

Hardware acceleration of de novo genome assembly

Varma, B. S. C., Paul, K., M, B., & Lavenier, D. (2017). Hardware acceleration of de novo genome assembly.
International Journal of Embedded Systems, 9(1), 74-89. Advance online publication.
https://doi.org/10.1504/IJES.2017.081729

Link to publication record in Ulster University Research Portal

Publication Status:
Published online: 21/01/2017

DOI:
10.1504/IJES.2017.081729

Document Version
Author Accepted version

General rights
Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright
owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these
rights.

Take down policy
The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been
made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in
the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.

Download date: 17/04/2024

https://doi.org/10.1504/IJES.2017.081729
https://pure.ulster.ac.uk/en/publications/3330d821-7348-4809-8b32-6f932c4f0bd6
https://doi.org/10.1504/IJES.2017.081729

Int. J. Embedded Systems, Vol. X, No. Y, 200x 1

Copyright © 20XX Inderscience Enterprises Ltd.

Hardware acceleration of de novo genome assembly

B. Sharat Chandra Varma*
Department of Electrical and Electronic Engineering,
The University of Hong Kong, Hong Kong
Email: varma@hku.hk
*Corresponding author

Kolin Paul and M. Balakrishnan
Department of Computer Science and Engineering,
Indian Institute of Technology Delhi,
110016, India
Email: kolin@cse.iitd.ac.in
Email: mbala@cse.iitd.ac.in

Dominique Lavenier
IRISA/INRIA,
35042 Rennes, France
Email: lavenier@irisa.fr

Abstract: The cost of genome assembly has gone down drastically with the advent of next
generation sequencing technologies. These new sequencing technologies produce large amounts
of DNA fragments. Software programs are used to construct the genome from these DNA
fragments. The assembly programs take significant amount of time to execute. To reduce the
execution time, these programs are being parallelised to take advantage of many cores available
in present day processor chips. Further, hardware accelerators have been developed which when
used along with processors speed up the execution. Velvet is a commonly used software for
de novo assembly. We propose a novel method to reduce the overall time of assembly by using
FPGAs. In this method, we perform pre-processing of these short reads on FPGAs and process
the output using Velvet to reduce the overall time for assembly. We show that using our
technique we can get significant speed-ups.

Keywords: FPGA; acceleration; next generation sequencing assembly; bioinformatics.

Reference to this paper should be made as follows: Varma, B.S.C., Paul, K., Balakrishnan, M.
and Lavenier, D. (xxxx) ‘Hardware acceleration of de novo genome assembly’, Int. J. Embedded
Systems, Vol. X, No. Y, pp.xxx–xxx.

Biographical notes: B. Sharat Chandra Varma is a Postdoctoral Research Fellow at the
Department of Electronic and Electric Engineering, The University of Hong Kong. He completed
his PhD from Indian Institute of Technology Delhi, India. He holds a Masters in VLSICAD from
Manipal University and Bachelors in Electronics and Communications Engineering from
Visvesvaraya Technological University. He previously worked at QuickLogic India Pvt. Ltd.
where he developed EDA tools for QuickLogic FPGAs. His research interests include
hardware-software co-design, FPGA architecture, FPGA-based acceleration and computer
architecture.

Kolin Paul is an Associate Professor in the Department of Computer Science and Engineering at
IIT Delhi India. He received his BE in Electronics and Telecommunication Engineering from
NIT Silchar in 1992 and PhD in Computer Science in 2002 from BE College (DU), Shibpore.
During 2002 to 2003, he did his postdoctoral studies at Colorado State University, Fort Collins,
USA. He has previously worked at IBM Software Labs. His last appointment was as a Lecturer
in the Department of Computer Science at the University of Bristol, UK. His research interests
are in understanding high performance architectures and compilation systems. In particular, he
works in the area of adaptive/reconfigurable computing trying to understand its use and
implications in embedded systems.

M. Balakrishnan is a Professor in the Department of Computer Science and Engineering at I.I.T.
Delhi. He received his Undergraduate degree from BITS Pilani in 1977 and PhD degree from IIT
Delhi in 1985. For the last 28 years, he is involved in teaching and research in the areas of
digital systems design, EDA and embedded systems. He has published nearly 75 papers in

2 B.S.C. Varma et al.

leading journals and conferences. Further, he has held visiting positions in universities in
Germany, USA and Canada. He has been the HOD of CSE, Dean of Post Graduate Studies and
Research and Deputy Director (Faculty) at IIT Delhi. His research interests are in system level
synthesis and design exploration tools, hardware accelerators and embedded systems. His other
major interests are related to development of affordable mobility and education aids for the
visually impaired as well as higher education Institutions initiatives for supporting research.

Dominique Lavenier is a senior CNRS (French National Center for Scientific Research)
researcher. He is currently leading the GenScale bioinformatics team at IRISA/INRIA, Rennes.
He was the recipient of the ‘Mdaille de Bronze’ of the French Council for Research CNRS in
1992, and received the French Cray Prize in 1996 in algorithm, architecture, and
micro-electronic. From August 1999 to August 2000, he has been working in the
Nonproliferation and International Security Division at the Los Alamos National Laboratory,
NM, USA. His research interests include HPC, parallel architecture, GPU computing
bioinformatics, structural biology and the management of genomic data coming from next
generation sequencing technologies.

This paper is a revised and expanded version of a paper entitled ‘FAssem: FPGA based
acceleration of de novo genome assembly’ presented at the IEEE 21st Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), Seattle, USA,
28–30 April 2013.

1 Introduction

The basic building block of all organisms is the cell. All the
cells (irrespective of the size of organism) have a nucleus
which carries a genetic material known as deoxyribonucleic
acid (DNA). DNA holds the hereditary information and is
responsible for the controlling and functioning of the
organism. DNA is made up of four bases: adenine (A),
guanine (G), cytosine (C), and thymine (T). Adenosine (A)
pairs with thymine (T), and cytosine (C) pairs with guanine
(G) forming base pairs (bp). This pairing is due to weak
hydrogen bonding and is the basis for DNA replication. A
segment of a DNA molecule can be written using first letter
of the bases it contains (e.g., …TACGTAG…). Genes,
which are made up of DNA store information needed for
making proteins useful for the life of the organism. The
complete set of all genes along with non-coding DNA in an
organism is called a genome. The study of genomes of
various organisms is known as genomics. It has a lot of
applications in medicine, biotechnology, anthropology,
forensics and synthetic biology. Also, comparative study of
different genomes is helpful for evolutionary studies.
Increasingly, genomics is also being used to study the
contribution of genes in many diseases and is aiding in
the development of personalised drugs. Hence, genome
construction is very important, which helps considerably in
the study of various biological processes in an organism.

DNA sequencing technology helps in generating the
data needed for construction of genomes. Recently, next
generation sequencing (NGS) platforms are being used for
DNA sequencing. These platforms generate short fragments
called ‘reads’ of length ranging from 35 to few hundreds of
base-pairs. These reads are part of a large genome
containing millions of base-pairs (the size of the human
genome = 3 × 109 bp). The NGS platforms generate large
amounts of accurate data at very low cost and at a greater
speed when compared to older platforms (Nagarajan and
Pop, 2013).

The large amount of data has posed many challenges for
computer scientists who develop softwares to analyse these
data. New algorithms and data structures have been
proposed to speed-up the analysis. Databases have been
created and statistical analysis programs have been
developed for retrieving specific information from this data.
Sequence assembly is a computational biology problem
where the reads generated from the NGS machine are used
to build the whole genome. An example of assembly is
shown in Figure 1. A biological sample is preprocessed and
given to a sequencing machine, which generates a set of
short reads. These short reads are assembled to construct the
genome. The ‘T’ in the read CTGTGTGTT, is an error as
the exact match to the genome at that position was supposed
to be ‘C’. The error could be identified as the frequency of
occurrence of ‘C’ at that position is more than that of ‘T’.
The error can occur during the sequencing process by the
sequencing machine. Error can also occur while assembling
the genome from the short reads, where the read is falsely
mapped to a particular location of the genome. Due to these
errors, genome assembly problem is more difficult to
solve than the well-studied shortest superstring problem
(Nagarajan and Pop, 2013).

Figure 1 NGS assembly: the DNA sample is given to
sequencer, which generates read-set (see online
version for colours)

Note: The read-set is processed in CPUS to generate contigs.

 Hardware acceleration of de novo genome assembly 3

Clearly like most of the bioinformatics applications, NGS
assembly is also data dominated. Even though compute
infrastructure ranging from server racks to cloud farms exist
for solving these problems, the time taken is enormous. For
example, assembly of human genome using PASHA
software took around 21 hours on a 8-core workstation with
72 GB memory (Liu et al., 2011).

Hardware accelerators like GPU and FPGAs are used
along with processors to reduce this execution time by
running the program on multiple computation units in
parallel (Lin and Lin, 2014; Okuyama et al., 2012; Halstead
et al., 2014; Marino and Li, 2014). Some bioinformatics
applications along with assembly programs have been
accelerated by FPGA-based accelerators. They have shown
significant speedups (Che et al., 2008).

De novo assembly is a type of assembly process where
genome is constructed without using a reference genome. It
is the only way to construct a genome if the reference
genome does not exist. As the shorter reads have less
overlap information, the reads are generated with much
more coverage in order to construct the genome. The
overlap information from the reads are used to construct the
contiguous consensus sequences known as contigs. The
genome is constructed using these constructed contigs.

Two graph-based methods used for de novo assembly
are the overlap layout consensus (OLC) and de Bruijn
graph. In this paper, we propose a hybrid approach where
we generate the overlap and layout using the OLC technique
and build the consensus using a de Bruijn method. The key
innovation is to use a (parallel) hardware implementation
to remove the ‘redundancy’ in the input data and use
state-of-the-art highly computationally intensive de Bruijn
graph-based Velvet software (Zerbino and Birney, 2008) to
build the consensus sequence.

Figure 2 Velvet flow and FPGA-based approach, (a) Velvet
flow (b) FPGA-based approach

(a)

(b)

Note: In our approach, we generate intermediate contigs
which are given to velvet for further processing.

Velvet is a widely used de Bruijn graph-based assembler
(Zerbino and Birney, 2008). This software usually takes
significant amount of time to execute. We attempt to
accelerate it using FPGA-based accelerators. A high level

design of our approach is shown in Figure 2. The reads
are passed through redundancy remover unit (RRU)
implemented in FPGA, which acts as preprocessor. The
RRU is constructed using processing elements (PEs)
connected in series. All the PEs form a pipelined structure
and hence execute parallely. Each of the PEs stores a
sequence. Reads are passed through each of the PE. The PE
checks for overlap region at its ends and if the overlap
region is greater than a threshold value, it is extended.
These extended sequences form the intermediate contigs
which are given to Velvet for constructing the final contigs.
We have validated our design for 60 PEs. We estimate
speed-ups of 13× using our approach using 3,000 PEs.

The key contributions of this paper are the following:

1 innovative way to speed-up de novo assembly of NGS
data using FPGAs

2 hardware-software co-design to achieve this

3 efficient hardware implementation on FPGA.

Section 2 shows the different softwares available for
genome assembly. Section 3 describes the NGS de novo
genome assembly problem and the work done by other
research groups that have been reported in the literature. In
Section 4, we describe the overall approach and high level
implementation used for initial analysis and to do feasibility
study. This study leads us to prepare an overall
methodology to achieve speedups using FPGAs which is
described in Section 5. Section 6 shows some of the results
and this is followed by conclusion in Section 7.

2 Genome assembly softwares

Many softwares have been developed to do assembly
(Miller et al., 2010). Algorithms are modified in order to
alleviate some of the complexities involved in the
assembly and to execute efficiently on processors.
Assembly softwares can be divided into two categories;
mapping-based comparative assembly and de novo
assembly. In the former method, assembly is done by
mapping the reads to an already pre-existing reference
genome. Even though the genomes of a particular organism
contain lots of similarities, there are certain dissimilar
regions which make each organism unique. These dissimilar
regions are of interest to biologists as they show particular
behaviour unique to that individual organism. Mapping the
reads to a pre-existing reference genome might cause this
uniqueness to be destroyed and hence, the software
assemblers allow certain amount of mismatches and gaps.
Some of the mapping-based assembly programs are SOAP
(Li et al., 2008b), MAQ (Li et al., 2008a), Bowtie
(Langmead et al., 2009) and RMAP (Smith et al., 2008).

The later method is called de novo assembly where the
information is extracted from the reads and their overlaps.
Some of the de novo assembly software programs are
Velvet (Zerbino and Birney, 2008), Edena (Hernandez
et al., 2008), PerM (Chen et al., 2009), BFAST (Homer
et al., 2009) and Minia (Chikhi and Rizk, 2012).

4 B.S.C. Varma et al.

De novo assembly takes more computational time than
mapping-based assembly. Since the mapping-based
assembly includes a pre-existing reference genome during
mapping, the assembly process is biased and hence,
in certain situations bioinformaticians prefer to use
de novo-based assembly.

3 De novo assembly

De novo assembly is a method in which the genome is
constructed using the reads without using reference
sequence. It is the only way to construct new genomes. This
method is also used when reference genome is available
because the construction is unbiased.

3.1 Principle

The de novo genome construction from NGS data is
complex due to the following reasons:

1 A very large amount of data has to be processed. Most
of the algorithms need computers with large amount of
RAM for processing the data. If the RAM usage has to
be reduced, data partitioning has to be done to keep the
‘data of interest’ closer to the processor in the memory
hierarchy. This process would involve swapping of data
across the memory hierarchy and thus lead to increase
the execution time.

2 There are some common sequences in the genome
called repeats. Identifying the reads which form these
repeats is non-trivial. Some plant genomes include
more than 80% of repeat sequences.

3 The sequencing machine has a constraint on length of
reads. If the read length is less than repeat it is almost
impossible to detect which portion of the genome the
read came from.

4 The data generated by the sequencing machines are
not fully accurate and contain errors. The genome
constructed may be erroneous if the programs do not
take error correction into consideration.

De novo assembly can be divided into three categories;
Greedy, OLC, and de Bruijn graph-based assemblers. The
softwares like PCAP (Huang et al., 2003) and TIGER (Wu
et al., 2012) that use greedy approaches make use of the
overlap information for doing the assembly. In the greedy
method, the pairwise alignment of all reads is done and the
reads with the largest overlap is merged. This process is
repeated till a single lengthy sequence is obtained.

The OLC method is a graph-based method where an
overlap graph is constructed from the reads. Some of the
software assemblers based on OLC are Edena (Hernandez
et al., 2008) and CABOG (Miller et al., 2008). The reads
become the node and edges show the overlap information.
The nodes are placed in the form of a graph. Multiple
sequence alignment (MSA) is done with the reads having
more than two edges. Based on this, consensus sequence is

constructed and sequencing errors are removed. A
‘Hamiltonian path’ in the graph is used to construct the
contiguous sequences (contigs). Later, the whole genome is
constructed using these contigs.

The de Bruijn graph assembly also uses a graph where
the nodes are k-mers. A ‘k-mer’ is a sequence of ‘k’
base-pairs. Some of the software assemblers based on
de Bruijn graph are PASHA (Liu et al., 2011), Velvet
(Zerbino and Birney, 2008), Euler (Pevzner et al., 2001),
etc. All the reads are broken into respective k-mers, i.e., all
substrings of length ‘k’. A graph is constructed with
(k–1)-mers as nodes and the k-mers as edges. This graph
contains all the overlap information contained in the reads
for a particular k-mer length. Due to errors in the reads,
there can be a chain of nodes that are disconnected, i.e., they
do not converge into the graph. These are called ‘tips’. The
errors can also cause the graph to have redundant paths that
have same starting and ending point, i.e., the paths converge
back into the graph. These are called ‘bubbles’. These tips
and the bubbles are removed using heuristics and sometimes
with sequence comparisons. ‘Euler path’ is used in this
de Bruijn graph to construct the contigs, which in turn is
used for constructing the whole genome.

The choice of assembly software is mainly dominated
by the quality of assembly, speed of assembly and the
RAM needed for the execution. Many techniques are
used for error correction and improving the quality of
assembly (Koren et al., 2012; Salmela and Schröder, 2011).
Considering speed as the criteria, graph-based assemblers
are preferred over greedy assemblers. In the graph-based
assemblers, de Bruijn graph-based assemblers have become
more popular as they are faster than OLC-based assemblers.
This is because finding Hamiltonian path in a directed graph
in OLC-based assemblers is a NP hard problem, while
finding the Euler path is easier (Compeau et al., 2011).
Also, MSA of the reads used in OLC method for removing
errors is both compute intensive and memory intensive
when compared to the techniques used in de Bruijn
graph-based assemblers.

3.2 Related work with FPGA-based acceleration

Several groups have attempted to accelerate NGS short read
mapping using FPGAs, where the genome is constructed by
mapping the short reads to an already existing genome.
Tang et al. (2012) have accelerated short read mapping and
achieved 42× speed-up over software PerM (Chen et al.,
2009). Aluru and Jammula (2014) review the different
acceleration techniques used for genome assembly. Olson
et al. (2012) have also shown acceleration of short read
mapping on FPGA. The authors compare their results with
BFAST software (Homer et al., 2009) and show 250×
improvement and 31× when compared to Langmead et al.
(2009). Fernandez et al. (2010) and Knodel et al. (2011)
have also accelerated NGS short read mapping. The Convey
Computer (2015) firm have developed the convey graph
constructor (CGC), which use FPGAs to accelerate de novo
assembly. They show speedups of 2.2× to 8.4×. Meng
et al. (2014) have accelerated de novo genome assembly

 Hardware acceleration of de novo genome assembly 5

using FPGAs, but they use optical methods for sequencing.
As de novo assembly is non-biased, it is important. We
attempt to accelerate it using FPGAs. As it is not fair to
compare mapping-based assembly with de novo assembly,
as both are different and have their own advantages and
disadvantages, we compare our hardware implementation
with existing de novo software-based implementation.
In our previous work, we presented initial results (Varma
et al., 2013). In this paper, we discuss the hardware
implementation which was very briefly discussed. We also
discuss the results in more detail and the algorithm to
architecture design process. We have shown how the FPGA
architecture can be modified by introduction of hard
embedded blocks (HEBs) in order to get further speedups
(Varma et al., 2014), where we discuss more on the
introduction of HEBs.

4 Approach

We chose to accelerate de Bruijn graph-based assembly, as
they take less amount of time to execute when compared to
OLC-based assemblers. We use the fact that there is a lot of
redundancy in short read sequencing. Lander and Waterman
(1988) describe the use of redundancy for getting good
quality assembly. This redundancy helps in providing
coverage as well as eliminating errors encountered during
sequencing of these short reads.

De Bruijn graph-based software assemblers take several
GBs of RAM space while executing (Zhang et al., 2011).
Efficient implementation of de Bruijn graph-based
assemblers on an FPGA is difficult due to the memory
resource constraints in current FPGAs. We model a hybrid
approach where we implement a part of OLC-based
assemblers on FPGA to remove the redundancy present in
the reads. We run the de Bruijn graph-based assembler in
software on the reduced set of reads from the FPGA.

This approach allows us to effectively use the FPGA
resources for removing redundancy in the reads.

4.1 Algorithm

The main thrust in our approach is to find the overlap region
between reads and store the overlap region only once. This
can be done using a greedy approach. A read from the
readset is picked which is called ‘starter’ sequence. The
starter sequence is checked for extension with the rest of the
reads in read-set. This process has to be repeated until the
starter does not extend, meanwhile removing the reads from
readset which extend the starter. After many such iterations,
we are left with a reduced read-set and a extended starter.
This extended starter which can not further be extended is
stored as an ‘intermediate contig’. This process has to be
repeated by picking a read from the remaining read-set, so
that we store the overlap information only once. After
checking with all the reads, if it does not extend, it can be
made an intermediate contig. If it gets extended the read

causing the extension is removed. An example of a single
contig construction is shown in Figure 3. In this example,
the read 5 is made a starter. The extension in each round is
shown. During the first round read number 4 and 6 extend
the starter. Similarly, in round 2 reads 3 and 7 extend the
starter. In round 3, all the reads are used up for extensions
and the particular contig is constructed. For this ordering of
reads and choice of starter 3 rounds were required for the
construction of contig. We use this idea for constructing
intermediate contigs.

To implement this in parallel, we can start by picking a
small subset of reads (multiple starters) and start comparing
and checking if they can be extended by the reads left in the
remaining read-set. After single iteration, the starters which
did not get extended can be removed and put in intermediate
contigs set, as there is no chance for them to get extended in
further iterations. The removed starters are replaced with
new reads from the remaining read-set for next iteration.

As we do not consider error checking while extending,
we call the contigs generated from our approach as
‘intermediate contigs’, which can be further processed by
other tools like velvet. The overall flow diagram is as shown
in Figure 4. This approach reduces the size of the input to
the velvet software, as shown in Figure 5, and thereby
giving speedups compared to software. There may also be
reduction in the RAM usage due to smaller input file.

To study the benefits of our approach, we used an open
source software known as Mapsembler (Peterlongo and
Chikhi, 2012), which does targeted assembly. It takes NGS
raw reads and a set of input sequences (starters). The
software determines if the starter is read coherent, i.e.,
starter is a part of the original sequence. The neighbourhood
of the starter is given as output if the starter is read coherent.

The algorithm is described in Algorithm 1. All the
k-mers in all of the starters are indexed and stored in a hash
table ‘I’. The hash table consists of starter number and the
corresponding position of the k-mer in that particular starter.
A read is taken from the NGS read set and the respective
k-mers are searched in the hash table. If the k-mer is already
hashed, the corresponding starters are tried for extension
with the reads.

This high level model based on Mapsembler was used to
study its effectiveness in removing redundancy. This model
was also used for conducting experiments with Velvet
software on various data sets. From these experiments, we
verified that the time taken by Velvet software was
dependent on the input file size. Removing the redundancy
by our approach did not cause significant loss in the quality
of output. We also studied the quality by varying the
mismatches allowed during extension. Even though the
software model was essentially done to study the initial
benefits of our approach, we would also like to mention
here that this approach takes very long time to execute, as
the reads are compared serially with the starters. In fact, the
time taken on a dual core desktop computer is more than the
Velvet software time in most of the cases.

6 B.S.C. Varma et al.

Figure 3 Example showing construction of contig using our approach (see online version for colours)

Notes: In each round starter is extended. Contig is constructed from the reads in three rounds.

 Hardware acceleration of de novo genome assembly 7

Figure 4 Software flow for estimation

Note: Mapsembler was used for feasibility test and estimation.

Figure 5 FPGA-based de novo assembly (see online version for colours)

Note: The input size to velvet is reduced considerably by using our approach.

8 B.S.C. Varma et al.

Algorithm 1 Redundancy removal using Mapsembler

1: procedure RRUMAPSEMBLER(Read-set R)
2: pick N random reads and store as starter s ∈ S
3: delete these reads from R
4: for each starter s ∈ S do
5: index all k-mers of s in index-table I
6: starter → extendedFlag = 0
7: end for

8: if | | 0R ≠ / then

9: for each read r ∈ R do
10: for each k-mer k in r do
11: if k indexed in I then
12: if r extends corresponding s then
13: s = extended(s)
14: set starter → extendedFlag = 1
15: delete r from R
16: end if
17: end if
18: end for
19: end for
20: for each starter s ∈ S do
21: if starter → extendedFlag = 0 then
22: store s as intermediate contig in IC
23: replace s with random read r ∈ R
24: else
25: starter → extendedFlag = 0
26: end if
27: end for
28: end if
29: store all starters to IC
30: Return IC
31: end procedure

4.2 From algorithm to architecture

To take advantage of the FPGA architecture, we do a
streaming design where PEs are connected in series. Each of
the PEs stores a sequence called starter. The PEs are
connected in a series. ‘N’ starters in the corresponding ‘N’
PEs are populated with ‘N’ random reads. A read from
remaining read set is streamed through the PEs. In each PE,
the read is checked if it can extend the starter. If extended,
the starter is updated with the extended starter. This process
is continued till all the reads are exhausted. We use the term
‘round’ frequently in the rest of the paper which means that
all the reads from the read set are compared once with
current set of starters and tried for extensions. After each
round, the starters which are not extended are replaced with
new random reads from the remaining read set. These
non-extended starters of the current round are stored in an
output file.

This process removes redundancy in the reads. The
redundancy reduction process is repeated several times till
there are no more reads. The remaining reads along with all
the non-extending starters from previous rounds constitute
the intermediate reads. These intermediate reads are stored
in an output file. The intermediate reads are less in number
and longer in length. This output file is given as input to
Velvet software for removing errors and generating contigs.

In order to get better performance, we do the hardware
implementation of the redundancy removal unit using
FPGAs. The proposed hardware model differs significantly
form the software model. The hash-based searching of
k-mers in the software model is not implemented in this
hardware model due to memory resource constraints. The
reads are compared with the starter ends and tried for
extension. In each cycle, the read is shifted and checked if it
can extend the starter. For example:

1

Re
4

Re

:

Cycle
Starter ACTGTCGTGTCTGC

ad TGTCGTGTCTGCGC
Cycle
Starter ACTGTCGTGTCTGC

Shifted ad TCGTGTCTGCGCTG
Extd Starter ACTGTCGTGTCTGCGCTG

⎡
⎢ −⎢
⎢ −
⎢

−⎢
⎢ −
⎢

−⎢
⎢ −⎣

The extension phase is expensive as it is a long process. To
avoid this long delay in the extender, we add a filter which
eliminates reads with no probable extensions. The number
of cycles needed for extension is equivalent to the
difference of read length and k-mer length. From the
software implementation, it is observed that for a single
round, the number of reads used for extension are very
small when compared to reads that extend the starters. To
take advantage of this feature, we propose a pre-filter block.
The pre-filter is added before the extension phase. Pre-filter
compares the signature of the reads with the signature of the
starter. This signature is called the ReadVector and is
constructed by encoding the 4-mers in binary format. 4-mer
was chosen for signature because the vector width would be
256 corresponding to 44. If we choose a signature with more
than 4-mer, then the signature will become much more
lengthy and hence would require large memory for its
storage and larger amount of resources for doing the
pre-filter.

An example of construction of the readvector is shown
in Figure 6. In the example, the readvector for read
AAAAAAAGGGGG is ‘100100…001’. Each bit represents
a particular 4-mer. It is set if the 4-mer exists else it is reset.
Only one bit is stored if there is repetition of the 4-mer. The
construction of read vectors has to be done only once, as it
does not change during the whole process of assembly. We
first implemented this in software and found that it was
taking significant amount of time and so we implemented
this in hardware. The details of this implementation are
explained in Section 5.

 Hardware acceleration of de novo genome assembly 9

Figure 6 Example showing construction of Read Vector

The PE consists of the pre-filter and the extender part. Each
PE has to store the starter sequence. As the starter keeps
increasing in length, it becomes difficult to store the whole
starter inside the PE, due to limited resources available in
the FPGA. In order to alleviate this problem, we decided to
store the left end and right end of the starter in the PE, and
reconstruct the starters in the host. The length of the starter
ends stored in PE is equivalent to the read-length, thus,
allowing extensions at the ends. With this approach, the
reads which are completely covered by the starter and do
not extend the starter are not eliminated. We found that this
does not cause significant difference in the speed-up. By
using this approach, we gain two advantages:

1 The memory resource usage is reduced, as we store
only the left-end and the right-end of the starter.

2 We need not re-construct the vectors for the
starter-ends used in the pre-filter. This is because the
extension is caused by the read for which read-vector is
already available. If starter is extended, the starter end
and its corresponding vector is replaced by the read and
its vector. This saves considerable amount of time, as
construction of vectors for each extension would be
very expensive, both in terms of resource usage and
execution time.

The clock cycles required by each PE to process a read
varies widely. The number of cycles is highly dependent on
the read which is being processed. Due to rejection by the
pre-filter there could be lot of data generated in a very few
cycles for the next PE, or the next PE could be waiting for
the extension phase of the PE. Due to this, there is
irregularity in the time which PE can start processing the
reads. To keep the PEs busy for most of the time, we
have introduced FIFOs in between the PEs. As the
implementation is done on FPGAs, the BRAMs were used
for the FIFO implementation for effective resource usage.

5 Hardware implementation

The overall block diagram is shown in Figure 7. It
shows the FPGA board interface with the host. We
use Alpha-Data (Alpha-Data, 2015) board for hardware
implementation. The board has a PCIe bridge which is used
for data transmission between host and vice versa. The
memory interface unit connects the onboard memory and
the PCIe bridge. In our design, we use the ‘memory
interface’ unit to send data to a ‘pre-processor’. From
the pre-processor, a series of ‘PEs’ are connected through
a set of FIFOs. The FIFOs are not shown in
Figure 7 for clarity. The last PE is connected to a ‘post
processor’ connected back to memory interface unit. The
expanded diagram showing different stages is shown in
Figure 8.

The read set in fasta input file format is sent from the
host to the FPGA board through PCIe bus. For initialising
the starters, we encode the most significant three bits of the
read. The fourth bit is used for marking the read that it has
extended as a starter. In order to reconstruct the starters, the
starter and the position of the extension is sent as output
through the fifoSet. Reconstruction of starters is done in
software.

Figure 7 FPGA board

Note: The RRU unit is implemented on an FPGA board connected to host through PCIe interface.

10 B.S.C. Varma et al.

Figure 8 Block diagram of hardware implementation

Note: The interconnectivity between modules is shown.

Figure 9 Fasta to bit converter

5.1 Fasta file to bit file converter

The fasta to bit converter block reads data from the input
buffer and encodes the base-pairs in binary format; ‘A’ as
‘00’, ‘C’ as ‘01’, ‘T’ as ‘10’ and ‘G’ as ‘11’. It also
generates the readvector. The block diagram is as shown in
Figure 9. The Fasta to bit converter has an input BRAM
which stores a part of the Fasta file. This block has two
parts – the sequence coder and bit sequence generator which
generates the read vector.

The sequence coder reads data from the input FIFO and
encodes the base pairs in binary format and removes the
comments. Sequence coder is implemented as a state
machine. The state diagram is shown in Figure 10. The bit
sequence generator is made up of a 256 bit shift register, a
256 bit register and a control unit as shown in Figure 11.
The two bit sequence code from the sequence coder unit is
pushed into the shift register by shifting two bits to the left.
The first 8 bits are taken as an address to set the bit on the
second 256 bit register. This register is read after a single
read is encoded completely, which is known by the
‘seqValid’ signal coming from the sequence coder unit.
Control unit controls the shift operation and generates
‘FifoWr’ signal for writing the readVector and the read
when it is ready.

Figure 10 State diagram for sequence coder

Figure 11 Bit sequence generator

This binary conversion from ASCII is done only once and
the rest of the units use the binary format for further
processing. During the next rounds, this state machine
remains idle and so ‘mux’ and ‘control’ is used for selecting
the required FIFO.

 Hardware acceleration of de novo genome assembly 11

Figure 12 Processing element

5.2 PE design

The pre-processing block is followed by a series of PEs.
The PE contains two parts; the pre-filter and the extender as
shown in Figure 12. A read and corresponding readVector is
taken from the remaining read set and compared with the
starters for extension. Each PE stores the information of a
single starter. The starter will be saved as an intermediate
contig if it does not extend in the current round. Due to
memory constraints in the FPGA, we store only the right
end and the left end of the string for extension. Each of the
starters have two parts-each of length equivalent to the read
length. The left end is called starterLeft and the right end is
called the starterRight. First ‘n’ reads, considering that the
reads are arranged randomly are copied to starterLeft and
starterRight. Similarly, we store starterVectorRight and
starterVectorLeft used for pre-filtering.

Figure 13 Pre-filter design

5.2.1 Pre-filter design

The pre-filter design is shown in Figure 13. In the pre-filter
a logical ‘AND’ is done between readVector and
starterVector-Left and stored in TempL register. Similarly,
logical ‘AND’ is done between readVector and
starVectorRight and stored in TempR register. The

1-counter block counts the number of ‘1’s in the TempL and
TempR register. If the number of ‘1’s is greater than the
threshold, the read is passed to the extender else it is passed
to the FIFO for next processing element to evaluate it. The
1-counter block lies in the critical path and hence defines
the clock period of operation. We implemented two versions
of the one counter-one using Wallace tree and the second
using the carry chain available in the Xilinx FPGA slices.
The Wallace tree is built out of 6:3 compressors as the
Xilinx Virtex 6 FPGA has 6 input LUTs. For the 256 bit
implementation, we need a Wallace tree of 258 bits using
the 6:3 compressors. The tree is built in five stages and
requires 100 (43 + 24 + 14 + 10 + 9) 6:3 compressors with a
carry adder at the final stage. The second implementation is
done by adding each bit using the carry-chain available in
the FPGA. This implementation took less time, but
slightly more area when compared to the Wallace tree
implementation.

5.2.2 Extender design

The extender design is shown in Figure 14. We
use a ‘maskL’ and ‘maskR’ register for masking the
corresponding bits in the starter after shifting the read. In
the beginning, these registers are initialised with twice read
length ‘1’s on the right and rest of the bits are set to ‘0’. The
following operations are done in the extender:

()
() .

tempL starterLeft AND maskL XNOR shiftedRdL
tempR starterRight AND maskR XNOR shiftedRdR

=⎡
⎢ =⎣

Figure 14 Extender design

The corresponding scores, scoreL and scoreR are calculated
from tempL and tempR, respectively using modified
1-counter. A modified 1-counter is needed as we are
encoding the basepair in two bits. An example is shown in
Figure 15. Here, we see that the total score should be
calculated by checking 2 consecutive 1s. For calculating
this, we modify the Wallace tree implemented in pre-filter
block. We store the appropriate values in the LUTs of the
first stage of the Wallace tree implementation. For example,
we store output as 11 for 11 11 11, 01 for 01 10 11 and 10
for 11 11 01. So the score gives the exact matches of the

12 B.S.C. Varma et al.

two sequences. If ((readLength/2) – scoreL) is less than
allowed substitutions, the starter is extended on the left side
or if ((readLength/2) – scoreR) is less than allowed
substitutions, the starter is extended on the right side. The
starterLeft and starterVectorLeft are replaced by the read
and readVector, respectively, if the starter is extended on
the left side. Similarly, starterRight and starterVectorRight
are replaced by the read and readVector, respectively, if the
starter gets extended on the right side. This step of counting
the number of ‘1’s can be eliminated if the allowed
substitution is set to zero. For this, only an ‘XOR’ operation
of between (shifted read ‘AND’ with mask) and starter has
to be done and checked if it is equivalent to zero for
extension. This saves lots of resources and also from the
experiments conducted we found that the quality of results
is better with threshold set to ‘0’. If a starter is not extended
on either of the two sides, then shiftedReadL and
shiftedReadR are shifted to right and left, respectively by
two bits as base-pair is encoded with two bits. The maskL
and maskR are changed as follows:

 (2)
2.

maskL maskL AND maskL
maskR maskR

= <<⎡
⎢ = >>⎣

This process is repeated till the read is shifted (readLength –
kmer length), as we do not extend starter if there are less
than ‘k’ matches. The reads that do not extend any of the
starters are put in the next fifoSet for further processing by
the next PEs.

Figure 15 Example of score calculation in extender;
e.g., score = 11 (see online version for colours)

6 Results and discussion

Zhang et al. (2011) have done a comparison of de novo
assembly softwares. The authors have provided scripts for
generating the read-set from the genome. We used these
scripts to generate the read files for E. coli, swinepox and
human influenza. For evaluating our approach, we
generated the single ended readset with 100× coverage for
read-length 36 and 75 and 1% error rate similar to what was
reported by Zhang et al. (2011). For the software only flow
time, Velvet software was run using the readset directly on a
desktop computer with Intel (R) Core (TM) 2 Duo CPU
E4700 running at 2.60 GHz with 4 GB RAM.

6.1 Resource utilisation and operating frequency

We have implemented the RRU on FPGA and obtained
the clock period and utilised FPGA resources after
running place and route tools provided by Xilinx (2015) ISE
14.1. We use these parameters to estimate the speed-ups for
running the Velvet on the output of RRU after each round.
From place and route tools, the maximum clock frequency
for the whole of the design was found to be 200 MHz. We
get better performance by using multiple clocks. The
sequence coder and generate units were able to run at a
maximum frequency of 350 MHz on Virtex-6 FPGA. The
maximum frequency of operation for the rest of the units
was 200 MHz. The hardware implementation was done on
Alpha-Data board having Xilinx Virtex-6 (XC6VSX475T)
FPGA.

Table 1 Resource utilisation

Component Slices BRAM

pre-processor 559 -
in-fifo 17 32
fifo-set 244 8
post-processor 200 -
out-fifo 93 15
PCI-interface 2047 15
Others 35 -
PE-RdLen-36 380 -
Threshold-0
PE-RdLen-36 Theshold-11 939 -
PE-RdLen-75 Theshold-0 643 -
PE-RdLen-75 Theshold-11 1,175 -

The resource utilisation obtained from ISE module level
utilisation, for the different units are shown in Table 1.
Here, we considered design which does not allow any
substitution. The resources occupied by PEPE vary
depending on the read length. When the threshold value of
the pre-filter is set to ‘zero’ the 1-counter is removed and
thus number of slices occupied is significantly reduced.

Table 2 Number of PEs on Xilinx devices

Xilinx device XC6VSX475T XC7V2000T

PE-RdLen-36 Threshold-0 110 467
PE-RdLen-36 Threshold-11 58 247
PE-RdLen-75 Threshold-0 78 330
PE-RdLen-75 Threshold-11 48 206

Table 2 shows the number of PEs that could be
implemented on Xilinx Virtex-6 (XC6VSX475T) FPGA.
This table also shows the estimates of number of PEs on a
larger Xilinx Virtex-7 (XC7V2000T) device considering
97% resource utilisation. This is actually an under-estimate
as many slices from various units get combined during the
synthesis flow and more logic can be realised on the device.
The threshold in this table also refers to the pre-filter

 Hardware acceleration of de novo genome assembly 13

threshold. If this pre-filter threshold is zero, the resource
usage is less and hence the number of PEs which can be
implemented on the device increases.

Note that for design with larger number of PEs where
multiple FPGAs would be required, we have not considered
inter FPGA transfer time in our estimates. We assume
FPGAs are connected in series and the data is streamed
from the host, through the FPGAs and finally, back to the
host.

6.2 Speedups over software

Figure 16 shows the graphs of the speed-ups at different
rounds for swinepox with read length 36 using 30 PE,
300 PE and 3,000 PE using Velvet software software.
Figure 16 shows maximum speed-ups in the range of 5.2×
to 11.9× for swinepox with read-length 36 over Velvet
software. We also observe that the speed-ups reach a
maximum and then start to decrease with increasing number
of PEs. The reason for this is that the utilisation of the PEs
goes down after a peak and hence the read and write cycles
dominate.

We have considered the worst case time by setting the
threshold value for the pre-filter to zero. Similarly, we have
the results on E. coli, swinepox and human influenza, not

shown here due to space constraints. We observe same
trends. The reduction in size of the input file in terms of
base-pairs to Velvet software is shown in Figure 17. For a
larger genome like E. coli, we need to have more PEs to get
significant speed-ups. The maximum speed-ups are
tabulated in Table 3. The speed-ups in each case first
increases, reaches a peak and then tapers down. The initial
increase can be attributed to the high reduction of input file
size during the initial rounds. After these initial rounds, the
redundancy removal is more limited and so the time taken
by Velvet is almost constant. The FPGA processing time is
incremental in nature and hence goes on increasing after
each round. Even though there is not much redundancy
removal during the later rounds, the hardware unit takes at
least as many cycles as the number of reads and writes in
each PE.

From these results, we can determine a termination
criterion for stopping FPGA processing to get maximum
benefits from FPGA processing. For this, we keep track of
reduction in the total size of data set in each round and if
this is incrementally less than threshold we stop further
rounds. In the future, this step would be integrated with the
auto tuning of the pre-filter threshold.

Figure 16 Speedups and number of base-pairs after each round for swinepox read-length 36, (a) input size 30 PE (b) input size 300 PE
(c) input size 3,000 PE (d) speedups 30 PE (e) speedups 300 PE (f) speedups 3,000 PE (see online version for colours)

(a) (b) (c)

(d) (e) (f)

Note: Figures 16(d), 16(e) and 16(f) show speedups over Velvet software.

14 B.S.C. Varma et al.

Table 3 Maximum speed-ups over Velvet software

Sample Swinepox Swinepox H. influenza H. influenza E. coli E. coli

Read-length 75 36 75 36 75 36
PE\size 30.8 MB 48.4 MB 449 MB 729.7 MB 1.2 GB 2.1 GB
30 PE 3.5× 5.2× 1.1× 1.09× 1.2× 1.09×
300 PE 13× 11.9× 3.2× 3.6× 2.5× 2.1×
1,000 PE 6.5× 10.5× 6.8× 6.0× 4.4× 5.02×
3,000 PE 4.8× 7× 6.8× 10× 6.5× 9.2×

Figure 17 Input sizes (bp) before and after FPGA processing

(see online version for colours)

Table 4 Quality of assembly

Swinepox 75 E. coli 36
Sample
parameters N-50 Max

contig

N-50 Max
contig

FPGA-based\
Velvet

119,046 119,046 14,988 100,485

30 PE 119,046 119,046 14,988 100,485
300 PE 102,563 102,566 14,988 100,485
1,000 PE 119,046 119,046 15,344 100,485
3,000 PE 119,046 119,046 15,351 100,485

6.3 Quality

There are many factors which affect the quality of
assembly. The quality is dependent on the sequencing
machine. After the sequencing, the quality of assembly is
dependent on many parameters that are used in the assembly
algorithms. Mostly the input parameters to the assembler
like k-mer length and number of mismatches allowed can
significantly affect the quality of the output. The most
popular metrics to measure quality are the maximum length
of the contigs and the ‘N50’. N50 is the minimum length of
the contig such that summing up the length of only those
contigs whose length is more than N50 cover 50% of the
genome. The quality of Velvet output using these metrics
for different PEs is tabulated in Table 4. For example, the

N-50 for Swinepox using Velvet software was 119046
which remained the same when the FPGA-based RRU was
used. From the various experiments conducted we observed
that by not allowing mismatches during extension, there was
no (significant) loss in quality of output as shown in results.

7 Conclusions

Genome assembly is used in many fields like personalised
medicine, meta-genomics, forensics, etc. NGS can be used
to solve diverse biological problems. These platforms
produce several gigabytes of data in a single run. There is a
need for faster and memory efficient tools to analyse and
make sense of this large data. De novo assembly has some
advantages over the mapping-based assembly, but these
software programs take more time to execute. We have used
a hybrid approach which uses techniques from both OLC
method and de Bruijn method for accelerating assembly.
We implemented our design using FPGAs and used them as
hardware accelerators.

From the results, we find that the speed-up is dependent
on the nature and size of input data. For a fixed number of
PEs, the speed-up first increases and then tapers down with
larger number of rounds as FPGA processing time starts
dominating. Maximum speed-up increases with number of
PEs and reduces after reaching peak. We estimate speed-ups
up-to 13× using our hybrid approach.

The use of phred values which provide the information
on the quality of reads generated by the NGS platform are
becoming increasingly popular. A filter is typically used to
filter out reads with lower score. This can be easily be
integrated in our flow by modifying the pre-processor block.
This can be done by adding one more state in the state
diagram shown in Figure 10. The hardware area overhead is
minimal as it would require a comparator and the delay
would not be a concern since it is implemented as a pipeline
stage.

The multi-FPGA boards will be able to accommodate
more number of PEs and hence can be used for reducing
assembly time of larger genomes. We intend to implement
the redundancy removal unit on multiple multi-FPGA
boards and estimate the speedups for large genomes. We
also want to modify Velvet to accelerate the assembly
process using FPGAs. There could be reduction in the RAM
usage using our approach. This study of reduction in RAM
usage and velvet intervention to further speedup de novo
genome assembly is a part of our future work. We also

 Hardware acceleration of de novo genome assembly 15

intend to study benefit of our approach on softwares like
Minia (Chikhi and Rizk, 2012), which use less memory for
assembly.

Acknowledgements

We would like to thank Pierre Peterlongo, INRIA Rennes,
for introducing us to Mapsembler and helping us understand
the code. We would like to thank Xilinx for their generous
donations. We would also like to thank IRISA and Amar
Nath and Shashi Khosla School of Information Technology,
IIT Delhi, for allowing us to collaborate.

References
Alpha-Data (2015) Alpha-Data FPGA Boards [online]

http://www.alpha-data.com/ (accessed 2-1-12015).
Aluru, S. and Jammula, N. (2014) ‘A review of hardware

acceleration for computational genomics’, Design Test, IEEE,
February, Vol. 31, No. 1, pp.19–30.

Che, S., Li, J., Sheaffer, J., Skadron, K. and Lach, J. (2008)
‘Accelerating compute-intensive applications with gpus and
FPGAs’, in Symposium on Application Specific Processors,
2008, SASP 2008, June.

Chen, Y., Souaiaia, T. and Chen, T. (2009) ‘PerM: efficient
mapping of short sequencing reads with periodic full
sensitive spaced seeds’, Bioinformatics, Vol. 25, No. 19,
pp.2514–2521.

Chikhi, R. and Rizk, G. (2012) ‘Space-efficient and exact de
Bruijn graph representation based on a bloom filter’, in
Raphael, B. and Tang, J. (Eds.): Algorithms in Bioinformatics,
ser. Lecture Notes in Computer Science, Vol. 7534,
pp.236–248, Springer, Berlin, Heidelberg.

Compeau, P.E.C., Pevzner, P.A. and Tesler, G. (2011) ‘How to
apply de Bruijn graphs to genome assembly’, Nature
Biotechnology, Vol. 29, No. 11, pp.987–991.

Convey Computer (2015) Convey GraphConstructor [online]
http://www.conveycomputer.com (accessed 2-1-12015).

Fernandez, E., Najjar, W., Harris, E. and Lonardi, S. (2010)
‘Exploration of short reads genome mapping in hardware’, in
International Conference on FPL, September, pp.360–363.

Halstead, R.J., Villarreal, J. and Najjar, W.A. (2014) ‘Compiling
irregular applications for reconfigurable systems’,
International Journal of High Performance Computer
Networks, June, Vol. 7, No. 4, pp.258–268.

Hernandez, D., François, P., Farinelli, L., Østerås, M.
and Schrenzel, J. (2008) ‘De novo bacterial genome
sequencing: millions of very short reads assembled on a
desktop computer’, Genome Research, May, Vol. 18, No. 5,
pp.802–809.

Homer, N., Merriman, B. and Nelson, S.F. (2009) ‘BFAST: an
alignment tool for large scale genome resequencing’, PLoS
ONE, November, Vol. 4, No. 11, p.e7767.

Huang, X., Wang, J., Aluru, S., Yang, S-P. and Hillier, L. (2003)
‘PCAP: a whole-genome assembly program’, Genome
Research, Vol. 13, No. 9, pp.2164–2170.

Knodel, O., Preusser, T. and Spallek, R. (2011) ‘Next-generation
massively parallel short-read mapping on FPGAs’, in IEEE
International Conference on ASAP, September, pp.195–201.

Koren, S., Schatz, M.C., Walenz, B.P., Martin, J., Howard, J.T.,
Ganapathy, G., Wang, Z., Rasko, D.A., McCombie, W.R.,
Jarvis, E.D., Ed, J. and Phillippy, A.M. (2012) ‘Hybrid error
correction and de novo assembly of single-molecule
sequencing reads’, Nature Biotechnology, Vol. 30, No. 7,
pp.693–700.

Lander, E.S. and Waterman, M.S. (1988) ‘Genomic mapping by
fingerprinting random clones: a mathematical analysis’,
Genomics, Vol. 2, No. 3, pp.231–239.

Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. (2009)
‘Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome’, Genome Biology, Vol. 10,
No. 3, p.R25.

Li, H., Ruan, J. and Durbin, R. (2008a) ‘Mapping short DNA
sequencing reads and calling variants using mapping quality
scores’, Genome Research, Vol. 18, No. 11, pp.1851–1858.

Li, R., Li, Y., Kristiansen, K. and Wang, J. (2008b) ‘SOAP: short
oligonucleotide alignment program’, Bioinformatics, Vol. 24,
No. 5, pp.713–714.

Lin, C.Y. and Lin, Y.S. (2014) ‘Efficient parallel algorithm for
multiple sequence alignments with regular expression
constraints on graphics processing units’, International
Journal Computer Science Engineering, January, Vol. 9,
Nos. 1/2, pp.11–20.

Liu, Y., Schmidt, B. and Maskell, D. (2011) ‘Parallelized short
read assembly of large genomes using de Bruijn graphs’,
BMC Bioinformatics, Vol. 12, No. 1, pp.354–363.

Marino, M.D. and Li, K. (2014) ‘Insights on memory controller
scaling in multi-core embedded systems’, International
Journal of Embedded Systems, Vol. 6, No. 4, pp.351–361.

Meng, P., Jacobsen, M., Kimura, M., Dergachev, V.,
Anantharaman, T., Requa, M. and Kastner, R. (2014)
‘Hardware accelerated novel optical de novo assembly for
large-scale genomes’, in 24th International Conference on
Field Programmable Logic and Applications (FPL), pp.1–8.

Miller, J.R., Delcher, A.L., Koren, S., Venter, E., Walenz, B.P.,
Brownley, A., Johnson, J., Li, K., Mobarry, C. and Sutton, G.
(2008) ‘Aggressive assembly of pyrosequencing reads with
mates’, Bioinformatics, Vol. 24, No. 24, pp.2818–2824.

Miller, J.R., Koren, S. and Sutton, G. (2010) ‘Assembly algorithms
for next generation sequencing data’, Genomics, Vol. 95,
No. 6, pp.315–327.

Nagarajan, N. and Pop, M. (2013) ‘Sequence assembly
demystified’, in Nature Reviews Genetics, March, Vol. 14,
No. 3, pp.157–167.

Okuyama, T., Ino, F. and Hagihara, K. (2012) ‘A task parallel
algorithm for finding all-pairs shortest paths using the GPU’,
International Journal of High Performance Computer
Networks, April, Vol. 7, No. 2, pp.87–98.

Olson, C., Kim, M., Clauson, C., Kogon, B., Ebeling, C.,
Hauck, S. and Ruzzo, W. (2012) ‘Hardware acceleration of
short read mapping’, in IEEE Symposium on FCCM, May,
pp.161–168.

Peterlongo, P. and Chikhi, R. (2012) ‘Mapsembler, targeted and
micro assembly of large NGS datasets on a desktop
computer’, BMC Bioinformatics, Vol. 13, No. 1, pp.13–48.

Pevzner, P.A., Tang, H. and Waterman, M.S. (2001) ‘An Eulerian
path approach to DNA fragment assembly’, Proceedings
of the National Academy of Sciences, Vol. 98, No. 17,
pp.9748–9753.

Salmela, L. and Schröder, J. (2011) ‘Correcting errors in short
reads by multiple alignments’, Bioinformatics, Vol. 27,
No. 11, pp.1455–1461.

16 B.S.C. Varma et al.

Smith, A.D., Xuan, Z. and Zhang, M.Q. (2008) ‘Using quality
scores and longer reads improves accuracy of Solexa read
mapping’, BMC Bioinformatics, Vol. 9, No. 2, p.128.

Tang, W., Wang, W., Duan, B., Zhang, C., Tan, G., Zhang, P. and
Sun, N. (2012) ‘Accelerating millions of short reads mapping
on a heterogeneous architecture with FPGA accelerator’,
Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, pp.184–187.

Varma, B.S.C., Paul, K. and Balakrishnan, M. (2014)
‘Accelerating genome assembly using hard embedded blocks
in FPGAs’, in 2014 27th International Conference on VLSI
Design and 2014 13th International Conference on
Embedded Systems, IEEE, Mumbai, India, 5–9 January,
pp.306–311.

Varma, B.S.C., Paul, K., Balakrishnan, M. and Lavenier, D. (2013)
‘Fassem: FPGA based acceleration of de novo genome
assembly’, Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, pp.173–176.

Wu, X-L., Heo, Y., El Hajj, I., Hwu, W-M., Chen, D. and Ma, J.
(2012) ‘TIGER: tiled iterative genome assembler’, BMC
Bioinformatics, Vol. 13, No. 12, p.S18.

Xilinx (2015), Xilinx FPGAs, ISE [online] http://www.xilinx.com
(accessed 2-1-12015).

Zerbino, D.R. and Birney, E. (2008) ‘Velvet: algorithms for de
novo short read assembly using de Bruijn graphs’, Genome
Research, Vol. 18, No. 5, pp.821–829.

Zhang, W., Chen, J., Yang, Y., Tang, Y., Shang, J. and Shen, B.
(2011) ‘A practical comparison of de novo genome assembly
software tools for next-generation sequencing technologies’,
PLoS ONE, March, Vol. 6, No. 3, p.e17915.

