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Abstract. Earthquake dynamics are believed to exhibit
self-organized criticality. This belief results from the power-
law magnitude frequency distributions of earthquake
catalogues, distributions which are accurately reproduced by
cellular automata, and from the occurrence of triggered
earthquakes. This paper examines the effects of
heterogeneity on self-organized criticality in a two-
dimensional cellular automaton. The strength heterogeneity
is distributed fractally; stress is incremented uniformly. The
model produces power-law magnitude frequency distributions.
For fractal dimensions above 1.9, the slope of the power-
law decreases with increasing fractal dimension. The slope
increases weakly with the range of heterogeneity.

Introduction

Cellular automata have been used to model a variety of
earthquake processes (e.g. Bak and Tang, 1989; Sornette and
Sornette, 1989; Carlson and Langer, 1989; Rundle, 1993;
Barriere and Turcotte, 1994). Essentially, an automaton is a
computer program that applies a set of rules iteratively; the
aim of such programs being to employ rules that
encapsulate the essential physics of the system under
investigation while being sufficiently concise to allow
many iterations of the model. The approach allows the
examination of the importance of heterogeneity and non-
linearity in the system although frequently at the expense of
rigor in the defining equations.

Bak and Tang (1989) showed that a very simple two
dimensional cellular automaton produced spatial and
temporal power-laws which are statistically similar to
power-laws observed in earthquake catalogues. They
suggested that the system was analogous to a sand pile
which builds up to a critical slope and then produces
avalanches of all sizes; the size-number distribution of these
avalanches follows a power-law. This behavior is
characteristic of self-organized critical (S.0.C.) systems and
the analogy suggests that the earth's crust is similarly
critical not only because of the magnitude-frequency
distribution of earthquakes but also because of the apparent
sensitivity of the crust to small stress perturbations which
is also a feature of S.O.C. (e.g. King et al., 1994).

The model developed by Bak and Tang consisted of a 2-D

Copyright 1996 by the American Geophysical Union.

Paper number 96GL00257
0094-8534/96/96GL-00257$03.00

array of cells on a square grid. A uniform strength was
assigned to every cell and the force was incremented on a
succession of randomly chosen cells. When the force on a
cell equaled its strength, the force on that cell was reduced
to zero (the cell "broke") and the force was distributed
equally to the cell's four nearest neighbors. More recently,
Lomnitz-Adler (1993) studied a variety of cellular automata
and examined in particular the importance of the precise
nature of the system rules in determining the statistics of
the resultant catalogues. This work showed that models in
which cells are allowed to fail repeatedly in a single event
usually produced power-law distributions whereas those in
which cells could only fail once per event generally did not.

The models of Bak and Tang and Lomintz-Adler assumed
that the distribution of strength in the system was uniform.
These models were thus homogeneous in strength and it was
only the state of stress which was heterogeneous. The
geologic world, however, is heterogeneous in strength;
faults are zones of weakness within the crust and individual
faults may themselves have strength fluctuations due to
local variations in pore pressure and surface roughness. In
contrast, homogeneous loading (e.g. McCloskey, Bean and
O’Reilly, 1993; McCloskey, 1993) may be a reasonable
approximation to tectonic loading along a single fault or
fault segment.

Heterogeneous strength distributions have been included
in more complex models which also incorporated long-range
elastic interactions (e.g. Miltenberger et al., 1993; Cowie et
al.,, 1993) or frustration (contradictory information at a
single cell) (e.g. Miranda and Herrmann, 1991). However,
none of these authors systematically studied the effects of
heterogeneity on S.O.C. in simple nearest-neighbor cellular
automata.

In this paper, we study simple nearest-neighbor cellular
automata which have heterogeneous strength distributions
but are loaded uniformly. In particular we investigate the
dependence of the statistics of event distributions on the
statistics of the material heterogeneity. We find that
heterogeneous models do produce power-law distributions
and that the slope of the power-law depends on the statistics
of the heterogeneity. In particular, the slope (or b-value)
decreases as the fractal dimension of the strength
heterogeneity increases. Additionally, the b-value increases
as the range of heterogeneity increases.

Method

There is abundant evidence that the geometry of natural
faults is best characterized by fractal statistics. Fault gouge
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(Sammis et al., 1987; An and Sammis, 1994) and fault
surface roughness (Power et al, 1987; Power and Tullis,
1995), for example, exhibit fractal scaling. In this work, we
therefore chose a two-dimensional fractal distribution of
strength on the fault surface.

The production of such a surface is described i%l detail in
Turcotte (1992). The Fourier transform of a 2-D N matrix of
random numbers, hp,, with a Gaussian probability
distribution supplies a matrix of complex Fourier
coefficients, Hyg, corresponding to radial numbers, r, given
by:

r=y/(s2+8) M)
The mean power spectral density for each radial
wavenumber, k,, is then filtered according to:
* H
Hst=k—;§- 2
r

where P is related to the fractal dimension, D, by:

7-B
D=—+- (3)
2
The inverse transform then generates the fractal surface
whose strength at position i,j, 0.(i,j), is defined at each cell
by normalizing the resulting matrix to any required range.
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Figure 1. a) Discrete magnitude-frequency distribution for

one realization of heterogeneous automaton. Fractal
dimension of strength is 1.6. Distribution is power-law over
two orders of magnitude.

b) As above except
Again, distribution is
magnitude.

strength is distributed randomly.
power-law over two orders of
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Figure 2. Effect of fractal dimension on b-value. The

slope of the magnitude-frequency distribution was determined
between 10? and 10%. Each point represents the average
power-law fit of five realizations and the error bars show the
standard deviation. Below a fractal dimension of 1.9 the b-
value is approximately constant. Above 1.9, it decreases
with increasing fractal dimension.

Computations are performed on NxM subsections of this
surface. At every time step stress is incremented uniformly
at each cell. A cell at position (i,j) breaks when its stress,
o(i,j), exceeds its strength o((i,j); the accumulated stress is
then distributed equally to its eight surrounding neighbors.
The size of an event is the total number of cells which
break in a single time step.

Results

A typical result for the heterogeneous cellular automaton
is plotted in figure la which shows the discrete magnitude-
frequency distribution for one realization with a fractal
strength distribution of 1.6. The array size was 128x64,
strength varied between 0.01 and 0.1, and the model was run
for 4x10° time steps with a force increment of 1x107°. This
magnitude-frequency distribution is clearly power-law over
two orders of magnitude. Simulations run for a greater
number of time steps produced similar results.

In order to check that the inclusion of a power-law
(fractal) strength distribution does not impose a power-law
constraint on the magnitude-frequency distribution, we
compare this result to one using a random strength
distribution. Figure 1b shows the discrete magnitude-
frequency distribution for a case identical to the one above,
except that the strength varies randomly. This distribution
is also power-law over two orders of magnitude and is
strikingly similar to the fractal case.

The effect of fractal dimension on the slope of the power-
law (b-value) is shown in figure 2. Each point is the average
of five realizations and the slope was determined over two
orders of magnitude, between 10 and 10%. The error bars
represent the standard deviation. Each case was run for
4x10% time steps with a force increment of 1x10 and the
strength varied between 0.01 and 0.1. The b-value is
approximately constant for fractal dimensions below 1.9.
Abové 1.9, the b-value decreases with increasing fractal
dimension.

The dependence of b-value on heterogeneity range (fractal
limits) is shown in figure 3. Again, each point is the
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Figure 3. Effect of range of heterogeneity on b-value.
The lower bound to the strength was 0.01 and the upper
bound varied between 0.05 and 1.0. Again, each point is the
average of five realizations and the error bars represent the
standard deviation. b-value increases as range of
heterogeneity increases.

average of five realizations and the error bars represent the
standard deviation. The fractal dimension for these cases was
1.6 and the loading was the same as above. The lower
strength bound was 0.01 in all cases but the upper bound
varied from 0.05 to 1.0. The b-value increases with
increasing range of heterogeneity.

Discussion

Our most general result is that nearest-neighbor cellular
automata with heterogeneous strength distributions produce
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power-law magnitude frequency relations, the hallmark of
self-organized criticality. This is important because the crust
is clearly heterogeneous and there is abundant evidence that
earthquakes are critical phenomena (e.g. power-law
magnitude frequency distributions, triggered events).

Of particular interest is that the b-value in our model
decreases with increasing fractal dimension. This
relationship suggests that the earthquake statistics of any
particular fault may depend on the statistics of the
heterogeneity. For example, a fault with a low fractal
dimension may have relatively fewer large events than a
fault with a higher dimension. We interpret this result in the
following way. As shown in figure 4a, a low fractal
dimension means that there are large coherent patches of
high strength. These patches act to inhibit rupture and
hence many events do not grow as large as they would have
had the patches not been present. By contrast, as shown in
figure 4b, a high fractal dimension means that these patches
are reduced or absent and hence large events are more likely.
It is interesting to note that the largest events occur in
models with the lowest fractal dimensions. The large
coherent patches in these low-dimensional models do not
rupture very often but when they do, they tend to fail as a
single unit, producing large events.

This interpretation is consistent with the observation
that b-value increases as heterogeneity range increases. For
the same fractal dimension, a greater range of heterogeneity
means that any given cell is more likely to have neighbors
significantly stronger than itself. These strong cells inhibit
rupture much as coherent high strength patches do.

These results may be applicable to faults such as the San

Figure 4. a) Strength distribution for one realization of D=1.6. Bright colors indicate areas of highest
strength. Pattern has large coherent high strength patches.
b) Strength distribution for D=2.6. Higher fractal dimension has only small patches of high strength
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Andreas. Regions with large asperities such as Parkfield
(Malin et al., 1989) might be expected to have a higher b-
value than fault segments lacking such coherent areas of
high strength. The results are also consistent with other
work (e.g. Ben-Zion and Rice, 1993) which has shown that
the behavior of earthquake faults is strongly controlled by
heterogeneity.
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