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Abstract

Artificial vision using computational models that can mimic biological vision
is an area of ongoing research. One of the main themes within this research
is the study of the retina and in particular, retinal ganglion cells which are
responsible for encoding the visual stimuli. A common approach to modelling
the internal processes of retinal ganglion cells is the use of a linear - non-linear
cascade model, which models the cell’s response using a linear filter followed
by a static non-linearity. However, the resulting model is generally restrictive
as it is often a poor estimator of the neuron’s response. In this paper we
present an alternative to the linear - non-linear model by modelling retinal
ganglion cells using a number of machine learning techniques which have a
proven track record for learning complex non-linearities in many different
domains. A comparison of the model predicted spike rate shows that the
machine learning models perform better than the standard linear - non-linear
approach in the case of temporal white noise stimuli.
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1. Introduction

Biological vision systems have been rigorously researched for more than
a century with the early studies of the retina, published by Cajal [1] in
1892, considered to be a milestone in the birth of the field of neuroscience
[2]. Some decades later it was discovered that the retina, which is located
at the back of the eye, is responsible for converting observed visual stimuli
into a form of temporal coding [3], known as spikes (or action potentials).
These spikes are then propagated via the optic nerve to the visual cortex
for higher level processing. Most of the major cell types in the vertebrate
retina have been identified [4, 5] although the exact role of many of these
cells and the specific encoding scheme used to transmit information remains
unclear [5]. Development of artificial vision systems using computational
models of the retina, particularly of retinal ganglion cells (RGCs) is an area
of ongoing research. There is a number of difficulties associated with this
modelling task, mainly related to three particular aspects; firstly, cells within
the retina are grouped into five distinct layers (see Figure 1), with two of these
layers responsible for complex lateral interconnections between the cell types
(Horizontal and Amacrine cells); secondly, many of these cells have complex
non-linearities and adaptation mechanisms that are yet to be understood;
thirdly, the specific encoding scheme used to transmit the information is not
fully understood. Due to these factors, the exact information abstraction
that takes place in progressing from the absorption of photons in the photo-
receptors to the encoding of spikes in the ganglion cells is still not fully
understood [5, 6], and thus modelling RGCs is a challenging task.

An early approach to developing computational models of the retina was
based on non-linear system identification techniques which are often used as
way of reverse engineering complex systems [8]. Previously they has been
used to understand the responses of auditory neurons in [8], retinal ganglion
cells in [9] and in [10], the Wiener theory of non-linear system identification
[11] was applied to study the underlying functional relationship between a
cell membrane potential and the resulting spiking response from RGCs of
a catfish. Following this study, the Wiener-Volterra method [12] has been
extensively used to model non-linear biological systems [13, 14, 15, 16, 17,
18, 19]; however a major drawback of the Wiener-Volterra approach is the
geometrically increasing computational complexity with the kernel order [20].
Moreover, the interpretation of higher order kernels is difficult.

Various block-structured [21] or modular models in the form of cascaded
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Figure 1: Diagram showing the various cells and structure of the retina [7]

or parallel configurations have been used to overcome the limitations of
Wiener-Volterra models. Cascaded modular models may take various forms
such as linear - non-linear (LN) [22], non-linear - linear (NL) [23], linear -
non-linear - linear (LNL) [14], etc. The LN model usually consists of a linear
filter module cascaded with a non-linear transformation module. Obtaining
the model parameters of an LN model with a single linear filter, the shape of
the filter and the static non-linearity can easily be achieved by a reverse cor-
relation analysis with a Gaussian white noise stimulus [24], making the LN
method a widely used approach for modelling RGCs. An important charac-
teristic observed from this modelling process is that many models illustrate
that there is significant non-linear processing taking place within a RGC and
its connected cells.

An alternative to system identification and cascaded modular approaches
is to use a machine learning based nonparametric regression algorithm. Pre-
vious research has shown that many machine learning algorithms can suc-
cessfully learn the underlying complex non-linearities in the data while gener-
ating an opaque model of the system in other domains [25, 26, 27]. Artificial
neural networks are examples of such regression algorithms used to model
biological aspects of vision systems. For example [28] used a multi-layer
feed-forward neural network with the backpropagation training algorithm to
model the non-linear responses of individual neurons in the visual cortex of
a cat generated by spatio-temporal random-bar stimuli. Similarly, [29] used
a multi-layer feed-forward neural network to model the responses of neurons
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in the visual cortex of a cynomolgus monkey using various complex artifi-
cial visual stimuli. Responses of neurons in the primary visual cortex of a
macaque monkey to natural image stimuli were modelled using a multi-layer
feed-forward neural network in [30] and using a Self-Organising Fuzzy Neural
Network (SOFNN), the behaviour of a salamander retinal ganglion cell was
accurately modelled in [27].

In this work, the relative performance of different machine learning tech-
niques in modelling RGCs is explored. Specifically, multilayer perceptron
(MLP) network, Bayesian regularised neural network (BRNN), non-linear
auto-regressive model with exogenous inputs (NARX) network, support vec-
tor regression (SVR) and k -nearest neighbour (kNN) regression are used to
model the RGCs. The performance of the developed machine learning mod-
els are compared with models developed using the standard LN technique
[24].

The outline of the paper is as follows. Section 2 introduces the different
computational modelling techniques used. Details of the electro-physiological
experiments and the different visual stimuli used in these experiments are
given in Section 3. Section 4 presents the results from the modelling experi-
ments along with a performance comparison of the developed models based
on these results with Section 5 discussing the results from the modelling
experiments and exploring future work.

2. Methods

2.1. Linear - non-linear(LN)

The standard approach for modelling an RGC is a cascaded linear - non-
linear (LN) technique [24]. This method, as outlined in Figure 2, separates
the model estimation into a cascaded linear filter and a non-linear function.
Initially, the input stimuli to the model is convolved with the linear filter to
get a linear estimate of the neurons response. The non-linear transformation
maps the linear estimate to a spike rate estimate.

The LN model, as depicted by Figure 2, involves only one linear filter, al-
though multiple linear filters are possible [31]. The linear filter is computed
by examining the spike triggered average (STA) of the RGCs response to
stimulus over a specific time window. It is defined as the average stimulus
preceding each spike, otherwise explained as the average stimulus which con-
tributed to the occurrence of a spike. This can be mathematically represented
as:
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Figure 2: Block diagram depicting the LN technique with single linear filter: the stimulus
is first passed through a linear filter to get a linear estimate, on which a static non-linear
transformation is applied to get the estimated spike rate

STA =

T∑
t=τ

xtft

T∑
t=τ

ft

(1)

where T is the total time period in which spikes are recorded, xt is the
sequence of stimulus intensity values within a temporal window of size τ
preceding a spike, and ft is the number of spikes recorded at time t. The
size of the temporal window is determined by examining the duration of the
average response and ascertaining when the stimulus intensity converges to
zero [24]. Illustrations of STAs are shown in Figure 3 where three example
STAs have been plotted for both an ON-type cell (Figure 3.a) and OFF-type
cell (Figure 3.b) which show the inherent variability across cells.

Figure 3: Illustration of computed STAs for a salamander RGC; a) ON-type cell and b)
OFF-type cell.

In this work, τ was identified as 700ms which, when binned in equal time
bins of 331

3
ms (the stimulus update rate), equates to 21 time bins (samples).
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After computing the linear filter, the next stage is the estimation of the non-
linear function. By examining the average spike count for equal or nearly
equal stimulus values [24] and plotting for each time point for the stimulus
presentation, a function may be fitted that best represents the non-linearity.
For RGCs, the static non-linearity is generally fitted well by a parameterised
form of cumulative normal density function [24], though other solutions may
also apply. It can be denoted by:

N(x) ≈ αC(βx+ y) (2)

where C is the cumulative normal density function, x is the linear estimate,
α is the maximum firing rate of the neuron, β is the sensitivity of the non-
linearity to the linear estimate and y is the maintained drive to the cell that
determines the spike rate in the absence of net visual stimulation. In order to
fit this non-linearity, appropriate values must be determined to fit the least
squared error for each of the α, β and y parameters to the data within the
graph of the average spike count per stimulus value.

2.2. Machine Learning Methods

As discussed in Section 2.1, each spike can be attributed to a set of stimuli
preceding the spike which, when averaged over all the spikes, is known as the
STA. This information is crucial in estimating the standard LN method as
this forms the linear filter, and thus these stimulus values that precede each
spike are also utilised within each of the machine learning methods. Figure
4 shows an overview of a generic machine learning method where x(t) is the
current value of the visual stimulus whilst x(t−1) to x(t−τ) are the previous
values in the time series up to the size of the window τ . These values act as
the inputs to the machine learning method f(x) which learns to predict the
output y(t) on the next time step.

Artificial neural networks (ANNs) offer a desirable solution for modelling
complex input-output relationships without assuming a priori function forms
of models. ANNs have been previously used to model biological aspects of the
vision system [28, 29, 30]. ANNs have an advantage over system identification
techniques and cascaded models as they have a fast and simple implementa-
tion. However, this advantage has to be balanced against the weakness that
the obtained mapping is opaque, and not easily analysed. Hence, such an
opaque ANN model of the neuron’s stimulus-response relationship becomes
less useful for understanding the underlying neuronal architecture and struc-
ture. Even so, we use such techniques to model neuronal behaviour with
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Figure 4: Overview of a generic machine learning method.

artificial visual scenes, and to represent the mapping between stimulus and
response due to their fast and simple implementation. Different neural net-
work techniques have been investigated in this work and successfully applied
to generate models of RGCs.

Multi-Layer Perceptron (MLP)

A multi-layer perceptron (MLP) is a feed-forward neural network (FFNN)
model that maps sets of input data onto a set of appropriate outputs and is
the most commonly used neural network in prediction tasks [26], [32]. An
MLP consists of multiple layers of nodes in a directed graph, with each layer
fully connected to the next one. The MLP commonly utilises a supervised
learning technique called backpropagation for training the network. Except
for the input nodes, each node is a neuron (or processing element) with a
activation function. Mathematically the MLP relates the output y(t) to the
input x(t) by:

y(t) = w0 +
σ∑
j=1

wjg
(
w0,j +

τ∑
i=1

wi,jxi(t)
)

(3)

where τ and σ are the number of input nodes and hidden nodes respectively
[33]. The weights wj and wi are referred to as connection weights, and
represent the tuneable parameters of the network. In this work, the activation
function g of the neurons in MLP is represented with a sigmoid function.

Bayesian Regularised Neural Network (BRNN)

A Bayesian regularised neural network (BRNN) is an extension of the
common MLP. A potential issue in an MLP is the high probability of overfit-
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ting and overtraining which leads to poor generalisation of the network. In a
BRNN, in order to reduce the potential overfitting, a mathematical technique
known as Bayesian regularisation is incorporated into the training process.
Generally, the goal of each training step of an MLP is to minimise the sum
of squared errors between the model output and the target output. Bayesian
regularisation modifies this to:

F (α, β) = βED + αEw (4)

where F is the objective function, ED is the sum of squared errors, Ew is
the sum of square of network weights, and α and β are objective function
parameters [34]. In a BRNN the network weights are considered to be random
variables and thus their density function is written according to the Bayes’
rule as:

P (w|D,α, β,M) =
P (D|w, β,M)P (w|α,M)

P (D|α, β,M)
=

1

ZF (α,β)

exp(−F (α, β)) (5)

where w is the vector of network weights, D represents the data vector, M
is the neural network model being used and ZF (α,β) is a normalisation factor
as described by [35].

In Bayesian regularized networks, overly complex models are penalised,
as unnecessary linkage weights are effectively driven to zero. The network
will calculate and train on the nontrivial weights, also known as the effective
number of parameters, which will converge to a constant as the network
grows [36].

NARX

The non-linear auto-regressive model with exogenous inputs (NARX) is
a non-linear model estimation technique, which models a dynamic non-linear
system that expresses the present value of the output as a non-linear combi-
nation of previous and present values of the input and previous values of the
output. This model can be represented mathematically as:

y(t+ 1) = f [y(t), .., y(t− τy + 1), x(t− k),

x(t− k + 1), ..., x(t− τx − k + 1)],
(6)

where f is the non-linear mapping function, x(t) and y(t) respectively denote
the inputs and outputs of the model at time t, while τx and τy are the order of
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input and output memories respectively and the parameter k is a delay term
[37, 38]. The function f is a non-linear function, such as a neural network as
used here or a polynomial or other network. In a NARX neural network, the
mapping function f is approximated using a standard MLP. Thus a NARX
network can be considered as a combination of a time delay neural network
(TDNN) and a recurrent neural network (RNN).

Support Vector Regression (SVR)

Support vector regression (SVR) [39] is an extension of the popular sup-
port vector machine (SVM) classifier to regression problems. The SVR trans-
forms the original training data to a higher dimensional feature space F ,
through some non-linear transformation function φ. A linear regression in
the higher dimension space F corresponds to a non-linear regression in the
low dimensional input space Rn. This is expressed mathematically as:

φ : Rn → F,w ∈ F, (7)

f(x) = 〈w, φ(x)〉+ b, (8)

where the dot product operator is denoted by 〈., .〉, w represents the flatness
of function f and b is a threshold. During the training process, a function
f(x) that results in a maximum deviation from the obtained targets yi and
minimum value of w simultaneously is found. This optimisation problem can
be written as:

minimise
1

2
||w||2 + C

l∑
i=1

ξi + ξ∗i (9)

subject to

{ yi − 〈w, xi〉 − b ≤ ε+ ξi,
〈w, xi〉+ b− yi ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0,

(10)

where C represents the trade-off between flatness and the amount up to
which deviations larger than ε are tolerated. The slack variables (ξi, ξ

∗
i ) are

introduced to make the optimisation feasible. The dual of this problem is
easily solved using saddle point conditions via a kernel function K(xi, x).
The solution of the dual problem is given in [40] as:
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w =
l∑

i=1

(αi − α∗
i )xi (11)

and

f(x) =
l∑

i=1

(αi − α∗
i )xiK(xi, x) + b (12)

where (αi, α
∗
i ≥ 0) are Lagrange multipliers. Using this kernel trick enables

us to avoid explicitly calculating the original transformation function φ. In
our experiments a radial basis kernel is used.

k-Nearest Neighbour (kNN)

The k-nearest neighbours algorithm (kNN) [41] is a commonly used al-
gorithm for classification and regression based on a similarity measure (e.g.
distance functions) in a feature space. The kNN algorithm learns through
the localisation information of the training objects. In classification appli-
cations, the kNN algorithm classifies an input object into a class based on
a majority vote by its k closest neighbours. When used for regression, the
kNN algorithm predicts the value of the input, as the average of its nearest k
neighbours. In our implementation which is based on regression, the value of
k was determined using five-fold cross validation with the Euclidean distance
as the distance measure.

3. Experimental Setup

In the work presented here we develop a number of computational gan-
glion cell models using the different techniques discussed above. Neuronal
recordings obtained from isolated retinas are used to obtain the models. Dur-
ing the physiological experiments retinas from dark-adapted adult axolotl
salamander (Ambystoma mexicanum) [42] were isolated and placed ganglion-
cell-side-down on a planar multi-electrode array and submersed in a chemical
solution to prolong extracellular recordings. The isolated retina was visually
stimulated by projecting the screen of a gamma-corrected miniature organic
light-emitting diode (OLED) monitor onto the photoreceptors. The stimulus
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was updated at a rate of 30Hz, meaning a new visual stimulus pattern was
presented approximately every 33.33ms. Action potentials were recorded
from the RGCs using a multi-electrode array and sampled at a frequency
of 10kHz with spike times measured with respect to the beginning of the
stimulus presentation.

3.1. Visual Stimulus

The visual stimuli used in these experiments were generated using Gaus-
sian white noise which is stochastic and highly interleaved, and comprised
of a wide range of visual inputs. Two types of artificial non-repeated visual
stimulus sequences were generated. In the first sequence, new intensity val-
ues were drawn randomly from a Gaussian distribution at a rate of 30Hz and
all pixels in the field were illuminated with that light intensity. This tem-
poral stimulus sequence (Figure 5.a) is referred to as full-field flicker (FFF)
in the remainder of this paper. In the second stimulus sequence, stimulus
intensities were Gaussian distributed in both space and time and resulted in
a sequence of binary checker board patterns. This spatio-temporal stimulus
sequence (Figure 5.b) is referred to as checker-board flicker (CBF) in the
remainder of this paper. The CBF has increased complexity compared with
the FFF because of the spatial component.

Figure 5: Gaussian white noise visual stimulus sequences: (a) full-field flicker (FFF) (b)
checker-board flicker (CBF)
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3.2. Data Pre-processing

The main aim of the data pre-processing stage is to manipulate the data
to obtain a regression dataset, i.e., input-output dataset corresponding to
the visual stimulus – neural response. The regression dataset can then be
used to develop and evaluate computational models of the RGCs.

Figure 6: Data pre-processing of FFF dataset: (a) stimulus intensity, (b) sampled stimulus
intensity, (c) recorded neuronal spikes and (d) spikes binned at 30Hz

The data from the electro-physiological experiments with FFF stimuli
included 54000 samples of stimulus and spike recordings for a timespan of
nearly 30 minutes. Each sample corresponds to a new full-field stimulus,
initially recorded at 10 kHz and binned at 30Hz (i.e., every 33.33ms) to
correspond to the update rate of the visual stimulus. As the stimulus has
uniform intensity across all pixels, this intensity value was chosen to be the
model input. Using this method, a continuous valued single input – single
output dataset was obtained. Figure 6.a - Figure 6.b show examples of the
original and sampled sequences of the stimulus intensities, and Figure 6.c
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- Figure 6.d show the corresponding original and binned sequences of the
neural spike recordings from an RGC for a 2500ms presentation of stimuli.
Among the total number of samples used, 80% (43,200 samples) were used
for constructing a training dataset and the remaining 20% (10,800 samples)
of unseen data were used for constructing a testing dataset.

When using CBF stimuli, it is important to identify the stimulus values
that contribute to the RGC eliciting a spike i.e. identify only those stimulus
values that fall within the cells RF and contribute to that cell eliciting a
spike rather than using all stimulus values. To determine the location and
shape of the RF for each cell, reverse correlation [43] (also known as spike
triggered averaging) is used; the RGC is stimulated with CBF stimuli, cell
activations are recorded and subsequently used to calculate the STA. The
spatial component of the RF is then isolated across time using Singular Value
Decomposition and fitted with a 2D Gaussian function that approximates its
size and shape [44].

Figure 7 shows the various stages of the data pre-processing after the RF
has been defined for the various stimulus values to be extracted from the
RF region. Pertinent CBF pixel intensities located either inside, or on the
border of the cell’s RF region were first identified as shown in Figure 7.b and
extracted. The local stimulus for each cell was then weighted using a 2D
Gaussian filter (Figure 7.c) to emulate the visual stimulus perceived by the
ganglion cells [45]. The mean of the weighted pixel intensities (Figure 7.d) for
each cell’s RF region was calculated and used as input to the computational
models. The data for the modelling experiments using CBF included 64500
samples of stimulus and spike recordings for a timespan of approximately 36
minutes. Each sample corresponds to a new checker-board stimulus, i.e. in
every 33.33ms. Among these 80% (51,600 samples) was used for training and
the remaining 20% (12,900 samples) was used for testing.

3.3. Overview of Modelling Experiments

In the most basic classification, a ganglion cell may be identified as an
ON, OFF, OFF-ON or ON-OFF cell depending on its response to varia-
tions in light intensity [46]. Classifications which identify these types and
subtypes are possible based on the shapes of the STA [47, 48] or on charac-
teristic features detected in spike triggered covariance (STC) analysis [49]. In
this work, the former case is utilised for both temporal and spatio-temporal
stimuli. Four ganglion cells (Cell-A, Cell-B, Cell-C, and Cell-D), from a total
of 36 cells from the same recording session, were selected as representatives
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Figure 7: Pre-processing step which shows how the local stimulus pertaining to a cells
receptive field is weighted with a 2D Gaussian filter: (a) binary checker-board pattern
with an RGC’s RF boundary marked, (b) pixel intensities within the cell’s RF region are
extracted, (c) example of 2D Gaussian used to weight the stimulus intensities and (d)
weighted intensities of the local stimulus.
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of different types of RGCs and used for the development of the computation
models presented in this paper.

Figure 8: Spike triggered averages of the selected ganglion cells: (a) using the neural
recordings with FFF stimulus and (b) using neural recordings with CBF stimulus.

Figure 8 shows the STAs of the selected RGCs obtained using the neuronal
recordings with FFF and with CBF stimuli. Although alternative interpreta-
tions are possible from the shape of these STAs, here we refer to Cell-A and
Cell-D as ON-type cells, and Cell-B and Cell-C as OFF-type cells. The STAs
of the cells in Figure 8 have a span of 21 samples corresponding to 700ms.
To utilise this information, the computational models were presented with
21 lagged values of the stimulus time series to correlate with the 21 samples
in the STA. Computational models of RGCs were then developed using the
LN and machine learning techniques with the input-output datasets obtained
after the data pre-processing stage discussed in Section 3.2. Spike rate pre-
diction performances of the developed models for the FFF and CBF datasets
are discussed in Sections 4.1 and 4.2 respectively.

4. Results

All models were trained to predict the recorded cell’s spike count, binned
at the stimulus update rate. The models using the LN technique were de-
veloped with their STAs (calculated using FFF stimuli, Figure 8.a) as the
linear filter and the non-linearity was approximated using a parameterised
cumulative normal density function (2) between the linear estimate (output
of the linear filter) and the target (i.e. actual) spike rate. An example of the
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non-linearity fitting between the linear estimate and the spike rate for Cell-B
is shown in Figure 9 where the cell demonstrated a saturating non-linearity.

Figure 9: Non-linearity fitting between the linear estimate and the target spike count for
Cell-B using FFF stimulus. The markers show the mean spike rate and the error bars show
the standard deviation. The dashed line shows the non-linearity fitted with cumulative
normal density function.

4.1. Modelling of RGCs stimulated with FFF

Prediction accuracy in terms of root mean square error (RMSE) between
the actual cell’s spike rate and the model predicted spike rate is used to mea-
sure and compare the performance of all the presented models. The RMSE
values for the computational models of the ON-type cells are given in Ta-
ble 1. For both the ON-type cells, the models developed using the SVR and
BRNN algorithms outperformed the other techniques for training and testing
respectively. In general, the SVR, BRNN and MLP algorithms outperform
the standard LN approach for both the ON-type cells. The RMSE values of
the models for the OFF-type cells are given in Table 2. Again, the models
developed using the SVR and BRNN algorithms outperform the other tech-
niques respectively for the training and testing samples of Cell-B, and the
models developed using MLP and NARX algorithms outperform the other
models for the training and testing samples of Cell-C. In general, the MLP
and NARX algorithms perform better than the standard LN approach for
both the OFF-type cells.
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Table 1: RMSE values for ON-type cells using FFF stimuli

Method
Cell-A Cell-D

Training Testing Training Testing
LN 0.568 0.534 0.515 0.509
MLP 0.502 0.481 0.468 0.468
BRNN 0.461 0.460 0.439 0.446
NARX 0.700 0.687 0.855 0.886
SVR 0.436 0.526 0.430 0.520
kNN 0.545 0.536 0.507 0.521

Table 2: RMSE values for OFF-type cells using FFF stimuli

Method
Cell-B Cell-C

Training Testing Training Testing
LN 0.175 0.175 0.152 0.151
MLP 0.166 0.168 0.149 0.151
BRNN 0.159 0.163 0.154 0.155
NARX 0.170 0.174 0.151 0.149
SVR 0.156 0.201 0.159 0.181
kNN 0.182 0.194 0.168 0.176
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Plots representing the BRNN model prediction and computed neuronal
spike rate for Cell-A using a randomly selected time window of duration 30s
(900 samples) are shown in Figure 10. The BRNN was selected to illustrate
model fit as it was one of the best performing algorithms in terms of RMSE
based on results from Table 1 and Table 2, and similarly Cell-A was selected
as it elicited more spikes than the other modelled cells. The target and
predicted spike rates for the training samples are shown in Figure 10.a, while
the error histogram for the same period is shown in Figure 10.b. Similarly,
the spike rates and error histograms for the testing samples are shown in
Figure 10.c and Figure 10.d respectively. It can be seen from Figure 10.a
and Figure 10.c that the BRNN model generally predicts the cell’s temporal
response and spike rates. The error histograms in Figure 10.b and Figure 10.d
show that the majority of the prediction error falls within ±0.5 spikes/bin.

4.2. Modelling of RGCs stimulated with CBF

When using the CBF stimuli the recorded neuronal response illustrates
that the ON-type cells produced more spikes (Cell-A: 3831, Cell-D: 3615)
than the OFF-type cells (Cell-B: 2965, Cell-C: 1271) within the same record-
ing period. All cells had a minimum spike rate of zero spikes/bin. Both the
ON-type cells (Cell-A and Cell-D) had a maximum spike rate of five spikes
per bin using CBF. Among the OFF-type cells, the maximum spike rate for
Cell-B was one spike/bin and that for Cell-C was three spikes per bin.

The modelling process used for the CBF stimuli is similar to that used
for the FFF stimuli except that the stimulus values within the cell’s RF are
extracted and averaged in the pre-processing stage (see Section 3.2). All
models were trained to predict the cell’s recorded spike counts, binned at the
stimulus update frequency. The models developed using the LN technique
were developed with their STAs (calculated using CBF stimuli, Figure 8.b)
as the linear filter and the non-linearity was estimated using the cumulative
normal density function (2) to transform the linear estimate (output of the
linear filter) to the target spike rate. An example of the non-linearity for
Cell-B is shown in Figure 11 where the cell demonstrates a threshold non-
linearity.

The RMSE values comparing the models of the ON-type cells are given
in Table 3 and those for the OFF-type cells are given in Table 4. In the
case of the ON-type cells, the SVR and MLP algorithms perform better than
the other algorithms for both training and testing respectively. Among the
OFF-type cells, the SVR algorithm performs best considering the training
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Figure 10: Computed neuronal spike rate responses of Cell-A (OFF-type cell) vs. model
predicted responses of the fitted BRNN model for randomly selected 900 samples (cor-
responding to 30s time window) of both training and testing sets (FFF Stimulus). (a)
Prediction results and (b) error histogram for the training samples. (c) Prediction results
and (d) error histogram for the testing samples.

dataset and the LN, MLP, BRNN and NARX algorithms perform equally
as well as the LN method for Cell-B, whilst the NARX algorithm performs
better than the LN technique for Cell-C using the testing dataset.

Overall, considering the CBF stimuli, although the MLP and BRNN mod-
els perform marginally better than the LN approach across all four RGCs
the performance improvement is not as apparent as that observed from the
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Figure 11: Non-linearity fitting between the linear estimate and the target spike count
for Cell-B using CBF stimulus. The green markers show the mean spike rate and the
error bars show the standard deviation. The red line shows the non-linearity fitted with
cumulative normal distribution function.

Table 3: RMSE values for ON-type cells using CBF stimuli

Method
Cell-A Cell-D

Training Testing Training Testing
LN 0.331 0.336 0.416 0.376
MLP 0.329 0.334 0.413 0.375
BRNN 0.330 0.335 0.413 0.376
NARX 0.334 0.339 0.506 0.481
SVR 0.292 0.344 0.377 0.392
kNN 0.324 0.346 0.407 0.396

20



Table 4: RMSE values for OFF-type cells using CBF stimuli

Method
Cell-B Cell-C

Training Testing Training Testing
LN 0.203 0.198 0.150 0.145
MLP 0.202 0.198 0.146 0.144
BRNN 0.202 0.198 0.147 0.144
NARX 0.202 0.198 0.146 0.143
SVR 0.173 0.205 0.134 0.147
kNN 0.199 0.205 0.145 0.148

models developed for the FFF stimulus (see Table 1 and Table 2). Again,
similar to the modelling results with the FFF stimulus, the difference in the
range of RMSE values between the ON-type cells and OFF-type cells is due
to the difference in the number of spikes elicited by the specific RGC type.

Plots representing the MLP model prediction and computed neuronal
spike rate for Cell-A considering a randomly selected time window of dura-
tion 30s (900 samples) for both the training and testing samples are shown
in Figure 12. The MLP was selected as it is one of the best performing al-
gorithms for the testing samples and for visual representation of the model
performance Cell-A is selected as it elicited more spikes than the other cells.
Figure 10.a and Figure 10.c show both predicted and target spike rates for
the training and testing samples respectively. Figure 10.b and Figure 10.d
respectively show the prediction error histogram for the training and test-
ing samples from the same period. The MLP model was able to estimate
the temporal spike behaviour correctly and most of the prediction error falls
within ±0.5 spikes/bin, however the actual number of spikes predicted fails
to correctly match the binned spike rate for the cell in question. A compar-
ison between Figure 10 and Figure 12 shows that the spike rate predictions
are better approximated in the case of the FFF stimulus than those obtained
for the CBF stimulus. One possible reason for this behaviour is the spatial
variations within the CBF data. Compared with the FFF stimulus which
contains uniform intensity, the data extracted from the RF region of the
CBF is averaged as a representative value. This averaging process may not
account for non-linear processing that occurs within subunits of the cell re-
sulting in reduced model accuracy thereby explaining the different predicted
neural response with different stimuli. Furthermore, due to the way the CBF
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Figure 12: Computed neuronal spike rate responses of Cell-A (OFF-type cell) vs. model
predicted responses of the fitted MLP model for randomly selected 900 samples (corre-
sponding to 30s time window) of both training and testing sets (CBF Stimulus). (a)
Prediction results and (b) error histogram for the training samples. (c) Prediction results
and (d) error histogram for the testing samples.

data is processed, the computational models cannot learn any underlying re-
lations within the spatial information. One approach would be to include all
the information within the RF region rather than an averaged representative
value. A major constraint to this however is the dimensionality of the stim-
ulus data, which would increase exponentially and correspondingly increases
the computational complexities.
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5. Discussion and Future Work

Modelling biological visual systems is difficult due to insufficient knowl-
edge about the internal components and their organisation, and the com-
plexity of the interactions within the system. The standard LN approach
derives computational models of visual neurons using physiological experi-
mental data which are quantitatively fitted through an input-output analysis.
Owing to the non-linear processing within RGCs in this paper we explore
the use of machine learning techniques for modelling such cells, including
the complex non-linearities. Specifically, we use a number of different ma-
chine learning based regression algorithms (MLP, BRNN, NARX, SVR and
kNN) to develop computational stimulus-response models of different types
of RGCs using different visual stimuli. For the purpose of performance com-
parison, the RGCs were also modelled using the standard LN technique. In
order to observe how the model performance varies depending on the type
of RGCs we present results from four ganglion cells – two ON-type cells and
two OFF-type cells.

Many of the explored machine learning algorithms outperform the stan-
dard LN approach in predicting the RGCs response when stimulated with
either FFF or CBF stimuli. The improved accuracy of the machine learning
model’s predicted spike rate when compared with the LN technique clearly
demonstrated when considering the FFF stimuli. However, the machine
learning models only performed on-par or marginally better than the LN
technique when considering the CBF stimuli. This variation in performance
was observed for both types of RGCs (ON-type cells and OFF-type cells)
modelled in the experiments presented here. One possible reason for this
reduction in performance when the RGCs are stimulated with CBF stimuli
is that the models ignore the spatial variations present in the CBF. This is
resultant of collating all pixel information with the RF region and taking the
mean intensity as the input. This means that any importance based on the
configuration of individual checkers within the RF is lost. To improve this
result, we would need to consider some additional inputs to the model which
account for spatial variance in addition to temporal variance. However, by
considering all pixel intensities from the receptive field region of the image,
the increased complexity would result in a huge computational processing
cost thus a balance between accuracy and complexity must be sought which
will be the next stages of this work.
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