient state.  It was found that running for a greater number of iterations did not show 

significant differences in the output of the model.   

 

To enable analysis of the large amounts of data generated by the models we introduce the 

following measures: 

(a) Average phenotype survival. The average number of predator or prey phenotypes which 

are in existence (defined as having a population greater that 10
-6

), with the average taken over 

the last 1000 iterations. 

(b) Average total population size. The average of the sum of the populations of all 10 

phenotypes of predators or prey averaged over the last 1000 iterations. 

(c) Average expected value of predator or prey. At a given iteration t the expected value of 

the predator phenotype is defined to be  
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10
( )

1

10
( )

1

i

t

i
t

i

t

i

iP

E

P









 ,                                                         (13) 

and similarly for prey. We define the average expected value for the predators as the average 

of (13) taken over the last 1000 iterations. A corresponding value is defined for the prey. 

(d) Average standard deviation of the expected value. At a given iteration t the standard 

deviation of the expected value of the predators is defined as 

 

   

 
10

2 ( )

1

10
( )

1

i

t t

i
t

i

t

i

i E P

P

 









    .                                            (14) 

We define the average standard deviation of the expected value for the predators as the 

average of (14) taken over the last 1000 iterations. A corresponding value is defined for the 

prey. 

(e) Most frequent largest phenotype, l. This is the predator or prey phenotype which most 

frequently had the largest population over the last 1000 iterations. 

(f) Frequency of the largest population, f. This returns the number (out of 1000) of time steps 

out of the last 1000 which the phenotype recorded in (e) was largest. 

(g) Average largest population lead. This is defined as  

𝐿 =
1

𝑓
 ∑

𝑃𝑡
(𝑙)

− 𝑃𝑡
(𝑠)

𝜇𝑡
𝑡∈𝐴(𝑙)

                                                           (15) 

where l is defined in (e), s denotes the second largest predator at iteration t, A(l) is the set of 

iterations in the final 1000 where phenotype l dominates, f is defined in (f) and is equal to 

|A(l)|, and finally 𝜇𝑡 is given by 

 
10

( )

1

1

10

i

t t

i

P


   .                                                (16) 

A corresponding value is defined for prey. 

(h) Average largest population deviation. This is defined as 

𝐿 =
1

𝑓
 ∑

𝑃𝑡
(𝑙)

− 𝜇𝑡

𝜇𝑡
𝑡∈𝐴(𝑙)

.                                                          (17) 

where all the terms are defined as specified in (g). A corresponding value is defined for the 

prey. 
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Both maps were run for three scenarios, involving the introduction of 10 non-mutating 

predators, 10 mutating predators and 1 mutating predator. In these last two cases the results 

were found to be virtually identical, and hence we do not present results for the case where 

just 1 mutating predator is introduced. Runs were performed for a range of initial predator 

values [0.1,0.2,0.3,0.4,0.5]. These differing initial conditions did introduce some differences 

in the results, but only in terms of changing the placing of the edges of regions of total 

population collapse, with such differences being more significant for the logistic based 

model, see Figure 1. 

 

In what follows we will restrict ourselves to presenting results where the initial predator 

populations are 0.1, and discuss a selection of scenarios using the metrics (a) to (f) above to 

illustrate the behaviour of the models in (c,p) space. However in supplementary material 

accompanying this paper full graphical results are shown for metrics (a) and (b) for all initial 

predator values specified above and for all of the metrics (a) to (h) for an initial predator 

value of 0.1. In all these cases the results are presented for logistic and Ricker based models 

with and without predator mutation, for 0.5,1,2  . 

 

In terms of the broad behaviour of the results, we make the following observations. Firstly for 

both the logistic and Ricker based models the results for prey populations for both mutating 

and non-mutating predators have broad similarities over the range 0 < c < 2. This is 

illustrated in Figure 2  for the logistic based model. Thus all prey phenotypes survive in this 

region, with the onset of a gradual decrease in total prey population numbers as c increases 

beyond values which allow predator survival. In this region of c total prey populations and 

prey phenotype survival show limited dependence on p, though what dependence exists  is 

more pronounced in the Ricker based model.  

 

Predator survival shows greater variation (see Figures 3 and 4). For values of c below 1 for 

the logistic based model, and below 0.8-0.9, for the Ricker based model, predator populations 

collapse. For a range of c values above this, mutating predators can maintain the survival of 

the full phenotype range, while some non-mutating predators go extinct. For relatively low 

values of c (about 1.5 for the Ricker model and 2 for the logistic model), mutation only 

affects the number of predator phenotypes surviving, allowing all to survive unless the 
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mutation rate is very low, but has little or no effect on the total populations of predators or 

prey. For higher values of c, mutation clearly allows greater predator survival in terms of 

both the number of phenotypes and total population over a wider range of c values, and 

increases the smoothness of variation of overall prey populations in (c,p) space. For mutating 

predators, the total population of predators typically increases with c in the regions where 

predator survival occurs, but the behaviour is more variable for non-mutating predators. Note 

comparing Figures 3 and 4, the logistic based model generally sustains predator populations 

over a wider range of (c,p) space, and at higher levels. 

 

Further, looking again at Figures 3(c,d) and 4(c,d), in the case of mutating predator 

phenotypes, for both the logistic and Ricker models, the maximum value of c which permits 

the survival of all (10), or nearly all (9), predator phenotypes decreases as the mutation rate p 

increases. However, there is a region for higher values of p (around 0.35-0.45 in the logistic 

model, see Figure 3(d)) that allows predator survival at higher c values than this general trend 

would suggest.For both logistic and Ricker models, there is a region for relatively small 

values of p (around 0.1) where the total predator population is high and this extends to high 

values of c as can be seen in Figures 3(d) and 4(d). Interestingly, the corresponding total prey 

population is rather low in this region (see Figures 2(d) and 5(b)), indicating the efficiency of 

the predators. Both models also have a region where the total predator population is relatively 

high at higher values of p, although this region is larger for the logistic model (see Figure 

3(d)).  

 

In the case of the logistic model, non-mutating predators increase the region of (c,p) space 

which allows all prey phenotypes to survive as compared to corresponding results for 

mutating predators (compare Figures 2(a) and 2(c)). As can be seen in Figures 2(a) and 2(c) 

for the logistic based model for both mutating and non-mutating predators, total prey 

population collapse can occur for large p and c values. Predator mutation increases the 

collapse region, with over-predation leading to collapse of the prey population and hence, the 

predators. In contrast to this, in the case of the Ricker model, for both mutation and non-

mutation of predators, survival of all prey phenotypes occur for virtually all of the (c,p) space 

considered. Where here ‘virtually’ means that for a few small regions of (c,p) space  prey 

phenotype survival lies between 9 and 10  when β = 2 (see Figure 53(a) in supplementary 

material, Appendix A).  
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In the results discussed so far the figures presented have all been based upon an assignment 

of prey phenotypes via (9) with  β = 1. The variation of β does not have a dramatic effect on 

the results at the level of the total numbers of different phenotypes of predator or prey that 

exist. Results for the overall total population are also similar, but as β increases the overall 

total population size tends to decrease for all models. Thus, for example as illustrated  in 

figure 5 for the mutating predator  Ricker based model, for most of the (c,p) space (noting 

particular the region 1 < c < 3), as we move from β=1/2 to β=2  total prey populations tend to 

decline (Figure 5 (a-c)), with high values of prey population becoming increasingly restricted 

to lower values of c. Total predator populations also decline ( Figure 5 (d-f)), though note the 

much stronger dependence of total predator populations on the variation of  p than for 

corresponding prey populations. 

 

Turning to the expectation value of the prey and predators (Figure 6) we see that increasing 

from β=1/2 to β=2  also tends to increase the predator expectation value for lower values of c  

(with this occurring over a wider range of (c,p) space for the logistic model). Prey 

expectation value increases for larger values of c  in regions where the predator populations 

are diminished.  

 

As c approaches from above the limit at which predator collapse occurs (which is around c=1 

for the logistic based model, and c=0.8 for the Ricker based model) the predator expectation 

value increases, corresponding to dominance of more focused predators. This is most obvious 

in the case of non-mutating predators, and the Ricker based mutation predator model. The 

dominance of the most focused  predator is made clear by examining the most frequent 

largest phenotype. For example, for the mutating Ricker based model  (Figure 7), over a wide 

range of (c,p) space  the most frequent largest population is the most focused predator, and  

for values of c close to the region of predator collapse this  predator forms the largest 

population for all of the last 1000 iterations of the model. Similar behaviour occurs for the 

logistic based model, though over a wider  range of c values. The strategy of such a highly 

focused predator, targeting almost all its effort on the largest prey population in a given cycle, 

leads to diversity across the corresponding region of c values for  the most frequent largest 

prey population. This is not surprising since if a particular prey phenotype has the largest 

population at time step t, it will be heavily depleted if the most focused predator is dominant, 

and thus might be expected to have a low population at time step t+1.  
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In fact, it turns out that the most frequent largest prey population is almost always at most 

50%. This wide range of  largest prey population is illustrated in Figure 8. In particular, note 

in Figure 8(a) the region where a single prey dominates along with a single predator (figure 

7b) for values of c around 2 and for high values of p around 0.45. A similar region occurs at 

similar values of c and p in the Ricker model results for both the β=1/2 and β=2 variants (see 

Figures 56(c) and 60(c) in supplementary material, Appendix A) and in the logistic model 

results for a smaller region of (c,p) space for values of c slightly greater than 1 and values of 

p just below 0.5, again for all values of β (see Figures 38(c), 40(c) and 42(c) in 

supplementary material, Appendix A). In these regions, the predator in question is the most 

focused phenotype, while the prey is the phenotype with the second highest growth rate as 

defined in (9). While this prey phenotype is heavily predated upon, its population is increased 

by mutation from neighbouring prey phenotypes (with the highest and third highest growth 

rates), which are effectively ignored by the focused predator. For appropriate values of c and 

mutation rate, p, which needs to be high, the prey phenotype in question can be sustained 

with the highest population. Finally, the variation in most frequent largest prey population 

serves to highlight the wide ranging and complex dynamics which are summarised by the 

figures giving phenotype survival and total population size over the (c,p) space, a single 

example of which is shown in Figure 9. 

 

4. Conclusions  

This paper has built on earlier work [45,46] to present a multiple phenotype predator-prey 

ecosystem with CML based mutation amongst the phenotypes that occupy its ecosystem. 

Heterogeneity was established by each predator phenotype having its own value of α 

specifying its individual rate of focus and each prey phenotype having its own individual 

growth rate. Logistic and Ricker models have been used for the prey dynamics with three 

values of β = 0.5, 1, 2 corresponding to concave, linear, and convex increases in the growth 

rate across the prey phenotypes. A single predation rate (or predatorial effectiveness, as 

specified by the parameter c) was used dictating the relationship between all the predators 

and each of the prey phenotypes, with the differential between the predator phenotypes being 

how they focus their predatorial effort on the prey phenotypes. The model was run both with 

and without mutation amongst the set of predators. 
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The results for both logistic and Ricker models are broadly similar and, in particular, they 

generally exhibit similar changes as other aspects of the model are varied. The results are also 

similar for different values of β. There is very little difference in terms of the number of 

phenotypes surviving, but the total populations of both predators and prey decrease as β 

increases. Comparing results with and without mutation amongst the predators, it is found 

that in both cases no predators survive for sufficiently low values of the predation rate. For 

values of the predation rate slightly above the threshold where predators could survive, 

mutation increases the number of predator phenotypes surviving, but has little effect on their 

total population. For higher values of the predation rate, mutation has a much more dramatic 

effect, increasing both the number of predator phenotypes surviving and their total 

population. Finally, at still higher levels of the predation rate, no predators survive due to 

over-predation.  

 

Mutation amongst the predators allows large predator populations to survive in the presence 

of correspondingly low prey populations for high values of the predation rate provided the 

mutation rate is relatively low. In general, the maximum value of the predation rate that 

permits almost all predator phenotypes to survive decreases as the mutation rate increases, 

whereas this region is largely independent of mutation rate when there is only mutation 

amongst prey, which is consistent with earlier findings [46]. It was also found that the most 

focused predator is generally the dominant predator phenotype, with this dominance being 

particularly pronounced for lower values of the predation rate, whereas there is more 

diversity in the prey phenotypes.   

       

Having extended the model to include mutating predators, future work will develop it further 

to consider the effect of introducing competition, particularly insofar as it could enhance 

diversity (see for example [28,31]). 

 

Appendix A. Supplementary material 

Supplementary material related to this article can be found online at 

http://dx.doi.org/10.1016/j.physa.2016.08.037. 
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Figure Captions 

 

Figure 1 (a) Predator survival (number of differing phenotypes) for initial predator population 

9001 0.1, 1,...10jP j    0.5   for the Ricker based model with mutating predators. (b) As 

for (a) with 9001 0.5, 1,...10jP j   . (c) Predator survival (number of differing phenotypes) for 

initial predator population 9001 0.1, 1,...10jP j    0.5   for the logistic based model with 

mutating predators. (d) As for (c) with 9001 0.5, 1,...10jP j   . [Figure 23(a), 23(m), 11(a), 

11(m) of supporting materials] 

 

Figure 2 Variation of prey survival, and overall prey populations, in (c,p) space for the 

logistic based model (3), with β=1, for both non-mutating and mutating predators. For non-

mutating predators: (a) number of distinct prey phenotypes which survive, (b) total 

population of prey. For mutating predators: (c) number of distinct prey phenotypes which 

survive, (d) total population of prey. [Figure 33(a), 33(c), 39(a), 39(c) of supporting material] 

 

Figure 3 Variation of predator survival and overall predator populations in (c,p) space for the 

logistic based model (3) with β=1, for both non-mutating and  mutating predators. For non-

mutating predators:  a) number of distinct predator phenotypes which survive, (b) total 

population of predators. For mutating predators: (c) number of distinct predator phenotypes 

which survive, (d) total population of predators. [Figure 33(b), 33(d), 39(b), 39(d) of 

supporting material] 

 

Figure 4 Variation of predator survival and overall predator populations in (c,p) space for the 

Ricker based model (2) with β=1, for both non-mutating and  mutating predators. For non-

mutating predators:  a) number of distinct predator phenotypes which survive, (b) total 

population of predators. For mutating predators: (c) number of distinct predator phenotypes 

which survive, (d) total population of predators. [Figure 51(b), 51(d), 57(b), 57(d) of 

supporting materials] 
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Figure 5 Variation of total population size for both prey and predator for the mutating 

predator Ricker based model in (c,p) space. Total prey population (a) β=1/2, (b) β=1, (c) β=2. 

Total predator population (d) β=1/2, (e) β=1, (f) β=2. [Figure 55(c), 57(c), 59(c), 55(d), 57(d), 

59(d) of supporting material] 

 

Figure 6 Variation of expectation value (13) for predator and prey populations for the 

mutating predator Ricker based model in (c,p) space. Prey expectation (a) β=1/2, (b) β=1, (c) 

β=2. Predator expectation  (d) β=1/2, (e) β=1, (f) β=2. [Figure 55(e), 57(e), 59(e), 55(f), 

57(f), 59(f) of supporting material] 

 

Figure 7 Variation of (a) the most frequent largest predator population, and (b) the frequency 

of the largest predator population over the last 1000 iteration of the model for the Ricker 

based mutating predator model with β=1. [Figure 58(b), 58(d) of supporting material] 

 

Figure 8 Variation of (a) the most frequent largest prey population, and (b) the frequency of 

the largest prey population over the last 1000 iteration of the model for the Ricker based 

mutating predator model with β=1. [Figure 58(a), 58(c) of supporting material] 

 

Figure 9. Bifurcation diagrams showing the behaviour of  predators for two different values 

of  c  for the non-mutating logistic based model with β=1 (a)  c = 1, a value at which 6 

predators survive, and (b) c = 1.3, a value at which all ten predators survive with p > 0.125. 

Compare with Figure 3(a). 

 

 

 


