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Subarachnoid hemorrhage (SAH) is devastating disease with high mortality, high disability

rate, and poor clinical prognosis. It has drawn great attentions in both basic and clinical

medicine. Therefore, it is necessary to explore the therapeutic drugs and effective targets

for early prediction of SAH. Firstly, we demonstrate that LCN2 can effectively intervene or

treat SAH from the perspective of cell signaling pathway. Next, three potential genes that

we explored have been validated by manually reviewed experimental evidences. Finally,

we turn out that the SAH early ensemble learning predictive model performs better than

the classical LR, SVM, and Naïve-Bayes models.

Keywords: bioinformatics, genomics, big data, artificial intelligence, genetics

INTRODUCTION

Subarachnoid hemorrhage (SAH) is the fastest developing and most critical hemorrhagic
cerebrovascular disease, accounting for 5% of cerebrovascular diseases (Macdonald, 2014), and
is associated with high rates of mortality and disability and poor clinical prognosis (Suarez
et al., 2006). Although there have been significant advances in diagnostic methods, surgery, and
endovascular techniques in recent years, the mortality rate of SAH remains as high as 15%
(Macdonald et al., 2008).

Recent research has shown that early brain injury (EBI) may be themain cause of poor prognosis
in SAH patients. Therefore, current SAH studies focus on exploring therapeutic drugs and targets
for reduction of EBI after SAH and the early prediction of SAH (Sozen et al., 2011).

Lipocalin 2 (LCN2) is an acute secretory protein that regulates the pathophysiological processes
of various organ systems in mammals and participates in the intrinsic immune protection of the
central nervous system (CNS) (Flo et al., 2004; Ferreira et al., 2015). Studies of acute white matter
injury in a mouse SAH model and the role of LCN2 in injury (Egashira et al., 2014) indicate that
LCN2 plays an important part in SAH-induced white matter injury. Since above evidences suggest
that LCN2 is closely related to SAH, we propose our first research question: is specific intervention
for LCN2 (Warszawska et al., 2013) a promising SAH treatment strategy?

On the other hand, most previous studies (Chu et al., 2011; Ni et al., 2011; Zhang et al., 2017a)
have only explored biomarkers for SAH prediction and treatment in a narrow molecular range,
rather than taking a genome-wide approach. We propose our second research question: could
we use a genome-wide approach to find potential biomarkers for SAH based on the effects of
LCN2 treatment?

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00391
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00391&domain=pdf&date_stamp=2020-04-21
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yujiechen6886@foxmail.com
mailto:zhangle06@scu.edu.cn
https://doi.org/10.3389/fgene.2020.00391
https://www.frontiersin.org/articles/10.3389/fgene.2020.00391/full
http://loop.frontiersin.org/people/806369/overview
http://loop.frontiersin.org/people/394064/overview
http://loop.frontiersin.org/people/873664/overview
http://loop.frontiersin.org/people/952522/overview
http://loop.frontiersin.org/people/952401/overview
http://loop.frontiersin.org/people/732339/overview
http://loop.frontiersin.org/people/510211/overview
http://loop.frontiersin.org/people/822633/overview


Lei et al. Predictive Model of Subarachnoid Hemorrhage

Previous studies have usually predicted SAH based on
diagnostic imaging (Frontera et al., 2006; Ramos et al., 2019)
and clinical automation data (Roederer et al., 2014), which may
not provide enough predictive power. Thus, we propose our
third research question: could we use key genes to build a more
powerful early prediction model for SAH?

In this paper, we propose a new research plan to answer the
above three research questions. First, we use SAH intervention
experiments to screen out candidate genes that are susceptible
to LCN2, then employ Fisher’s exact test (Xie et al., 2011; Li
et al., 2017; Xia et al., 2017; Zhang et al., 2019b) to choose
signaling pathways from among the candidates under different
experimental conditions. Second, we use E-Bayes (Carlin and
Louis, 2010), SVM-RFE (Duan et al., 2005), SPCA (Zou et al.,
2006), and statistical tests (Zhang et al., 2016, 2018, 2019b,d,
2020; Xiao et al., 2019) to investigate key genes from experimental
data by considering both SAH and LCN2 as factors. Third, we
integrate the logistic regression (LR), support vector machine
(SVM), and Naive-Bayes algorithms (Xia et al., 2017; Zhang et al.,
2017a, 2019a) into an ensemble learning model (Gao et al., 2017;
Zhang et al., 2019b) to build a model for early SAH prediction.

First, manual review of the experimental evidence (Osuka
et al., 2006; Majdalawieh et al., 2007; Hanafy et al., 2010; Hao
et al., 2014; Kwon et al., 2015; Yu et al., 2018) demonstrates
that we could intervene or treat SAH by targeting LCN2 from
a cell signaling pathway perspective. Next, we explore three
key genes that are sensitive to both SAH and LCN2 treatment,
again using manual review of the experimental evidence (Huang
et al., 2016; Sabo et al., 2017; Yu et al., 2018) to cross-validate
the relationships between SAH and these key genes. Finally, we
show that our SAH early prediction ensemble-learning model
outperforms the classical LR, Naive-Bayes, and SVM models. In
summary, we consider that this work provides a novel strategy for
the future study of clinical treatment of SAH and related diseases.

MATERIALS AND METHODS

Experimental Configuration
All experimental procedures were approved by the Ethics
Committee of Southwest Hospital and were performed in
accordance with the guidelines of the National Institutes of
Health Guide for the Care and Use of Laboratory Animals.

Intervention Experiment for SAH
The original chip data for this experiment were provided by the
Department of Neurosurgery, Southwest Hospital, PLA Military
Medical University. SAH and sham-operated models were
established; details are given in the Supplementary Material.
Each experimental group included five mice, and the white
matter area of the cerebral cortex was taken for gene chip testing.
A total of 10 original chip samples were obtained from the SAH
intervention experiments; these were divided equally into two
groups as follows.

(1) SAH disease group: brain tissue in the white matter region
of the cerebral cortex of SAH mice.

(2) Control group normal-1: brain tissue in the white matter
region of the cerebral cortex of normal mice.

The chip was an Affymetrix GeneChip Mouse Gene 1.0 ST
Array. Raw data included sample RNA extraction (white
matter brain cells from the SAH model and from normal
mice), sample RNA quality detection (total RNA>1 ug), cDNA
synthesis, sense strand cDNA fragmentation, biotin labeling, chip
hybridization, chip elution, and chip scanning. The raw data
are available at http://www.ebi.ac.uk/arrayexpress/experiments/
E-MTAB-8407.

We then carried out mass analysis and used the R
Bioconductor package to perform quality control for each
original chip (the SAH disease group and the control group
normal-1). In the output gray scale image (Figure S1) for each
chip sample, each chip name and the four corner patterns were
very clear, and the contrast between light and dark was moderate.

The right panel of Figure 1A shows the Relative Log
Expression (RLE) boxplot for these 10 chips. The center
of each sample was close to the position RLE = 0. This
indicates that the expression levels of most genes in the sample
were consistent. In addition, Figure S2 describes a normalized
unscaled standard errors (NUSE) detection (Marta and Marc,
2014). Since Figure S2 shows that the center of each sample is
close to the position NUSE = 1, we consider that the samples
are too stable to have obvious batch effect. Then, we used
Robust Multi-chip Analysis (RMA) (Irizarry et al., 2003) for data
preprocessing, including background and perfect match probes
(PM) correction, normalization, and summarization, to obtain
the probe expression data matrix (Table S1). Finally, clustering
analysis (Liu et al., 2019; Xiao et al., 2019; Zhang et al., 2019c; Wu
and Zhang, 2020) (Figure S3) shows that the major differences
between the chip of each group comes from SAH.

Intervention Experiment for LCN2
Here, in order to interfere with the expression of LCN2, 2
µL of specific short interfering RNAs (siRNAs) was delivered
into the lateral ventricle with a Hamilton syringe. The injection
was performed 48 h before SAH and three groups were
used, as described below. We detail the procedures in the
Supplementary Material.

(1) SAH-siRNA-LCN2: the SAH model was established and
treated with intrathecal injection of LCN2 siRNA, and two
samples were taken on the first and third days after surgery.

(2) SAH-siRNA-NC: the SAH model was established and
treated with intrathecal NC siRNA, and two samples were taken
on the first and third days after surgery, which helped us to
remove the interference factors associated with the siRNA vector.

(3) Control group normal-2: the brain tissue of the white
matter region of the cerebral cortex without any treatment.
The total number of samples in all experiments was 25 (Table 1).
RNA sequencing was performed on the samples and the raw data
are available at https://www.ncbi.nlm.nih.gov/sra/PRJNA575372.

Workflow of the Study
The workflow of the study is illustrated in Figure 1.
First, we designed the intervention experiment for
SAH detailed in section “Intervention Experiment
for SAH”, which allowed us to obtain the differential
genes under different experimental conditions. Based
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FIGURE 1 | Workflow of the study. (A) SAH intervention experimental chip RLE box line diagram; the abscissa is log_2 (Median value of sample expression) and the

ordinate represents each chip; (B) The volcano map of the comparison group SAH-siRNA-NC (1 day) vs normal-2. The abscissa is log2(Fold change) and the ordinate

is −log10(FDR); The red point is the up-regulated gene, the blue point is the down-regulated gene, and the non-dispersive point is the non-differentiated gene; (C) Key

gene screening workflow; (D) The accuracy for ensemble learning, LR, SVM and Naive-Bayes.
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TABLE 1 | Experimental sample description after LCN2 intervention experiment.

Sample Number of

samples

Description

SAH-siRNA-LCN2(1day) 5 Mouse (SAH) brain cells, Intrathecal

injection of LCN2 siRNA for 1 day

SAH-siRNA-LCN2(3day) 5 Mouse (SAH) brain cells, Intrathecal

injection of LCN2 siRNA for 3 day

SAH-siRNA-NC(1day) 5 Mouse (SAH) brain cells, Intrathecal

injection of blank siRNA for 1 day

SAH-siRNA-NC(3day) 5 Mouse (SAH) brain cells, Intrathecal

injection of blank siRNA for 3 day

Normal-2 5 Mouse (normal) brain cells, blank

control group-2

on these differential genes, we could identify the key
signaling pathways.

As targeting LCN2 could result in changes in these related
signaling pathways (causing remission or promotion of SAH),
we consider that LCN2 plays an important part in the entire
biological cell process for SAH.

Next, we used an intervention experiment for LCN2 to
obtain gene expression levels for diseased and normal mouse
brain cells at different time points. Then, we employed
commonly used dimensional reduction algorithms to
explore three key genes under the impact of both SAH and
LCN2 treatment.

Finally, we used these three key genes as classifiers to develop
an ensemble learning model for early SAH prediction, the
predictive power of which wasmuch better than that of the classic
LR, Naive-Bayes, and SVMmodels.

RESULTS

Signaling Pathway Analysis
Differentially Expressed Gene Selection
We used E-Bayes, one of the most commonly used methods
for differential expression analysis (Edwards et al., 2005), to
screen the differential genes by setting Fold change ≥ 1.5 and
p-value < 0.05. Table S2 lists 2942 differentially expressed genes,
accounting for 10.16% of the total number of genes (28,944).
Among them, there were 1016 and 1926 genes with upregulated
and downregulated expression (Figure S4), respectively.

Pathway Analysis
We used Equation 1 and the data in Table S3 to explore related
signaling pathways by carrying out Fisher’s exact test (Xia et al.,
2017) using Kobas 3.0 (Wu et al., 2006; Xie et al., 2011; Ai and
Kong, 2018) for the differentially expressed genes from Table S2.

pF(nf , n,Nf ,N) = 2 ∗

nf
∑

x=1

(

n
x

) (

N − n
Nf−x

)





N
Nf





(1)

TABLE 2 | Differential expressed genes for different experimental group.

Experimental group Total number

of genes

Up-regulation

of genes

Down-regulation

of genes

SAH-siRNA-LCN2(1day) VS

normal-2

25342 1541 634

SAH-siRNA-LCN2 (3day)

VS normal-2

25055 1264 451

SAH-siRNA-NC(1day) VS

normal-2

25384 1159 556

SAH-siRNA-NC(3day) VS

normal-2

25564 1297 409

SAH-siRNA- LCN2 (1day)

VS SAH-siRNA-NC(1day)

25293 99 14

SAH-siRNA- LCN2 (3day)

VS SAH-siRNA-NC(3day)

25251 5 18

Here, N is the number of genes in the sample and n
is the number of genes contained in the pathway. Nf

is the number of differentially expressed genes and nf is
the number of differentially expressed genes included in
the pathway.

The Fisher’s exact test assumes H0 : p1 = p2; the alternative
hypothesis is H1 : p1 6= p2. p1is the probability that the
differentially expressed gene will fall in the pathway, and p2 is the
probability that the non-differentiated gene does not fall in the
pathway. The p-value (pF) of Fisher’s exact test was obtained by
Equation 1.

Table S2 lists 70 signaling pathways for which the p-value
was less than 0.001. LCN2 is a protein involved in MAPK

signaling pathways that protects the CNS as part of the innate
immune system (Warszawska et al., 2013). Previous studies have
shown that LCN2 activates phosphorylation of p38MAPK, which
phosphorylates the Ser168 and Ser170 sites of NFATc4 and
inhibits nuclear translocation of NFATc4 (Olabisi et al., 2008).
NFATc4 is a key factor in remyelination and closely related to
SAH, indicating that white matter damage after SAH is associated
with remyelination (Kao et al., 2009; Guo et al., 2017).

Therefore, we hypothesize that LCN2 could promote the
phosphorylation of transcription factor NFATc4 and inhibit
its nuclear transcription by activating p38 MAPK, thereby
preventing remyelination and causing white matter damage
after SAH.

LCN2 Intervention Experimental Results Analysis
To prove our hypothesis, we designed a LCN2 intervention
experiment (Figure 1B) to test whether LCN2 could affect SAH
from the perspective of the differential expressed genes and the
related signaling pathways.

First, we used the DESeq2 (Varet et al., 2016) method to
select differentially expressed genes from SAH-siRNA-LCN2
and normal-2, SAH-siRNA-NC and normal-2, and SAH-siRNA-
LCN2 and SAH-siRNA-NC groups on days 1 and 3, respectively
(Table 1). The results are shown in Table 2, Table S4, and
Figure S5.
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TABLE 3 | Cross-validated SAH related signaling pathway.

Experimental group Important pathways related to SAH

SAH-siRNA-LCN2 (1day)

VS normal-2

PI3K-Akt (Hao et al., 2014), Jak-STAT (Osuka

et al., 2006), p53 (Yu et al., 2018), TNF (Hanafy

et al., 2010), Toll-like receptor (Kwon et al.,

2015), NF-kappaβ (Majdalawieh et al., 2007)

SAH-siRNA-LCN2 (3day)

VS normal-2

PI3K-Akt (Hao et al., 2014), Jak-STAT (Osuka

et al., 2006), p53 (Yu et al., 2018), TNF (Hanafy

et al., 2010), Toll-like receptor (Kwon et al.,

2015), NF-kappaβ (Majdalawieh et al., 2007)

SAH-siRNA-NC (1day) VS

normal-2

PI3K-Akt (Hao et al., 2014), Jak-STAT (Osuka

et al., 2006), TNF (Hanafy et al., 2010), Toll-like

receptor (Kwon et al., 2015), NF-kappaβ

(Majdalawieh et al., 2007)

SAH-siRNA-NC (3day) VS

normal-2

PI3K-Akt (Hao et al., 2014), Jak-STAT (Osuka

et al., 2006), TNF (Hanafy et al., 2010), Toll-like

receptor (Kwon et al., 2015), NF-kappaβ

(Majdalawieh et al., 2007)

SAH-siRNA- LCN2 (1day)

VS SAH-siRNA-NC (1day)

TNF (Hanafy et al., 2010), Toll-like receptor

(Kwon et al., 2015)

SAH-siRNA- LCN2 (3day)

VS SAH-siRNA-NC (3day)

Transcriptional misregulation in cancer (Lee and

Young, 2013)

FIGURE 2 | Venn plot for the key genes.

Next, we used Kobas 3.0 (Wu et al., 2006; Xie et al.,
2011; Ai and Kong, 2018) to carry out Fisher’s exact test for
the differential genes in Table 2, to identify related signaling
pathways (Table S5). Next, we used the manually reviewed
evidence (Osuka et al., 2006; Majdalawieh et al., 2007; Hanafy
et al., 2010; Hao et al., 2014; Kwon et al., 2015; Yu et al., 2018)
to cross-validate the SAH-related signaling pathways in Table S5.
Table 3 lists the cross-validated SAH-related signaling pathways.

As shown in Table 3, all the experimental groups had
SAH-related signaling pathways except the transcriptional
misregulation in cancer signaling pathway (Lee and Young,
2013) in the SAH-siRNA-LCN2 (3 day) vs. SAH-siRNA-NC (3
day) experimental group. However, as one of the proteins from
this pathway, Gzmb (Table S5), is closely associated with post-
ischemic brain cell death (Chaitanya et al., 2010), we consider

that it could be a new target for secondary brain injury inhibition
(Armstrong et al., 2017). Therefore, we conclude that specific
intervention for LCN2 is a promising SAH treatment strategy.

Feature Selection
After demonstrating the impact of LCN2 on SAH, we chose
potential biomarkers for SAH using a genome-wide approach.
Figure 1C shows the workflow used to choose key genes that
were not only related to both SAH and LCN2 but were also
insensitive to treatment at different time points. Figure 1C shows
the following three modules.

(1) SAH intervention experiment module

Owing to the large number of differential genes (Table S2),
it was necessary to further narrow down the scope of the
screening. First, we used the E-Bayes method (Edwards et al.,
2005) to filter the probe expression data matrix (Table S1) by the
E-Bayes function of R’s limma package (Smyth et al., 2005). The
differential probes were obtained by setting the filter parameters
to Fold change ≥ 2 and p-value < 0.05.

Second, we used SVM-RFE (Duan et al., 2005) (Equation 2)
to rank the genes in the probe expression data matrix, and then
carried out the t-test and F-test (Zhang et al., 2017b) for the top
100 genes.

{

DJ(i) = (1/2)αTHα − (1/2)αTH(−i)α
H =yiyjK(xi,xj)

(2)

where yi and yj represent the classification labels of
probes xi and xj, respectively; K(xi, xj) is the kernel function,
i, j = 1, 2, . . . , n; α is obtained by training the SVM classifier;
DJ(i) is the sort function; and H is the matrix.

We then combined the results of these two methods to
obtain the significant probes for both the E-Bayes and SVM-
RFE methods.

Finally, we used the transcription cluster annotation file
(version:MoGene-1_0-st-v1) downloaded from the Affy (Gautier
et al., 2004) website to extract the gene ID for these probes,
resulting in 47 key genes (Table S6).

(2) LCN2 intervention experiment module

We performed t-tests and F-tests (Zhang et al., 2017b) for
the key genes (Table S6) in the SAH-siRNA-LCN2 (1 day) vs.
normal-2 and SAH siRNA-LCN2 (3 day) vs. normal-2 groups
(Table S4).

There were 15 and 13 statistically significantly differential
genes for the SAH-siRNA-LCN2 (1 day) vs. normal-2 group
(Table S7) and the SAH-siRNA-LCN2 (3 day) vs. normal-2 group
(Table S8), respectively. Taking the intersection of the results
from these two experimental groups gave nine key genes, Tk1,
Cyr61, Nupr1, Dcn, Lum, Olig1, Pcolce2, Slc6a9, and Kcnt2,
which were sensitive to both SAH and LCN2 intervention,
regardless of treatment, at different time points.

(3) Dimensional reduction module

Next, we employed the SPCA algorithm (Zou et al., 2006;
Li et al., 2017) to perform dimensional reduction for the nine
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FIGURE 3 | SAH predictive ensemble learning model.
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key genes. This resulted in five candidate genes (Tk1, Cyr61,
Olig1, Slc6a9, and Pcolce2). However, manual review of the
experimental evidence indicated that only Cyr61 (Yu et al., 2018),
Olig1 (Sabo et al., 2017), and Slc6a9 (Huang et al., 2016) were
closely related to SAH, cerebral hemorrhage, and brain injury.
Therefore, we considered these three genes (Figure 2, Table S9)
to be potential biomarkers for SAH.

Ensemble Learning Model
Early SAH Prediction Model
This study used three classification algorithms, LR (Hosmer
et al., 2013), SVM (Suykens and Vandewalle, 1999), and Naive-
Bayes (Wang et al., 2007) to develop the SAH prediction model,
using the selected key genes as the respective classifiers. These
three classic methods were then integrated into a novel ensemble
learning model to improve the predictive accuracy.

Figure 3 shows the workflow of the SAH prediction model,
based on our previous studies (Li et al., 2017; Xia et al., 2017;
Zhang et al., 2019b). The key equations of the model are
as follows.

Dt(i) =
1

n
(3)

εt =
number of incorrectly classified samples

total number of samples
(4)

αt =
1

2
ln
1−εt

εt
(5)

Dt+1 (i) =
Dt (i)

sum(D)

{

exp (−αt) , if ht (xi)=yi
exp (αt) , if ht (xi) 6=yi

(6)

Hm(x) = sign

T
∑

t=0

αtht(x) (7)

EHm, =

3
∑

m=1

PHm (8)

Y(x) =

{

1 EHm≥0.5
0 EHm< 0.5

(9)

Here, Dt (i) is the weight distribution, t is the iteration
time, i is the index of the sample, and n is the number
of the sample. εt and αt are the error rate and weight of
each weak classifier ht , respectively. For a sample set S =
{ (

x1, y1
)

,
(

x2, y2
)

, . . . ,
(

xn, yn
) }

, xn are the samples and yn ∈

{0, 1} are the labels; yi =0 indicates that xi is not an SAH
patient, and yi =1 indicates that xi is an SAH patient. Hm is
the homomorphic integration for each weak classifier ht ; m is
the index of the weak classifier, m= 1, 2, 3; T is the threshold
of the iteration time; PHm is the predictive probability of disease;
and EHm is the estimated probability of the model Hm. Y (x)
is the result of the final classifier obtained by a voting method
(Dietterich, 2000).

Predictive Performance Comparison
Figure 4A compares the classification performance for the LR,
Naive-Bayes, SVM, and ensemble learning models, based on
four commonly used classification measurements (Table S10)
(Zhang et al., 2019b). The numerical values used in Figure 4A

FIGURE 4 | Model performance. (A) Comparison of classification performance

of LR, SVM, Naive-Bayes, and ensemble learning model; (B) ROC chart

plotted for LR, SVM, Naive-Bayes, and ensemble learning model.

are listed in Table S11; these demonstrate that the ensemble
learning method outperforms the other three methods with
respect to accuracy, precision, sensitivity and specificity. The
ROC chart plotted in Figure 4B compares the classification
effects of LR, Naive-Bayes, SVM, and ensemble learning models.
The classification effect of ensemble learning models is also
superior to the other three.

DISCUSSION

This study aimed to interrogate the potential therapeutic targets
of SAH and use them as classifiers to develop a model for early
prediction of SAH.

To achieve this aim, we proposed the following three
scientific questions. First, is specific intervention involving
LCN2 a promising SAH treatment strategy? Second, could we
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choose potential biomarkers for SAH at a genome-wide level
by considering the effects of LCN2? Third, could we use key
genes to build an SAH early prediction model with strong
predictive power?

Regarding the first question, as the manually reviewed
experimental evidence (Osuka et al., 2006; Majdalawieh et al.,
2007; Hanafy et al., 2010; Hao et al., 2014; Kwon et al., 2015;
Yu et al., 2018) and the results in Table 3 all indicate that
LCN2-related signaling pathways play an important part in the
pathogenesis SAH, we propose that LCN2 could promote or
alleviate SAH-related diseases, and could also be used to treat
SAH in the future.

To answer the second question, we used mathematical
algorithms to explore five potential gene biomarkers (Tk1, Cyr61,
Olig1, Slc6a9, and Pcolce2), considering the impact of both SAH
and LCN2 treatment at different time points, and also used the
manually reviewed experimental evidence to demonstrate that
Cyr61 (Yu et al., 2018), Olig1 (Sabo et al., 2017), and Slc6a9
(Huang et al., 2016) were closely related to SAH. Although Tk1
and Pcolce2 have not been reported to be associated with SAH,
we will investigate their connections in future work.

Regarding the third question, although this study represents
significant progress in SAH prediction, it had several drawbacks.
For example, the SAH intervention experiment sample size
was too small for us to demonstrate high predictive accuracy
for the model. In future work, we will integrate more recent
bioinformatics research algorithms (Zhang et al., 2016, 2017a,
2018, 2019a,d; Gao et al., 2017; Zhang and Zhang, 2017) and data
into the system to overcome the problems.

In summary, this study analyzed the impact of LCN2 on SAH
and explored the key biomarkers of SAH under LCN2 treatment
at different time points. An ensemble learning model was
developed to predict SAH occurrence. The results demonstrate
that LCN2 (Warszawska et al., 2013) can effectively intervene
in or treat SAH from a cell signaling pathway perspective. Also,
three key genes were identified and validated bymanual review of
the experimental evidence (Huang et al., 2016; Sabo et al., 2017;
Yu et al., 2018). Finally, the results showed that the ensemble

learning model performed better for early SAH prediction than
the classical LR, SVM, and Naive-Bayes models.
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