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ABSTRACT 
With the dawn of smart world infrastructures on a global scale, 
the need for fully autonomous operating systems and services has 
never been more urgent. A key aspect for such systems is the 
availability of relevant contextual information so that they can 
autonomously configure, adapt and optimize their behavior 
towards changing conditions. This is known as context or 
situation awareness, which is of fundamental importance for 
successful autonomic computing and services. However, 
acquiring relevant information from the real, virtual or 
operational environment is only the first step to facilitate such 
contextual awareness. Additional processing is required to  
pre-organize, correlate or simply reformat such data so that they 
are readily accessible as well as usable by a multitude of services. 
Within a distributed environment, this translates directly into a 
diverse network of knowledge, where individual views correspond 
to specific contexts and situations that are ultimately 
understandable yet manageable in real time. This paper, discusses 
a Knowledge Network (KN) approach that has been developed as 
part of an Autonomous Componentware toolkit, called  
ACE-Toolkit (Autonomic Communication Elements). The 
reference based KN framework provides the means for the  
ACE-Toolkit and its components to acquire a higher degree of 
contextual awareness where knowledge from various sources can 
be utilized efficiently at various levels of granularity. On the other 
hand the KN components themselves are realized as ACE’s thus 
taking full advantage of the autonomic features offered by the 
toolkit. 
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1. Introduction 
Smart environments are already a reality but exist often only in 
isolation, on a smaller scale and for a dedicated purpose, e.g. 
smart homes. However, latest advances in communication as well 
as in sensor technology will allow to (a) connect individual smart 
environments together; (b) drastically increase the use of sensors 
for various purposes and (c) monitor real as well as virtual 
environments in a pervasive fashion. Naturally, this will increase 
the amount of data to be processed but, at the same time, provide 
the required knowledge for services and components to acquire a 
higher degree of contextual awareness. Consequently, this has the 
potential to result in better Quality of Service with reduced costs 
to the service provider. Figure 1 depicts the relation between 
traditional and semantic environments and their usability with 
increased autonomic features. Undoubtedly, the usability of such 
systems will be increased through the provision of autonomic 
features. However, the complexity will also increase due to the 
increase in heterogeneous devices, their interactions between each 
other as well as the type of services that will be deployed on these 
environments. 

 
Figure 1: Usability vs. Complexity 

The formulation and provision of context specific information 
provides the means to reduce complexity by enabling individual 
services to be applied to dynamic and individual rather than static 
and pre-defined contexts. In consequence services are tailored 
towards specific needs that depend on a multitude of aspects along 
various dimensions, including, purpose, environment, time, etc. 
Based on [2] context can be described as follows: “context is any 
information that can be used to characterize the situation of an 

 



entity” and that can be considered as relevant to adapt/improve the 
interaction between such entities and its users. In addition to this,  
context-awareness can be seen as a prerequisite for services to 
improve quality and reliability via adaptability, e.g. by exploiting 
contextual information to self-monitor, self-configure,  
self-optimize, etc.  
The reminder of this paper is organized as follows. Section 2 
outlines the motivation behind knowledge networks, whereas the 
general framework is introduced in Section 3. The problem of 
knowledge querying and knowledge verification is discussed in 
Section 4 and Section 5 respectively. A prototype implementation 
is introduced in Section 6 before concluding remarks are given in 
Section 7. 

2. Motivations 
The general concept of knowledge networks is centred on four 
key principles: context-awareness, autonomicity, self-similarity, 
and semantic self-organization. While the principle of context -
awareness is at the very core of knowledge networks, the other 
three are equally important to the overall architecture. In 
particular, autonomic features will play an important role if 
knowledge networks would be applied on a global oriented 
environment, such as large-scale smart environments. As far as 
the principle of self-similarity is concerned, we consider that 
individual components of a knowledge network share the same 
interface whether they relate to direct knowledge sources or to 
more structured, already pre-organised “knowledge containers”. 
In other words, the access as well as the organisation of individual 
knowledge is performed by the same mechanism independent of 
the type, size or location of the knowledge. We consider the above 
properties as very important for representing, composing and 
evolving distributed knowledge in a robust and flexible way and 
most importantly to provide a light-weight framework. In 
particular, it will be interesting to explore how to structure a host 
of knowledge sources into scale-free, fully distributed networks of 
knowledge, so as to reflect the context they reflect and at the same 
time to support robust adaptive evolution thereof. Moreover, the 
study of such network structures could be of use to support the 
scalability of such structures and, possibly even more important, 
to better support scale-free composability as well as self-similar 
multi-level perception of knowledge at different scales of 
observation. In turn, applications and services can take direct 
advantage of such knowledge constructs, which may even 
organised not only semantically bit also along other dimension 
such as spatial, temporal or even along additional application-
specific dimensions. This obviously requires more advanced 
knowledge structures that dynamically incorporate required 
dimensions. 

 
Figure 2: Network of Networks 

As far as semantic self-organization is concerned, it is envisioned 
that knowledge sources are self-descriptive and as such provide 
relevant information that can be used directly or indirectly (e.g. 
via some sort of validation, conversion, translation, etc.) for 
organisational purposes. Generic self-organization algorithms may 
then be employed to discover and enact relations among these 
initially uncorrelated pieces of knowledge. The relations 
established could then be grouped into dedicated knowledge 
containers, which reflect knowledge clusters that are relevant to 
the context of the container they belong to. From the emerging 
network of such relations, it may then be possible to acquire new 
knowledge about facts and situations, which in turn can be 
published again into the scope of the KN, thus acquiring an 
introspective view about the knowledge embraced. As shown in 
Figure 2, dedicated networks of networks can be constructed in 
which knowledge is stored at the leaves and organised via its 
branches. 

 
Figure 3: Conceptual Layers of Knowledge Networks 

Simplified, a network of knowledge can be seen as a  
reference-based structured collection of knowledge atoms, 
containing contextual information at different levels of 
granularity, and built in order to promote the  
contextual-awareness of other systems and services.  Unlike in the 
“knowledge plane” approach [3], we do not consider KN’s as a 
heavyweight control plane for services, where to embed logics of 
application control and management. KN’s are designed to stay 
light-weight by only referencing other nodes but never duplicating 
their content. As such KN’s only embed logic of information 
management, and rather simple logic for their internal 
unsupervised maintenance. As shown in Figure 3, KN’s are the 
organizational layer, which connects the conceptually lower 
oriented data layer with the higher oriented service layer 
providing access to structured knowledge rather than raw data. 

3. Knowledge Network Framework 
As mentioned already, the objective of the knowledge network 
approach is to organize data in a way that makes it easier for a 
user to retrieve specific context and situation aware knowledge 
rather than raw data. The two base components that are utilized to 
construct knowledge networks are knowledge atoms, KA, and 
knowledge containers, KC. While the former facilitates generic 
access to the data the latter is solely concerned with the 
organization thereof. In theory, the knowledge network will be 
hierarchical, grouping KA’s based on their semantic meaning or 
other available dimensions. Each KC may then contain references 
to the set of KA’s it groups together. Alternatively, a container 
may also reference other containers, thus creating a hierarchical or 
network like architecture.  



 
Figure 4: Knowledge Network Architecture - Schematic 

This architecture has been depicted in Figure 4, which also 
highlights the three conceptual layers a knowledge network 
operates in as shown in Figure 3. In order to organize the 
knowledge based on their semantic description, three different 
methodologies can be used which are described as follows: 

• Bottom-Up through self-descriptive Knowledge Atoms: 
Constructing relations entirely form the semantics provided 
by the KA’s itself is the most efficient way as relevant 
relations can be generated upon knowledge registration. The 
obvious advantage of this method is that the resulting 
hierarchical or network like knowledge structures can be 
generated autonomously without any interference from the 
user. However, if the semantics provided by the data layer is 
incorrect or purposely falsified then the resulting knowledge 
structures are also incorrect. 

• Top-Bottom through existing ontology’s: For instance, if 
an ontology is known beforehand for a particular domain, 
then this ontology may be modelled via knowledge 
containers and declared static in a way that it may not be 
altered by internal self-organisation mechanisms. The 
semantics of KA’s may then be validated against these  
pre-generated knowledge structures and may only be 
included if deemed correct. While this renders the 
organisational space to be static it also ensures that 
knowledge can only be mapped into the existing structures 
thus avoiding the generation false relations. In addition, a 
user or application can directly specify the type and 
structure of the knowledge of interest. This allows for the 
generation of purpose build knowledge structures serving 
specific needs as well as specific contexts.  

• Mixed Construction and validation: In practice, 
individual relations or full scale ontology’s cannot always 
be provided for any scenario. Furthermore, different 

ontology’s may be required for different applications. Thus, 
generating KN’s dynamically via self-descriptive 
knowledge atoms is always preferable. Nevertheless, the 
resulting knowledge structures should be validated wherever 
possible in order to provide a continuing quality of service. 
Such a service can be performed at three different levels; (a) 
when creating a distinct relation, (b) as a background 
service that constantly compares existing and validated 
knowledge with the structures created and (c) at application 
level, where the knowledge consumer provides the 
ontology’s individual knowledge sources have to conform 
too in order to be included. 

<Semantics> 
 <Keyword>Weather.Wind Force</Keyword> 
 <Keyword>Europe.UK.Belfast</Keyword> 
 <Keyword>GPS[Standardised GPS Information]</Keyword> 
 <Keyword>metoffice.gov.uk</Keyword> 
</Semantics> 

Figure 5: Semantic Description - Example 
The semantics describing a knowledge source should incorporate 
individual keywords but also any relations among them. Thus, as 
depicted in Figure 5, a hierarchical namespace may be used that 
employs some form of delimiter to separate individual keywords 
yet maintaining their relation. Alternatively semantics may be 
represented in RDF thus allowing for more complex 
representations as well as a better understanding about the state of 
the knowledge resource. Constructing such relations from the 
bottom-up (that is from the data level) requires that that each atom 
is sufficiently self-descriptive to describe not only itself but also 
its relation to other concepts. For instance, a knowledge source 
representing the wind force @ location Belfast may provide a set 
of keywords as shown in Figure 5. Thus providing all necessary 
information to either link or generate respective ontology’s as 
shown in Figure 6. Note, that such an ontology is always shared, 
which means that no part of any given construct is created or used 



only for a single object but always available for all objects that are 
within the same organisational space. Thus, as shown, the 
ontology depicted for the example atom depicted may contain 
other concepts, e.g. the Weather.Wind.Direction created 
previously. Alternatively, KC’s may be added directly as 
visualised through the Europe.Italy object, which is not yet linked 
to any knowledge source. 

So far, the above has only dealt with static semantic concepts such 
as the location (provided semantically), the purpose and the 
domain of the knowledge to be mapped. However, other more 
dynamic concepts also have to be dealt with. Probably the best 
example of this is GPS data that provide the geographical location 
of a resource. When static they may be translated into a more 
meaningful and human understandable semantic representations 
such as addresses, town names etc. On the other hand when used 
for movable resources (e.g. mobile phones and RFID tags) such 
mapping is not always possible or desired. On the contrarily, GPS 
data can be used directly for geographical mapping purposes, 
distance calculations, clustering etc. For this to be used efficiently 

within knowledge networks such data should be linked to more 
active knowledge containers that utilise distinct algorithms that 
provide purpose based organisation.  This can be achieved 
dynamically by overloading the standard algorithm with any 
purpose built mechanism desired. Nevertheless, one should 
consider the fact that self-organisation can never be achieved 
spontaneously so that for highly volatile concepts successful 
organisation may not be possible due to the simple fact that it is 
already obsolete at the time of organisation. Finally, considering 
that KA’s as well as KC’s are fully independent computational 
entities, they may be hosted locally. For instance, a sensor could 
be referenced directly without any additional in-memory objects, 
whereas network nodes that have access to any number of 
resources, etc could be the host for individual KC’s. This fully 
distributed character would guarantee the lightweight knowledge 
structure desired as well as scalability as each knowledge object 
operates independently and as such can be independently 
accessed.  

 
Figure 6: Semantic Based Knowledge Organization 

4. Knowledge Querying 
Following the example depicted in the previous Section, a KN 
may comprise any number of KA’s that are organized based on 
various semantic concepts, which are in turn represented via 
individual KC’s. Assuming that this structure exists and is readily 
available, the question arises of how it can be efficiently queried 
for knowledge. There are a number of query languages that can be 
used to query XML, which is used to represent the knowledge that 
is published by individual KA’s. One possibility is to have two 
different phases to the querying process. The first phase is the 
search through the network to find the relevant knowledge 
sources. The second phase is to actually query the sources itself 
for specific constraints. This is appealing due to the fact that the 
search and the query process can be separated into individual 
tasks, which also means that different languages can be utilized 
for each process. The main drawback to this approach is that it is 
more centralized than distributed and so goes against an 
autonomic approach. An alternative approach would be to 
perform the query search and actual query execution 
simultaneously. That is that each KA provides its own query 
interface and as such will be queried individually. Here it is 
important that the query interface allows for heterogeneous query 
engines with respect to the query language used so that different 
knowledge sources can be queried. If we have a complex XML 
structures, then the query engine might be something like XQuery 
or Xcerpt. If we have a simple sensor, then an RDF based query 

language could be utilized directly. Thus each KA will receive a 
query request from a knowledge requester, convert it into a format 
suitable for its own query engine, execute it and then return the 
result. While the nature of this approach is more distributed and 
also less intensive with respect to network traffic it also requires 
more “intelligence” form the knowledge atoms itself, which is 
against the lightweight approach desired. An additional level of 
complexity is introduced when KA’s are queried in dependence of 
other KA’s. In this case a more centralized query mechanisms 
may be preferable. If using a select-from-where statement, the 
centralized and distributed approaches can be partially combined. 
The ‘where’ comparisons can be evaluated locally at KA’s that 
compare knowledge to exact values, e.g. ‘Temperature greater 
than 21 degrees’, whereas more complex evaluations are 
perfumed via a central query engine.  
The following depicts a scenario that indicates what the 
combination of both approaches would allow: Say we have a 
number of temperature sensors distributed over e.g. Belfast and 
we have a number of XML documents with knowledge on the 
buildings in Belfast and the people that work in them. A possible 
query could look like “Retrieve the temperature from buildings 
where people work who wear ties and eat cornflakes” or in SQL 
like format  

select Weather.Temperature, from Weather where 
Weather.Building in (select Buildings.Name from Buildings 
where Buildings.People in (select People.Name from People 



where People.Wear equals Ties and People.Eat equals 
Cornflakes)) 

If we enforce a nesting for processing then this could be done in 
individual stages. We first query the people, then retrieve the 
buildings and query that and then finally query the temperature 
sensors. While the most inner (equals) operations could be 
evaluated locally, that is in a distributed fashion, other operation 
such as the gathering of all building names could be done in a 
centralized fashion. Whatever way the querying is performed, the 
important aspect here is that the query is capable of reflecting a 
specific context or situation, which in turn is answered through 
the knowledge of the network. While XML processing would be 
desirable for a complete system in order to guarantee 
interoperability, it is not absolutely necessary. The select-from-
where statement that queries for simple values should suffice for 
most sensor based knowledge sources, which again fosters the 
lightweightness of the knowledge network.  

The above discussion has mainly concentrated on aspects that are 
concerned with the querying of KA’s rather than with the efficient 
identification of KA’s that are relevant to fulfill a specific query. 
This aspect, however, is important when considering that a KN 
may comprise very large numbers of KA’s. Hence, the 
optimization of the search process is vital for the response time of 
the query process. Simplified, when querying a network then the 
query process follows specific routes through the network in order 
to find relevant KA’s that satisfy the query. If the user is satisfied 
with the query result, then the knowledge network itself may be 
updated to reflect these pathways, which reflect successful 
knowledge retrieval. In this way, the network could be modified 
in an experience-based way that is based on its use rather than 
solely on its content. A relatively simple way to do this is the 
following: We note the nodes visited to answer a query and 
construct links between nodes commonly associated together. So 
if a user submits a query, the first part is constructed and a path 
through the network is navigated. The sources process the query 
and send the reply back through the network. The nodes that 
receive the reply, note that they have been used in processing this 
query. If the user then confirms that the query result is acceptable, 
these nodes then permanently update an internal list that stores 
references to other nodes that have been used to answer the query 
or any part thereof. This aspect has been further discussed in [5]. 

5. Knowledge Verification 
Equipping applications with the ability to adapt to different 
contexts and situations requires data about the applications’ 
environment. Data that is required to construct high level 
contextual information has to be sensed, measured, or derived 
before it can be used as an input for a context aware application. 
In the flow of this process errors can occur at several points. 
Defective hardware, misinterpreted data out of date data, or 
unforeseen circumstances may lead to invalid contexts, which in 
turn could lead to further problems for the service that uses such 
false contexts. For this reason it is necessary to include 
mechanism that are capable of verifying contextual data before 
they are used. Contextual data can be distinguished into low-level 
context and high-level context, where low-level context comprises 
data directly derived from sensors and high-level context is 
information that is inferred from low-level context. For example, 
the longitude and latitude of a GPS data set is low-level, whereas 
the interpretation of this data to a specific address is considered as 
high-level context. Two ways of context verification are possible 

with in the context of knowledge networks. Firstly, verification 
via reference patterns in which a context in question is compared 
to a number of references patters that has been previously 
collected and rated. Secondly, he correlation of individual 
contextual date with reference data that is also available via the 
network. For instance, a temperature sensor could be validated via 
neighboring sensors. While the former is more suitable for high-
level context verification the latter is favored for the verification 
of low-level context. 

6. Implementation 
In order to explore and validate the outlined knowledge network 
approach a prototype implementation has been developed as part 
of the CASCADAS1 project. The core components of knowledge 
networks (knowledge atoms and knowledge containers) have been 
realized as ACE’s (Autonomic Communication Element) via the 
ACE toolkit [4], which provides a platform for the development 
of autonomic services. As depicted in Figure 7, knowledge 
sources have the potential to self-register into the  
“ACE Universe”, which comprises any number of Knowledge 
containers that collectively reflect the knowledge network. The 
fact that individual objects (KA’s, KC’s or any other ACE object) 
may exist on different computational resources is irrelevant as this 
aspect is hidden form the user.  

 
Figure 7: Knowledge Network Realization 

Once registered, KA’s are organized based on their semantic 
description resulting in dynamic constructs that can be maintained 
and queried efficiently. Applications may query the network or 
once known, access the knowledge sources directly. A 
visualisation thereof is shown in Figure 8, which shown a small 
network where green nodes refer to distinct knowledge containers 
and white nodes to knowledge atoms. A tree like visualisation 
thereof is also shown on the left side. 

7. Conclusions & Future Work 
Self-organizing networks of knowledge is an important aspect for 
future autonomic services as well as for large-scale smart 
environments. The concept of knowledge networks may have the 
potential to bride the gap between these two areas so that services 

                                                                    
1 http://www.cascadas-project.org 



can become more contextual aware by profiting form the data that 
is made available through smart world infrastructures. On the 
other hand smart environments would also benefit through highly 
adaptive services that operate in a context aware way. 

Although promising, the developed prototype still has to be 
evaluated at a larger scale including great numbers of 
heterogeneous knowledge sources as well as different types of 
services that have different contextual requirements. Another 
aspects to be researched include the utilization of more diverse 
self-organizational algorithms that go beyond static semantic 
concepts. Adding predictive capabilities to the network itself is 
another challenging research direction. For instance, a given 
context reflected by the network may be observed and analyzed 
over time. This could allow for the prediction of individual 
aspects of this context or of the context as a whole, which in turn 
would allow for the detection of invalid or dangerous situations 

before they actually occur. Similar to this, flexible reasoning 
mechanisms would be highly desired in order correlate unrelated 
knowledge sources with each other which could then be utilized 
for e.g. knowledge verification purposes. Bio-inspired 
mechanisms, which incorporate concepts such as stigmergy, 
swarm intelligence and heartbeat signals offer additional 
perspectives that are relevant for the optimization and adaptation 
of knowledge structures that are complex in nature, highly 
distributed and often unrelated with each other or with the domain 
/situation they are used for. In theory, they have the potential to 
enable distinct optimization without the requirement for an 
intrinsic stimulus, which allows for independent and truly 
distributed optimisation procedures, which could help to make 
such systems not only more robust and reliable but also more 
efficient. 

 
Figure 8: Knowledge Network Visualization 

 

8. Acknowledgments:  
Work supported by the project CASCADAS (IST-027807), FET 
Program of the European Commission.  
(http://cascadas-project.org) 

9. References 
[1] M. Baumgarten N. Bicocchi, M. Mulvenna, F. Zambonelli, 

“Self-organizing Knowledge Networks for Smart World 
Infrastructures”, International Conference on Self-
organization in Multiagent Systems, Erfurt (D), 2006. 

[2] T. Buchholz, A. Kupper, S. Schiffers, “Quality of Context 
Information: What is it is and Why We Need It”, 10th HP-
OVUA Workshop, Geneva (CH), July 2003. 

[3] D. Clark, C. Partridge, C. Ramming, J. Wroclawski, “A 
Knowledge Plane for the Internet”, 2003 ACM SIGCOMM 
Conference, Karlsruhe (D), 2003. 

[4] https://sourceforge.net/projects/acetoolkit/ 
[5] Kieran Greer, Matthias Baumgarten, Chris Nugent, Maurice 

Mulvenna and Kevin Curran, (2008). Autonomous Querying 
for Knowledge Networks, The 5th International Conference 
on Autonomic and Trusted Computing (ATC-08), June 23 - 
25, Oslo, Norway 

 


