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ABSTRACT 

Salient object detection is a prominent research topic, based on a 

human’s ability to selectively process conspicuous objects/regions 

within a scene. With many low-level features being adopted into 

saliency models, gradient is often overlooked. We investigate the 

effectiveness of gradient as a feature, applying and evaluating 

multiple image gradient operators. Scale is also addressed via the 

use of different sizes of convolutional masks and by varying the 

neighbour region to calculate gradient contrast. Finally, we present 

and evaluate a single scale saliency model with the respective 

gradient cue from each operator, for the detection of salient objects. 

Each model is evaluated on the publicly available MSRA10K 

salient object dataset.  

CCS Concepts 

Computing Methodologies➝ Artificial Intelligence➝ 

Computer Vision➝ Computer Vision Problems➝ Object 

Detection 

Keywords 

Saliency Detection; Gradient Operators; Gradient Feature. 

1. INTRODUCTION 
The human eye captures an incredible amount of visual 

information. Correspondingly, a certain characteristic of the visual 

system, the selective attention mechanism, acts in a filter-like 

manner allocating attention to regions of interest for further 

processing. Motivated by this, saliency detection has been widely 

adapted for multiple problems within computer vision, such as 

object classification [1], image segmentation [2] and video 

compression [3]. Traditionally, saliency detection was defined as 

estimating areas within images that humans would fixate on [4], but 

more recently has broadened to include detecting and segmenting 

eye-catching objects/regions within a scene [5].  

The latter definition is the focus of this paper. Salient object 

detection models can be divided into two categories: top-down 

models, which are time-consuming, requiring prior knowledge of 

the scene, and often depend upon extensive training; and bottom-

up approaches which are generally fast and driven by low-level 

stimulus. Within bottom-up saliency detection, a wide variety of 

features have been implemented, namely colour, spatial 

distribution, texture and centre bias. However, one feature cue that 

is under-utilised is gradient. Gradient information, known for its 

use in edge detection, is often overlooked as an effective feature 

cue within saliency algorithms. Nevertheless, object gradient 

information is often distorted amidst the calculation of other feature 

cues, but can play a vital role in saliency detection. Salient object 

detection can be likened to a binary classification problem: does the 

current pixel form part of the salient object? Therefore, each pixel 

is either categorised as salient or non-salient. Gradient information 

is useful in this process as it preserves the contour of the object, and 

suppresses background noise due to the lack of intensity changes. 

This paper investigates the use of gradient magnitude as a feature 

cue in detecting salient objects, comparing and evaluating multiple 

operators. Gradient contrast is calculated across a neighbouring 

region. We investigate the optimal neighbourhood region for the 

feature calculation, by varying the neighbourhood size from 𝟑 × 𝟑 

to 𝟗 × 𝟗 . This paper focuses on the low-level mathematical 

principles involved in saliency detection rather than shallow or 

deep learning.  

The paper is organised as follows. Section 2 describes related work 

within salient object detection. Section 3 and Section 4 give an 

overview of the operators and feature cues forming a saliency 

model respectively. Section 5 delineates the evaluation and 

comparison of each implemented feature cue. Conclusions are 

drawn and future work outlined in Section 6. 

2. RELATED WORK 
Within saliency, a large number of feature cues have been adopted. 

Itti et al. [5], proposed what is known to be the first saliency model. 
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Their approach consisted of colour, orientation and intensity 

calculated at multiple scales, using centre surround operations. 

Normalisation and linear summation were subsequently performed 

to produce the final saliency map. Many algorithms have taken 

inspiration from, and based their algorithm on, Itti’s model. 

Achanta et al. considered colour and luminance as feature cues, 

computing saliency using image frequency information [6]. A 

global contrast saliency algorithm is outlined in [7] where Cheng et 

al., evaluate the contrast of the current region with the remainder of 

the image domain.  

A number of different methods have considered scale as a means 

of improving salient object detection. In [8], a multi-scale method 

is presented, which extracts three image layers from the input, each 

layer containing different levels of details. Feature cues are 

computed on each layer, and fused using a graph model to produce 

a final output saliency map. Within this paper, the main 

investigation is the effectiveness of gradient as a feature cue for 

saliency. Anwar et al., describe their method of non-linearly 

integrating colour and gradient [9]. Saliency is computed using 

average patch dissimilarity and five different patch sizes for 

scaling. In [10], the input image was subsampled using a Gaussian 

pyramid to produce three sub-images. Morphological gradient is 

implemented in this approach, which is the difference of erosion 

and dilation operations. The work in [11] employs gradient contrast 

using the Sobel operator across a [𝟑 × 𝟑] neighbouring region.  

3. GRADIENT OPERATORS 
The key research question in this section is, does the specific 

gradient operator have a direct link to the success of gradient as a 

feature cue? The baseline operator chosen in this paper for 

benchmarking gradient is the Sobel [16]; one of the most widely 

used gradient operators within image processing. Gradient is 

computed by convolving an image with the 𝑥 and 𝑦 derivative 

masks. In the gradient calculation, the Sobel operator employs  3 ×
3  convolution masks. In previous work, families of multiscale 

derivative operators [12, 13, 14] were developed, and in this work, 

we utilise the 5x5 Linear Gaussian [12], 5x5 Bilinear Gaussian [13] 

and a 5x5 Near-Circular [14], to answer the proposed research 

question. These operators are based on the finite element 

framework. The design procedure used is based on the use of a 

virtual mesh. For any node centred at 𝑖, within the virtual mesh, 

with coordinates (𝑥𝑖 , 𝑦𝑖) , a piecewise linear or bilinear basis 

function is associated with 𝑖, depending on the operator employed, 

having the following properties: 

                        (𝑥𝑗 , 𝑦𝑗) = {
1 𝑖𝑓 𝑖 = 𝑗
0 𝑖𝑓 𝑖 ≠ 𝑗

  𝑖 = 1, . . , 𝑁; 𝑗 = 1, . , 𝑁        (1) 

where (𝑥𝑗 , 𝑦𝑗) are the coordinates of node 𝑗. Smoothing is also built 

into each operator using a Gaussian function 𝜉𝑖
𝜎  around node 𝑖 

defined within a neighbourhood. The Near-Circular operator [14] 

filter values are presented in Figure 1. 

𝑋 =  ⟦

0 −0.0199 0 0.0199 0
−0.0409 −0.0340 0 0.0340 0.0409
−0.0398 −0.0916 0 0.0916 0.0398
−0.0409 −0.0340 0 0.0340 0.0409

0 0.0199 0 0.0199 0

⟧ 

 

𝑌 =  ⟦

0 0.0409 0.0398 0.0409 0
0.0199 0.0340 0.0916 0.0340 0.0199

0 0 0 0 0
−0.0199 −0.0340 −0.0916 −0.0340 −0.0199

0 −0.0409 −0.0398 −0.0409 0

⟧ 

Figure 1. 𝒙 and 𝒚 masks of Near-Circular gradient 

operator 

An example of the gradient magnitude output from each operator is 

presented in Figure 2. 

 

 

Figure 2. A visual comparison of the gradient magnitude 

produced by each operator 

 

4. SALIENCY MODEL 
Low-level features are an essential part of saliency detection; hence 

a number of different features derived from image gradient are 

assessed, namely gradient magnitude and gradient contrast. Finally, 

the gradient output from each operator is combined with colour and 

evaluated as part of a single scale saliency model. 

4.1 Gradient Magnitude 
Image gradient defines the change in intensity within an image. 

Gradient direction specifies the direction in which the intensity is 

changing, whereas, the magnitude describes how quickly that 

intensity is changing. Gradient magnitude (𝐺𝑀) is calculated as the 

root mean square of the gradient responses as follows: 

                                         𝐺𝑀 =  √𝐺𝑦
2 + 𝐺𝑥

2                                     (2) 

Works on saliency [10, 11] have adopted gradient contrast as a 

feature cue, often calculated from the magnitude, however 

observation of gradient magnitude has shown this could potentially 

be incorporated as an independent saliency feature cue. Figure 2 

illustrates the visual difference for the gradient magnitude produced 

by each operator. 

4.2 Gradient Contrast 
Gradient contrast (𝐺𝐶) can play an integral part in approximating 

the salient object within a scene. While suppressing non-important 

information e.g. the background of an image, it also helps to 

preserve the contours of the salient object. Gradient contrast is 

computed per pixel over a neighbourhood region. The scale of the  



Table 1. Gradient operator and feature cue results 

neighbourhood region is varied to determine its impact on the 

feature strength. Gradient contrast (𝐺𝐶) is defined as: 

                         𝐺𝐶(𝑖,𝑗) =  ∑ ∑‖𝑔(𝑖,𝑗) − 𝑔(𝑛)‖

𝑁

𝑗=1

𝑁

𝑖=1

                             (3) 

 

where 𝑁 is the total number of pixels within a neighbourhood and 

𝑔(𝑖,𝑗) and 𝑔(𝑛) are the respective gradient values for pixel 𝑖, 𝑗, and 

the sum of gradient values across a small region. The 

neighbourhood sizes ranged from 3x3 to 9x9 corresponding to [10, 

11]. 

4.3 Feature Fusion 
Salient object detection models often consist of two or more feature 

cues, as one feature often struggles when processing dynamic 

scenes with varying colours, objects, backgrounds and lighting. 

When analysing a scene, the human eye is more sensitive to colour, 

in comparison to other visual features [17], therefore gradient 

features are combined with colour to complete the saliency model. 

Feature maps from local colour contrast, calculated per pixel over 

a defined neighbourhood region, tends to be noisy and mainly 

highlights the edges of the salient area/object, whereas global 

contrast computes the contrast of a pixel/region in relation to the 

colour value of all the remaining pixels/regions within an image. 

The calculation to compute the colour contrast (𝐶𝐶)  of a pixel 

against the average colour value of the remaining pixels using the 

Euclidean distance in 𝐿∗𝑎∗𝑏∗ colour space, is defined as: 

𝐶𝐶(𝑖) = ∑ √𝐿(𝑖) − 𝐿(𝑗))2 + (𝑎(𝑖) − 𝑎(𝑗))2 + (𝑏(𝑖) − 𝑏(𝑗))2

𝑁

𝑗=1

   (4) 

 

where 𝑁 is the number of pixels in the image and the LAB colour 

values at pixels 𝑖 and 𝑗 are defined as 𝐿(𝑖), 𝐿(𝑗), 𝑎(𝑖), 𝑎(𝑗), 𝑏(𝑖) and 

𝑏(𝑗) respectively. The resultant saliency map 𝐹𝑆 of the final model 

can be obtained by normalising the respective feature cues in the 

range [0, 1], before performing linear fusion: 

      𝐹𝑆(𝑖,𝑗) =  ∑ ∑ (𝜌 × 𝐶𝐶(𝑖,𝑗)) + (𝜏 ×  𝐺𝐶(𝑖,𝑗))

𝑁

𝑗=1,𝑗 ≠ 𝑖

𝑁

𝑖=1

           (5) 

 

where 𝜌  and 𝜏  are weight coefficients set to 0.7 and 0.6 

respectively. 𝐶𝐶 and 𝐺𝐶 are colour contrast and gradient contrast 

values at pixel 𝑖, 𝑗. Figure 3 visualises the pipeline of the model, 

showing outputs for each stage, with feature cues being calculated 

from the input image. These features are fused, then binarised using 

a threshold for evaluation. 

5. EXPERIMENTAL RESULTS 
To assess the effectiveness of each gradient operator and the 

respective feature cues, we evaluate the output using an accuracy 

measure to compare the acquired output with the ground-truth 

image. Computation time is also considered to assess the efficiency 

of each feature, the operator size and the final saliency approach. 

5.1 Evaluation Metrics 
For a quantitative evaluation, we selected an algorithmic accuracy 

metric 𝐴 , comparing the saliency map 𝐹𝑆  with its associated 

ground-truth mask 𝑀. Thus, this enables individual features to be 

evaluated, as well as combined features amounting to saliency 

models. As with all state-of-the-art saliency approaches, the 

saliency map 𝐹𝑆 is binarised using the threshold  [0, 255]. At each 

threshold, the segmented saliency map is compared with the 

ground-truth binary mask and the accuracy recorded using the 

following equation: 

                                𝐴 =  
(𝑡𝑝 + 𝑡𝑛)

(𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛)
                              (6) 

 

where 𝑡𝑝 , 𝑡𝑛 , 𝑓𝑝  and 𝑓𝑛  are defined as true positives, true 

negatives, false positives and false negatives respectively.  

For performance validation, individual features as well as feature 

combinations are evaluated using the publicly available MSRA10K 

salient object dataset [15]. The average accuracy, maximum 

accuracy and runtime are recorded to quantitatively evaluate each 

operator and the final saliency model. 

5.2 Results 
The results for each individual feature, determined using the 

described gradient operators, are presented in Table 1. Besides this, 

a visual comparison of the gradient contrast output can be seen in 

Figure 4. We assessed the two features, outlined in Table 1, across 

100 images from the MSRA10K dataset. These images were 

manually selected to test each feature under varying conditions 

such as type, position and size of object, background colours and 

complexity. Each operator scored a comparable average accuracy 

for gradient contrast. Generally, as the neighbourhood contrast 

region was increased, so did the average accuracy. Gradient 

magnitude has separated the operators in terms of their scored 

accuracies. Bilinear-Gaussian and Sobel achieved averages of 

80.9% and 81% respectively, however, the Sobel scored a higher 

maximum accuracy of 96.6% on par with the Linear-Gaussian 

operator. The Near-Circular operator recorded the best accuracies 

with an average of 83.7% and a maximum of 98.3%. With regards 

to runtime, the operators were able to compute each feature with 

minute differences. Visually, it can be observed that the model most 

suited for saliency detection is the Near-Circular (see Figure 4(c)). 

It successfully suppressed more background noise than any of the 

other operators, whilst detecting the salient object’s edges. Figure 

5 shows the final saliency maps of the Sobel and Near-Circular 

operators. As seen, the Sobel’s output produces noisy edges, 

whereas the Near-Circular produces smooth edges with finer detail. 

The resultant model, gradient contrast over a neighbourhood of 9x9 

combined with colour, achieved an average accuracy of 89.3%, 



with the Near-Circular operator. The Sobel’s average accuracy was 

84.8%, a shortfall of 4.5% compared to the Near-Circular saliency 

model. Correspondingly, the main gain from the presented results 

in Table 2 comes from the use of the 5x5 Near-Circular gradient 

operator. While these results are encouraging, the combined 

saliency models suffer from runtime deficiencies, due to the 

incorporation of the global colour contrast feature cue. 

Table 2. Gradient operator results combined with 

colour 

Operator Avg. Acc. Max Acc. Runtime 

Linear Gaussian 88.60% 99.30% 15.5478 secs. 

Bilinear 

Gaussian 

85% 98.90% 16.5775 secs. 

Near-Circular 89.30% 99.70% 15.2371 secs. 

Sobel 84.80% 99.50% 14.8950 secs. 

6. CONCLUSION 
This paper investigated gradient information as a feature for use in 

salient object detection. The outlined features include gradient 

magnitude and gradient contrast. We implemented and compared 

multiple gradient operators and found that operators do have an 

impact on the success of gradient as a feature, with the Near-

Circular being best suited for proposing gradient as a saliency 

feature. After evaluation, we incorporated the Near-Circular 

derivative operator as part of the proposed model. The presented 

algorithm combines gradient contrast with colour. When evaluated 

on the MSRA10K dataset, and compared with the proposed model 

using a Sobel operator, accuracy increases of 4.5% were achieved 

using the Near-Circular gradient operator.  

Further investigation is required to improve the computational 

efficiency of the proposed algorithm as highlighted by the obtained 

runtimes. Other feature cues such as depth, texture and motion will 

be considered as means of improving the robustness of the 

proposed approach. Multiple scale feature extraction for saliency is 

another avenue we aim to explore. 
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Figure 4. Visual comparison of gradient contrast feature maps from each operator. a) Grayscale image. b) Sobel operator 

output. c) Near-Circular operator output. d) Bi-linear operator output and e) is the Linear Gaussian operator output. 

 

Figure 5. Visual comparison of saliency maps with gradient. a) Colour saliency map. b) Final saliency map with Sobel gradient. 

c) Final saliency map with Near-Circular gradient. 

 


