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ABSTRACT  

At present malaria causes over 400,000 deaths per annum and an excess of 200 million 
cases worldwide, with most cases occurring in African countries. In Zambia, as in many 
other endemic countries, some regions have high malaria prevalence that is highly 
influenced by climatic and environmental factors. This influence can potentially interfere 
with intervention program effectiveness and alter distribution and incidence patterns, 
resulting in poorer health outcomes and higher incidence rates in some countries with 
associated additional financial costs estimated to be up to US$2.4 billion yearly by 2030. 

This study aimed to investigate the spatial and temporal impacts of climate change on 
malaria transmission, control and elimination efforts in Zambia from 2000-2016. The 
study modelled Zambian malaria incidence data against a range of socio-environmental 
datasets, to investigate near-term climatic change and evaluate impacts on control 
interventions. The results highlighted the importance of understanding evident within-
country differences in malaria spatial patterns and how this information can be better used 
to improve and target implementation of expensive control programmes where they are 
most needed. 

It was established that climate change negatively impacts malaria control efforts, and if 
ignored, has the potential to suppress ongoing malaria elimination efforts significantly. 
The results indicate that near-term climate change is likely to increase malaria incidence, 
particularly in areas where malaria incidence trends have been either increasing or 
decreasing. While malaria incidence rates are highest in young children age <5 and have 
been decreasing in the last 10 years, significant increases in malaria were identified in 
those aged 5 years and older. These could have serious future economic and social 
impacts. The study also showed seasonally sensitive diurnal temperature range (DTR), 
often neglected in climate change research, as a significant environmental variable 
affecting malaria incidences, with a strong seasonal influence. In addition to a general 
north-south pattern of spatial variation in incidence rates, some high incidence hotspots 
for malaria were identified, particularly along border areas with neighbouring high 
endemic countries. The results suggest the urgent need to forge bilateral cross-border 
malaria initiatives in the fight against malaria with neighbouring high endemic countries. 
A key recommendation from the thesis is for an adaptive-scaling approach to the 
implementation of both malaria monitoring and intervention programmes for control and 
elimination strategies.
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1 CHAPTER ONE 

GENERAL INTRODUCTION 

 

 

This chapter presents a brief background of the study. It outlines the key concepts, the 

aim, specific objectives, and the structure of this thesis. 
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1.1 Introduction 

This chapter is a brief introduction to the overall study and thesis. It highlights the 

contextual nuances of the study’s subject, malaria, and introduces broader key themes 

that would aid a general understanding of subsequent chapters. It also sets the ecological 

and epidemiological scenes and their complexity in the understanding of malaria 

transmission dynamics. The chapter shows how environmental variables vis-à-vis climate 

generally provide the ecological conditions necessary for sustained malaria transmission. 

The chapter also briefly discusses malaria prevention, management, and other 

contemporary themes that contribute to and define the current state of malaria disease in 

affected countries. 

1.2 Malaria Epidemiology 

 Global to local malaria 

At least 3.4 billion of the world’s population are at risk to malaria infections (Jackson, 

Johansen, Furlong, Colson, & Sellers, 2010; World Health Organization, 2019c). Malaria 

is a parasitic disease transmitted by Plasmodium (P.) species, and spread from one person 

to another by female Anopheles mosquitoes. There are five human malaria parasites; 

namely, P. vivax, P. ovale, and P. malariae, P. knowlesi, and P. falciparum (Stramer & 

Dodd, 2018; Wanger et al., 2017). P. falciparum accounts for the highest mortality and 

morbidity worldwide followed by P. vivax and P. knowlesi. Figure 1.1 shows the general 

global distribution of malaria species and associated numbers of infections in 2015. 
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Figure 1.1: The distribution of primary malaria species 

Generally, P. falciparum is the dominant species in Africa. Based on 2017 malaria 

estimates, P. falciparum comprised 99.7% of all infections in Africa, 62.8% of those from 

South-East Asia, 69% from the Mediterranean, and 71.9% from the Western Pacific 

(World Health Organization, 2019c). In contrast, P. vivax is dominant only in the 

Americas, accounting for about 75% of the total malaria infections there (World Health 

Organization, 2018e, 2019c). 

Despite being preventable and curable, malaria still inflicts huge annual death tolls among 

those exposed to the infection (Shretta et al., 2017). Children aged below five years old, 

pregnant women, mobile populations, as well as HIV/AIDS patients, are the most 

vulnerable groups to malaria (Wilson, 2017). For example, in 2018 alone, children under 

5 years old comprised 67% of the total malaria deaths worldwide (World Health 

Organization, 2019c). 

In the last century, the overall geography of global malaria endemicity has declined by 

half (Hay, Guerra, Tatem, Noor, & Snow, 2004). In the last fifty years alone, the number 

of endemic malaria countries declined from 106 to 86. The global annual malaria 

incidence and mortality rates dropped by 36% and 60%, respectively (Feachem et al., 

2019). This is partly as a result of improvements in economic development (Gething et 

al., 2010), extensive implementation of malaria interventions such as insecticide-treated 

mosquito nets (ITNs) and indoor residual spraying (IRS), the availability of early and 

rapid malaria diagnosis, and enhanced access to effective treatment using Artemisinin-

Source: (Nabarro, Morris-Jones, & Moore, 2018) 
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based combination therapies (ACTs) (Kleinschmidt et al., 2009; Okumu & Moore, 2011; 

West et al., 2014).  

Despite this progress, changes in global population characteristics have seen an increase 

of over 3 billion people currently residing in places with considerable malaria risk (Hay 

et al., 2004). For instance, rapid population growth has driven the increase in the 

population living in malaria-endemic areas of Africa. Today, over half of the population 

on continental African still live in areas with a substantial intensity of malaria (Noor et 

al., 2014).  

Challenges, such as mosquito resistance to common insecticides, particularly pyrethroids 

and the threats from parasite resistance to ACTs, have stalled progress in various parts of 

the world. Co-infections with other infectious diseases like HIV and Tuberculosis (TB) 

increase the risk of parasites and clinical episodes of malaria in adults, and pregnant 

women infected with HIV have higher malaria frequency and parasite density than those 

uninfected (Wilson, 2017). Similarly, infants born to malaria-HIV co-infected women 

have a risk three to eight times higher of postnatal mortality than infants born to mothers 

with only one of the two infections. Pregnant women, particularly first pregnancies, also 

have increased susceptibility to malaria infections and subsequent severity of the disease 

(Lufele et al., 2017). 

 Malaria disease progression 

A clinically simplified view of malaria disease progress sequence from the point of a 

plasmodium-infected bite is as follows (World Health Organization, 2014b):  

𝑰𝒏𝒇𝒆𝒄𝒕𝒊𝒐𝒏 → 𝒂𝒔𝒚𝒎𝒑𝒕𝒐𝒎𝒂𝒕𝒊𝒄 𝒑𝒂𝒓𝒂𝒔𝒊𝒕𝒂𝒆𝒎𝒊𝒂 → 𝒖𝒏𝒄𝒐𝒎𝒑𝒍𝒊𝒄𝒂𝒕𝒆𝒅 𝒊𝒍𝒍𝒏𝒆𝒔𝒔 → 𝒔𝒆𝒗𝒆𝒓𝒆 𝒎𝒂𝒍𝒂𝒓𝒊𝒂 → 𝒅𝒆𝒂𝒕𝒉 

The geographical intensity of malaria transmission is the determinant of the distribution 

pattern of clinical disease.  

In areas of periodic or highly seasonal malaria endemicity, often in various parts of the 

world outside the African continent, malaria transmission intensity has strong seasonal 

and annual cycles over relatively fine spatial scales. The limited transmission hinders the 

acquisition of broader population immunity and creates a highly homogeneous 

geographical risk across all ages. In the event of a delay or lack of treatment, everyone 

has a high probability that the disease will grow into severe malaria and possibly death.  
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The presence of some level of immunity against malaria offers protection from malaria 

severity, while people with no or partial-immunity (naïve individuals) are among the most 

vulnerable groups. Other highly susceptible groups to severe malaria include non-

immune travellers who visit malaria-endemic areas (Franco-Paredes & Santos-Preciado, 

2006; Jacquerioz & Croft, 2009; Schlagenhauf & Petersen, 2008). 

While partial-immunity to clinical disease is often acquired from repeated infections or 

in early childhood, it results in low-risk malaria in later ages. In stable transmission 

environments, clinical malaria is restricted to younger children before they acquire 

immunity. During this time, children have a high risk of developing substantial malaria 

parasite densities, which foster the disease to progress towards severe malaria and 

possibly rapid death. 

Older children and adults with partial immunity, on the other hand, rarely suffer severe 

clinical malaria in such endemic areas. However, they might still have low blood parasite 

densities, without exhibiting symptoms, but they are still capable of infecting mosquitoes. 

These are also called asymptomatic and are a challenging group to capture through the 

self-reporting passive surveillance health system because they do not seek care. 

Asymptomatic malaria is most common in areas of sub-Saharan Africa (Snow & 

Omumbo., 2006). Where people have been exposed to infrequent infections since 

childhood, or when transmission levels are really low, the protection from acquired 

immunity changes. This is because immunity wanes when people become less exposed 

either by way of moving out of endemic areas for prolonged periods or due to the decline 

of malaria in their area.  

Malaria epidemics are common in such areas or areas with unstable malaria transmission 

whenever the entomological inoculation rate (EIR) or biting rate increases due to sudden 

increases in vector mosquito density or survival. These often exhibit extremely high 

incidence coupled with severe malaria across all age groups. For example, a recent (2019) 

outbreak in Burundi, a place with unstable malaria transmission, 7.2 million incidences 

were recorded and over 2700 mortalities in the space of 10 months (World Health 

Organization, 2019b).  

The drivers of the malaria outbreaks in Burundi include climate change, the permanent 

presence of mosquito breeding sites, the expansion of rice cultivation, the change in 

vector behaviour, the low coverage of preventive interventions, and other vulnerability 
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factors within the population (Checchi et al., 2006; World Health Organization, 2019b). 

Past malaria epidemic outbreaks occurred in 2017 when all districts in Burundi were 

affected and resulted in 6.2 million cases and 2700 deaths, and many others have been 

documented since 1999 (Checchi et al., 2006; Guthmann et al., 2007; Legros & Dantoine, 

2001). Similar outbreaks include those around the East African Highlands (Hammerich, 

Campbell, & Chandramohan, 2002; Lindsay & Martens, 1998; World Health 

Organization & UNICEF, 2003). 

 Regional Malaria Disease Burden 

In 2018, about 405 000 malaria deaths were recorded globally, down from an estimated 

416 000 and nearly 500 000 deaths in 2017 and 2010, respectively (World Health 

Organization, 2019c). There were about 228 million infections of malaria in 2018 alone, 

a slight decline from the previous year’s 231 million and a change from the two preceding 

years that saw global malaria increases. Africa consistently carries an excessively high 

proportion of both malaria cases and deaths which often account for at least 90% of global 

totals (World Health Organization, 2013, 2014a, 2015d, 2016b, 2017b, 2018f, 2019c). 

While most of the malaria burden is in sub-Saharan Africa, other WHO regions such as 

the Mediterranean, South-East Asia, Western Pacific and the Americas, are equally at risk 

(World Health Organization, 2019c). The distribution of malaria, however, exhibits 

strong regional patterns. The 2019 world malaria report documented that the top 11 

countries which contributed 85% of the global malaria burden, and top six that 

contributed more than 50% are all in sub-Saharan Africa (World Health Organization, 

2019c).  

1.3 Climate change and Health 

 Climate Change and Human disease 

Weather, climate, environmental factors and health are all intertwined in a complex web 

that continues to show intuitive effects on humanity (Hajat, Vardoulakis, Heaviside, & 

Eggen, 2014). A range of observable threats to humanity and its survival are imminent 

due to these climate change and environmental factors. Extreme weather such as floods, 

aridity, cold or heatwaves in places where they are not usually expected has a direct effect 

on humans including that experienced indirectly through unprecedented variations in 
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disease patterns due to changing ecology and biotic systems. They also include those of 

a human/socioeconomic nature due to loss of cultivation and habitats, leading to strife 

and subsequent mass migrations (McMichael & Lindgren, 2011; Nabi & Qader, 2009; 

Smith et al., 2014; Watts et al., 2015). In Africa, it is projected that temperature increases 

across the continent may expand diseases and their range and increase mortality in 

addition to other indirect effects such as shortages of water and threatened food security 

(Costello et al., 2009). 

In 2009, climate change was considered to be a substantial global health threat in this 

century (Costello et al., 2009). Today, the significance of climate change globally 

threatens to outweigh the gains in human social and economic development, including 

global health (Watts et al., 2015). While the poorest countries and regions are generally 

the most susceptible, the unpleasant effects of a changing climate affect the entire global 

community in various ways, leaving no region untouched (Semenza et al., 2008; Watts et 

al., 2015).  

Long-term changes in temperature alter the nature of the risk from several diseases such 

as malaria and other heat-related illnesses. Many more diseases influenced by temperature 

and precipitation patterns include yellow fever, cholera, dengue virus, zika, chikungunya, 

West Nile virus, TB, malaria, elephantiasis, and meningitis in Africa. These diseases 

present well documented negative economic and developmental costs of climate on the 

population and countries involved (Gallup & Sachs, 2001; Stern, 2007). 

Climate equally influences the prevalence of many respiratory diseases, like asthma and 

allergies (Ariano, Canonica, & Passalacqua, 2010; Bell & Greenberg, 2018; Shea, 

Truckner, Weber, & Peden, 2008). There is also evidence that concentrating resources on 

resolving threats from climate change and health is valuable to economies and is often 

more profitable than mitigating the consequences (Stern, 2007). At the community level, 

reductions in vector-borne diseases foster better productivity and development, which 

could lead to reductions in household poverty (World Health Organization, 2019a). 

Other indirect health-related effects of climate include the transmission of zoonotic 

diseases, HIV/AIDS, Cancer, Mental Health, Heat Stress, stress-related disorders and 

respiratory illness (Portier et al., 2017). 

Although the body of literature generally discussing the effects of climate change on 

health, and other infectious diseases like Arbo-viruses, has increased (Paavola, 2017; 
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Salas & Jha, 2019; Watts et al., 2016), malaria remains among the leading cause of 

morbidity and mortality among diseases, especially in the global south (Challe et al., 

2018; Guinovart, Navia, Tanner, & Alonso, 2006). 

 The link between malaria transmission and climate change 

Malaria is one of the diseases whose inherent relationship with climate continues to 

prompt health, ecological and environmental practitioners to explore the complex 

climatological, epidemiological, and environmental intricacies that as a consequence 

result in poor human health outcomes (Sadoine, Smargiassi, Ridde, Tusting, & Zinszer, 

2018).  

Although the link between malaria outbreaks and climate is sometimes contested, most 

studies (Alonso, Bouma, & Pascual, 2011; Mabaso & Ndlovu, 2012; Midekisa, Beyene, 

Mihretie, Bayabil, & Wimberly, 2015; Wandiga et al., 2010) show that malaria 

endemicity in much of Africa is climate-driven. A number have also shown that changes 

in climate variables that affect malaria may trigger a transmission upsurge, particularly 

along the peripheries of stable zones, such as elevation areas (highlands) (Tonnang, 

Kangalawe, & Yanda, 2010). 

Global models often predict increased malaria risk in parts of Africa especially in the 

highlands (Bouma, Baeza, terVeen, & Pascual, 2011; Chaves & Koenraadt, 2010; Jury & 

Kanemba, 2007), and declines in the northern Sahel (Caminade et al., 2011). Although 

still contested, it is argued that the new areas and populations of projected regional 

malaria spread would be greater than those where the disease would no longer exist. This 

is predominantly due to the lack of or partial immunity of the people in these new areas, 

which threatens severe adverse effects. The threat applies across all ages, according to 

the evidence in the Highlands of East Africa (Bouma et al., 2011; Lindsay & Martens, 

1998). When considering cases globally/within East Africa projected epidemics have 

particularly been observed in Ethiopia, Uganda, Kenya, Sudan, Tanzania, Rwanda, and 

Burundi (Checchi et al., 2006; Hammerich et al., 2002; Legros & Dantoine, 2001; Negash 

et al., 2005; World Health Organization & UNICEF, 2003). 

While the survival of the vector mosquito depends on the environmental conditions 

around it, transmission intensity is influenced by several other aspects associated with the 

pathogen, the mosquito, the people as hosts, and ecology (World Health Organization, 

2019a). The mosquito vector (Anopheles) lays its eggs in aquatic habitats, where they 
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hatch into larvae, and soon emerge as full-fledged mosquitoes (Moller-Jacobs, Murdock, 

& Thomas, 2014). Female mosquitoes search for blood meals for their eggs to develop. 

Various Anopheline species prefer different aquatic habitats, mostly ranging from 

shallow freshwater collections (often rain-fed especially in the tropics) to broader/deeper 

or even slow-moving water, often in open lakes, rivers and swamps (Ohm et al., 2018; 

Ondiba, Oyieke, Athinya, Nyamongo, & Estambale, 2019).  

Environmental factors such as heat, moisture, precipitation, and land use/landcover, 

influence the transmission of malaria by stimulating the availability and distribution of 

mosquitoes. For example, climate conditions affect the range, survival and reproduction 

of mosquitoes and pathogen’s incubation periods responsible for malaria (Nabi & Qader, 

2009; Semenza et al., 2008; Wu, Lu, Zhou, Chen, & Xu, 2016). The rising temperature 

in highland areas due to global warming is also predicted to increase the elevation of 

malaria patterns exposing these highly populated areas to high risk, especially in Africa 

and Latin American countries (Ermert, Fink, Morse, & Paeth, 2012; Siraj et al., 2014). 

Such ecological conditions could stifle or exacerbate malaria transmission. Conducive 

ecological conditions such as optimal temperature, high relative humidity, and 

availability of aquatic habitats increase mosquito survival (Ohm et al., 2018; Ondiba et 

al., 2019). Due to substantial seasonal variation in weather, malaria transmission patterns 

mostly follow seasonality, with the highest transmission and epidemics occurring during 

periods of rainfall. The intensity, however, varies from place to place. 

To introduce and sustain malaria transmission, a vector mosquito species should have 

several characteristics, including: 

 The threshold of abundance – the occurrence or abundance of vector mosquitoes 

are associated with the ecological environment. There needs to be high enough 

numbers of mosquitoes to ensure a high probability man-vector contact. 

 Length of survival – the vector mosquitoes need to live long enough to have at 

least two blood meals (first to pick up the infection and then for transmitting it to 

another person). 

 Vectorial capacity – the mosquito should carry enough malaria infection parasites 

to ensure this can be transmitted to the next host. 

 Availability of humans - A competent vector and a suitable climate for parasite 

infectivity in mosquitoes are not enough to trigger a malaria outbreak. The 
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mosquito needs sufficient access to people. Poor housing, especially in rural 

Africa, is linked to high exposure to mosquito vectors. 

Hence, the transmission is higher in areas where the vector lives longer and/or has a 

preference to feed on humans rather than on animals. This is cited as the key reason why 

Africa accounts for the highest proportion of malaria cases globally (World Health 

Organization, 2019a). 

 The African Mosquito and malaria 

Anopheles gambiae is the highly efficient African malaria vector, which is also highly 

anthropophagic (human biting), and classified as indoor-biting and resting, but also 

portrays outdoor resting tendencies. Blood feeding is either indoor or outdoor, on 

condition of the mosquito species. In contrast, An. arabiensis generally exhibits outdoor 

biting, resting, with occasional indoor biting, and resting. These tendencies depend on 

alternative host availability. Aspects of the environment, climate, and vector control 

interventions, can affect mosquito behavioural to factors such as biting or resting. Table 

1.1 shows a summary of Africa's vector mosquitoes, driving the majority of transmission.  
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Table 1.1: Malaria Vector Mosquitoes in Africa 

 

Source:  WHO 2018
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1.4 Malaria interventions 

Malaria is preventable and curable using available effective interventions. Several key 

malaria interventions are recommended and generally available in malaria-endemic 

countries.  

i. Insecticide Treated Nets (ITNs)/Long-lasting insecticidal nets (LLINs): 

LLINs has been key to in the prevention or reduction of malaria burden in 

recent decades. Nets are the most widely implemented intervention 

especially by populations highly exposed to malaria 

ii. Indoor residual spray (IRS): Most malaria vectors exhibit indoor resting 

behaviour after a successful bite of the host. IRS is the spray coating of 

internal house walls or any other surfaces using insecticides. These could 

kill any mosquito that rests on or is exposed to the coated surface. This 

intervention prevents the transmission of potential infection to another 

person. 

iii. Intermittent Preventive Treatment in Infants (IPTi-SP): This is when a full 

course of antimalarial medication is given to infants, whether they were 

infected or not with malaria. Treatment is given to help reduce malaria or 

anaemia in their initial twelve months. 

iv. Intermittent Preventive Treatment in Pregnant Women (IPTp): IPTp is a 

full dose of an antimalarial drug administered to women who are pregnant. 

Pregnant women receive this regardless of whether they are infected or not 

with malaria. The objective is to minimise all maternally related episodes 

of malaria infections or deaths. 

v. Seasonal Malaria Chemoprevention (SMC): This is when intermittent 

courses of malaria drugs are administered to children especially, in areas 

with strong seasonal transmission during a malaria season. This provides 

up to 75% efficacy against mild or severe malaria in children under five 

years old. 

vi. Mass drug administration (MDA): MDA is when there is an area-wide 

(defined geographical area) administration of antimalarial treatment to all 

members of a defined population at approximately the same time. 

The current crop of effective malaria interventions generally interrupts the transmission 

cycle either at the vector (i & ii) or the parasite (iii - vi) levels. The two vector inventions 
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(IRS and ITNs/LLINs) are the most universally applied, and widely accepted methods for 

malaria prevention. From 2000 to 2015, infections from P. falciparum in endemic Africa 

declined by 50%, while clinical disease fell by 40% (Bhatt et al., 2015). During the same 

period, over 600 million (68%) cases were averted in Africa alone, due to the high usage 

of ITNs, while an estimated 13% were achieved through IRS usage, especially in areas 

with high coverage (World Health Organization, 2019a). 

Human population densities may influence the selection of appropriate vector control 

interventions. For example, stable malaria transmission results from highly and 

continuously exposed populations with an elevated frequency of malarial parasite 

inoculation (World Health Organization, 2017a, 2019a). 

In order to achieve and sustain high coverage of interventions for populations at risk, a 

high standard of implementation is essential. Universal coverage of people at risk using 

cost-effective interventions against the vector provides the most efficient and prompt 

chance for the reduction of malaria and is generally recommended. Targeted 

interventions, however, remain key due to inadequate funds, especially in low resource 

settings. 

1.5 Climate and Malaria Transmission in sub-Saharan Africa 

As Africa already bears 90% of the world’s malaria burden (deaths and cases) (World 

Health Organization, 2015d, 2016a), the lack of mitigation, adaptation or preparedness 

for climate change may result in further increased malaria burden (World Health 

Organization, 2015b). For example, countries with a high risk that also suffered 

increasing malaria incidence between 2010 and 2016 include Ethiopia, Kenya, 

Madagascar, Malawi, Mozambique, Rwanda, South Sudan, Tanzania, Uganda, and 

Zambia (World Health Organization, 2017b), are all located in Africa. 

The people residing in Africa are at higher risk from climatic influences because they are 

highly exposed, but with low adaptive capacity. For this reason, the current study was 

undertaken in Zambia with a key objective of contributing not only to the local knowledge 

on the specific effects of climate change but with relevance to the whole African 

Continent. 

In 2015, the adoption of the Global Technical Strategy (GTS) for malaria, by the World 

Health Assembly stimulated activities towards the goal to eliminate malaria in ≥ 10 

countries by the year 2020. Since 2016, 21 malaria-endemic countries have now been 
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identified as having a higher probability of eliminating malaria by 2020. These countries 

are symbolic of a concerted ambition to reduce indigenous malaria cases to zero by the 

end of 2020, and are collectively termed the “E-2020 malaria initiative”.  

History shows that many European countries are malaria-free today. They benefited from 

the first global malaria eradication campaign of 1955 (Bruce-Chwatt & De Zulueta, 

1980). Dichlorodiphenyltrichloroethane (DDT) was the mainstay of the malaria-control 

efforts, whose focus was to eliminate Anopheles mosquito vectors (Hast, Searle, 

Chaponda, Lupiya, Lubinda, Sikalima, et al., 2019). The Global Malaria Eradication 

Program (GMEP) goal was to apply IRS using DDT on suitable house wall surfaces to 

decrease the longevity of mosquitoes (Hamoudi & Sachs, 1999; Packard, 1998).  

Sustaining transmission depends on the abundance of vectors, vector propensity in biting 

humans, the ratio of infectious bites, the vector longevity (life span), and the reproduction 

time in the vector. Among these, the key is the longevity of the mosquito vector. The 

logic behind IRS is that because the pathogen requires a number of days to mature inside 

the mosquito, during this period, the infected mosquito searches for a host to feed-on is 

the optimal time to spray. Hence, spraying would shorten the survival of adult female 

anopheles, should they become exposed to a sprayed surface. 

The GMEP was carried out across Europe, Asia, and in parts of Latin America with great 

success, however, Africa was not formally included in this program (Griffin et al., 2010). 

During this period, from 1955 to 1969, the anopheles vector was eliminated, and soon 

after, malaria elimination was achieved in Europe (Hamoudi & Sachs, 1999). However, 

in many continental tropical countries, especially in Latin America and most Asian 

counties, the situation remained unchanged as control efforts suffered from a rise in 

insecticide-resistant anopheles. Meanwhile, in Africa, despite malaria being by far one of 

the most significant health problems very little if anything was done by way of 

intervention measures between 1970 and the late 1990s (Moss, Shah, & Morrow, 2016).  

From 1970 and up until the launch of the Roll Back Malaria (RBM) initiatives in 1998 

(Nájera, González-Silva, & Alonso, 2011; Rabinovich et al., 2017), no real priority or 

focus was given to the global fight against malaria including Africa. RBM’s goal was to 

halve malaria by the year 2010. By 2007, a renewed global call for the malaria eradication 

agenda (malERA) mainly to reduce the effects of malaria was launched (Nájera et al., 

2011). This would be achieved through combinations of ITNs, early diagnosis and 

treatment with ACT or by IPTp and IPTi. 
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While the logistics and health infrastructure needed for therapy are still inadequate in 

many places, and the need to meet funding requirements remains a challenge, past lessons 

learnt, improvements in capacity and increased experience has helped some countries 

make good progress (Moss et al., 2016).  

Today, the challenge of malaria in sub-Saharan Africa, the place where control of malaria 

had either not been attempted or accomplished before is even higher. Many Sub-Saharan 

countries are experiencing increases in malaria burden (Assele, Ndoh, Nkoghe, & 

Fandeur, 2015; Nkumama, O’Meara, & Osier, 2017; World Health Organization, 2018e, 

2019c). Recent outbreaks of malaria in some countries and sporadic resurgences in others 

highlight the continual threat of malaria resurgence or re-establishment. Even after 

elimination, several factors may contribute to epidemics or resurgence of malaria in 

previous eliminated areas.  

Nonetheless, thanks to the GMEP many endemic countries are determined to not only 

bring malaria under control but also to eliminate the disease. With the advancement in 

current intervention tools and ongoing epidemiological studies of malaria now possible 

at temporal and spatial scales, there is hope again as these tools allow people to gain a 

more sophisticated understanding of the malaria parasite, the mosquito, the human, and 

the environment.  

1.6 Rationale and Study Justification 

Many climate models of the global scenario show contradicting results from place to place 

(Rogers & Randolph, 2000). It is evident that the effects of climate change are not evenly 

spread across countries, showing different impacts from geographic, economic and social 

mediating factors (World Health Organization, 2015a). For malaria, the complexity is 

amplified by the reciprocation between two or more species of a host and a pathogen or 

quite often vectors and hosts. These make the collective impact of climate on disease 

outcomes subtle (Lafferty, 2009) and often challenging to measure.  

Conventionally, scientific studies have often focussed on long-term changes in climate. 

Their models concentrate on prospective analogues of climatic changes through 

predictions of how these changes could affect people via variations in weather patterns 

and extreme events (IPCC Working Group II, 2001).  

Furthermore, climate change effects on malaria outcomes depend on population density, 

spatial scale, temporal scale, and current interventions, improved health infrastructure, all 
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of which can affect the ability to detect specific climate change impacts. Hence, the 

relationship between climate and malaria remains a complex one because impacts may 

often be location-specific. In fact, it is more often considered important from a grassroots 

operational perspective to understand and detect fine-scale impacts rather than global-

scale changes (Altizer, Ostfeld, Johnson, Kutz, & Harvell, 2013). 

The global (World Health Organization, 2015b, 2016b), regional (Elimination8 

Secretariat, 2017), and national (Presidential Malaria Initiative, 2016) malaria programme 

agendas have in the last decade been realigned towards elimination and eventual 

eradication, against the predictions of the possible future increases of malaria due to 

climate change. The explicit and persisting climate change and the observed effects of 

short-term weather variability on the vector mosquito survival (longevity) and its 

reproduction provide an opportunity to examine the outcomes of this relationship and 

include other non-environmental based variables. 

The ‘one size fits all’ approach to attempt to model or forecast malaria is unlikely to be 

successful. Similarly, the precise forecasting of the future of malaria is at a global scale 

which is based on projections where the inputs are from a few locations only or a limited 

number of parameters (Nabi & Qader, 2009). This often does not capture the intricate 

socio-economic, cultural and demographic heterogeneities often exhibited by small area 

geographical scales, particularly at sub-national, sub-regional or sub-district levels. 

Therefore, more research in local settings is needed to understand the location-specific 

effects of climate change and other factors on malaria, alongside other parameters, as well 

as providing local results to inform global models.  

Climate change-induced health risks cause varying levels of stress and tend to pose more 

challenges for some local communities than others. In a heterogeneous state of 

community capacity to handle risk, it does not mean that two communities exposed to 

similar hazards will react in the same manner. Capacity often depends on the 

unpredictable interaction between several community-level socioeconomic and cultural, 

co-exposure conditions and processes that influence the ability of communities, or regions 

to respond (Bell & Greenberg, 2018; L. Comfort et al., 1999; Leichenko & O’brien, 

2002).  

Africa faces the largest environmental health burden and has the most vulnerable 

populations to climate change but the least coping capacity, and potentially the most 

inadequate resilience to recovery (Bell & Greenberg, 2018; Bohle, Downing, & Watts, 
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1994). Defining predicted impacts of climate change reveals probable susceptibility to 

the ecological, socio-cultural, or epidemiological vulnerability of the population. There 

is a need, therefore for comprehensive, context-specific, global maps of climate change 

and outcomes (Wu et al., 2016), but these must be built from fine-scale models. 

The drawbacks of current top-down approaches to modelling climate change impacts are 

their failure or inability to account for the differences vulnerabilities suffered by people 

in such environments. This could be through resistance or by mitigation when the event 

happens (Jones, Boer, Magezi, & Mearns, 2005; Stonich, 2000). Top-down approaches 

provide, at best, only a generalised context of potential prospects of regional and local 

climate conditions. At the same time, subsequent improvements in this type of modelling 

will bring more uncertainties as a result of increased volumes of data and the complexity 

of processes being modelled (Pielke Sr, 2013; Pielke Sr & Wilby, 2012; Trenberth, 2010).  

1.7 Malaria transmission in Zambia 

 Past progress in the fight against malaria 

Figure 1.2: Malaria in Zambia from 1990- 2017 (source: WHO 2008, 2010; PMI 2018, 

2019) 

Zambia has, since the early 2000s been motivated to be a frontline country in the fight 

against malaria (Chizema-Kawesha et al., 2010). Figure 1.2 shows that malaria cases and 

deaths were increasing before the early 2000s and declined until 2008. Since 2008, deaths 

continued declining while cases started increasing again. The parasite prevalence survey 

of 2006 was pivotal in influencing the renewal of the malaria control programme (World 
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Health Organization, 2008). The majority (98%) of malaria cases in the country are from 

P. falciparum (Sitali et al., 2019).  

Over the period from the late 1990s to 2017, Zambia consistently implemented malaria 

interventions and made great strides in reducing malaria mortality and incidence 

(Chizema-Kawesha et al., 2010; Loewenberg, 2018). Between 2000 and 2006 and before 

scale-up of control efforts, Zambia saw a 33% decrease in malaria infections and a 24% 

decrease in deaths among children <5 years old. In 2008, it also saw a 61% decrease in 

in-patient cases and 66% decrease in deaths compared to the baseline period (2001-2002) 

(Barnes, Chanda, & Ab Barnabas, 2009). Severe anaemia in children under-5 years old 

declined by at least 50% from 14% in 2006 to 7% in 2012, and 6.4% in 2015 (Presidential 

Malaria Initiative, 2019). Malaria prevalence confirmed by microscopy reported a further 

decline of 7%, from 22% to 15% between 2006 and 2012. However, the period from 2012 

to 2015 saw an increase from 15% to 19%.  

This overall progress is often attributed to Zambia's consistency in fighting malaria with 

the benefits of the intervention scale-up being realised in subsequent years, as indicated 

both through the surveillance and survey data (Presidential Malaria Initiative, 2019; 

World Health Organization, 2008). For example, between 2000 and 2006, Zambia was 

one of only six countries that had distributed sufficient mosquito nets, i.e. ITNs, including 

LLINs (58%), covering over 50% of people at risk of malaria. Zambia first completed a 

nationwide distribution of LLINs between 2006 and 2007, and it was one of only two 

countries that had completed nationwide targeting of all households (World Health 

Organization, 2008). High ITN ownership and usage across all provinces were also 

reported between 2006 (World Health Organization, 2008) and 2018 (Presidential 

Malaria Initiative, 2019), increasing from only 26% in 2000 (Baume & Marin, 2008), 

50% in 2006 (Baume & Marin, 2008; World Health Organization, 2008) to 77% in 2015 

(Masaninga et al., 2018). 

Zambia was also among the first of two African countries to start ACT distribution in 

2004 (Barnes et al., 2009), and one of the few where at least 50% of all children with 

fever were treated with antimalarial drugs (World Health Organization, 2008). During the 

same period, Zambia was also the earliest adopter of the nationwide use of 

Artemether/lumefantrine (AL), moving away from high Chloroquine treatment failure in 

2002 (Chizema-Kawesha et al., 2009; Sipilanyambe et al., 2008). Furthermore, Zambia 

was among the few countries where intermittent preventive treatment using sulfadoxine-

pyrimethamine among pregnant women was substantially high (61%), against a mean 
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usage of 18% across the top 16 countries on the continent (World Health Organization, 

2008). 

Although IRS is not the primary malaria preventive strategy, the (re-)introduction or 

subsequent expansion of IRS by coverage of at least 90%, between 2000 and 2010 had 

incremental benefits (Masaninga et al., 2013). Access to treatment may have varied within 

the country, especially between rural and urban areas. For example, higher proportions of 

children receive antimalarial treatment in urban than rural areas (World Health 

Organization, 2008), and IRS was mostly applied in urban areas (Masaninga et al., 2013).  

 The persistent challenge of malaria 

In spite of all these efforts, malaria in Zambia is still a significant public health problem 

(Lowa, Sitali, Siame, & Musonda, 2018). In 2006, for instance, Zambia was still among 

the top 20 countries known to have contributed about 90% malaria cases as well as deaths 

in the WHO Africa region. This list included five other neighbouring countries (Malawi, 

Angola, Mozambique, Tanzania, and DRC) (World Health Organization, 2008). As of 

2019, although Zambia has progressed considerably, three of its immediate neighbours, 

Angola, Mozambique and DRC remain in the top six of countries with the highest malaria 

globally (World Health Organization, 2019c). Given that mosquitoes do not recognise 

political borders, having neighbouring countries with high malaria rates is a potential 

issue for Zambia and something that is examined explicitly in chapter 6.  

It has been argued that some of the observed progress achieved in Africa in the last two 

decades was not entirely due to interventions alone (Meyrowitsch et al., 2011), given that 

malaria cases and deaths reported worldwide, even in countries outside Africa fell by 50% 

over the period 1997–2006 (World Health Organization, 2008). The argument suggests 

that other factors not related to interventions such as urbanisation, changes in land use 

and agricultural practices, as well as economic development, may have impacted 

mosquito vectors and resulted in the reduction of malaria infections cases (Meyrowitsch 

et al., 2011). 

Caution should be exercised when interpreting national-level figures as they are not 

characteristic of overall trends within Zambia, be it the provincial level, district level or 

sub-district level (Presidential Malaria Initiative, 2019). For example, the report cites how 

between 2012 and 2015, malaria cases had the most significant relative declines of up to 

12% in observed parasite prevalence in Eastern and Southern Provinces. In contrast, 

malaria increases were recorded between 2012 and 2015 in 7 provinces (Central, 
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Copperbelt, Lusaka, Muchinga, Northern, North-Western, and Western), whereas one, 

Luapula Province, persisted without change. 

In 2017, the Zambian government launched the National Malaria Elimination Strategic 

Plan (National Malaria Elimination Centre, 2017; Presidential Malaria Initiative, 2018). 

The plan is a revision to the 2015 strategic plan, guiding the long-term vision to create a 

malaria-free Zambia, with the year 2021 as the initial timeline (National Malaria Control 

Programme, 2015; National Malaria Elimination Centre, 2017; Presidential Malaria 

Initiative, 2019). The plan would be implemented through quality-assured and equitable 

access to cost-effective interventions for preventing or controlling malaria. The plan 

involves a dual approach to target different transmission strata based on their 

classification. Districts with <50 cases per 1000 population would receive essential 

intervention on surveillance and elimination while districts having >50 cases per 1000 

population efforts would concentrate on reducing the malaria burden and strengthening 

the health system. The former group comprise the malaria elimination zones, while the 

latter constitute the malaria control zones. 

Nonetheless, the diverse socio-economic and epidemiological landscapes of Zambia 

create complex challenges for malaria control efforts increasing the risk of creating large 

areas of both high and low transmission potential across the country. The differences in 

malaria risk are determined by several key drivers such as the urban-rural divide (with a 

higher risk in rural areas); socio-economic circumstances (greater risk in generally poorer 

localities); and the physical environment (high-risk humid river basins compared to low 

risk drier plateaux). 

Since 2014, there has been increasing interest in obtaining finer granularity (below 

Provincial level) in the reporting and mapping of malaria incidence information to help 

identify and target the higher malaria burden experienced in many rural districts. In 

Zambia, this is particularly important in several provinces including the northern parts of 

Central and Western Provinces, the districts in the rural areas of the Copperbelt, as well 

as in the lowlands found in Eastern Province.  

Until now, very few nationwide studies have been conducted at district or sub-district 

(health facility) levels. Countrywide analyses at the health facility level are very scarce 

and generally limited in scope to the simple point-based mapping of annual rates. 

Therefore, it was a primary objective of this thesis to focus on district and sub-district 
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(health facility) level analyses of rates, risk and trends (See chapters 3, 4 and 6) to help 

address the information and knowledge deficit.  

This level of detailed analysis has been made possible by improvements in the recording 

and accuracy of morbidity and mortality data since 2000 (discussed in detail in chapter 

2). Improvements have been made in reporting of malariometric measurements such as 

parasite prevalence by smear microscopy, in outpatient and in-patient malaria cases, RDT 

positivity rates and malaria parasite prevalence in the under-fives. Therefore, the study 

pursued a comparative impact assessment of climate change on age-related malaria vis-

à-vis malaria interventions (see Chapter 5). 

 Malaria and climate studies in Zambia 

Very few previous studies focused on the relationship between climate variables and 

malaria in Zambia. A Medical Subject Headings (MeSH) search using a range of key 

terms in PubMed returned only four relevant studies, each of which was conducted at 

different spatial scales, using different data sources and with varying geographical extent. 

These studies are, however, not directly comparable to the present study due to 

differences in the quality of data used, the spatial scales of analyses, and the levels of 

malaria transmission in their study areas. 

The first study by Nygren et al. (2014) collected weekly malaria data from 2011 to 2013 

and used the normalised difference vegetation index (NDVI), night surface temperature, 

rainfall and night dew point to model health facility level malaria transmission within 

Southern province. Their results showed a significant association with environmental 

variables (dew point, temperature, and NDVI) across the low, moderate, and high 

transmission zones (Nygren et al., 2014). These variables were also significant both in 

malaria peak and off-seasons and were the best predictors of malaria in the low 

transmission season using autoregressive integrated moving average (ARIMAX) models. 

Nonetheless, this study was spatially concentrated in the Southern province only, where 

transmission is generally lower compared to the rest of country, and may have been 

affected by the short temporal scale covering only one season and is therefore not 

seasonally robust.  

A second district-wide study was conducted in Nchelenge district (in Luapula province) 

using household-level cross-sectional surveys conducted every two months between 2012 

and 2015 (Pinchoff et al., 2015, 2016). The study used rainfall, temperature, and relative 

humidity obtained from a single micro-weather station to establish study area seasonality. 
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The study modelled elevation, seasonality, NDVI and degree of the slope as the key 

environmental variables. Using multivariate models, environmental factors were 

significantly associated with the proportion of RDT positive individuals at the household 

level. In particular, seasonality and distance to streams were strongly associated with 

higher malaria in both high and low malaria transmission seasons (Pinchoff et al., 2015). 

This study showed that, despite the rainy season showing higher malaria risk, the dry 

season still exhibited relatively high risk suggesting that other factors were important. 

This was especially the case with the high network of streams that showed a 12% rise in 

risk for every 250 meters distance closer to river segments of the first order or category 1 

sized stream which often have a peri-annual flow. 

The third study focused on household-level malaria data from four malaria indicator 

surveys (MIS) conducted between 2006 and 2012. The study evaluated malaria control 

intervention scale-up coverage of ITNs and IRS on parasite prevalence in children under 

five years old against climate variables (cumulated rainfall, humidity, temperature 

suitability, and enhanced vegetation index) that were collated at the provincial level 

(Bennett et al., 2016). The study used Bayesian geostatistical models of malaria 

prevalence to establish the association between malaria, intervention variables (IRS and 

ITN coverage) and climate variables. While the study showed that a combination of 

factors, both climate-related and those associated with a reduction in intervention 

coverage contributed to the observed malaria reduction and resurgence (Bennett et al., 

2016). Temperature and rainfall both influenced the potential for increased transmission 

intensity as determined by intra-annual climatic variability. The study partly inspired the 

inclusion of the age-specific comparative study of malaria and interventions presented in 

Chapter 5. 

Finally, the most recent example is a study by Shimaponda-Mataa et al. (2017), which 

used geoadditive and semiparametric models focusing on the influence of climatic factors 

(rainfall, minimum temperature, and maximum temperature) between 2009 and 2012. 

This is the smallest scale among the studies whose analysis of malaria was carried out at 

the province level, particularly in Lusaka, Western, Luapula and North-western 

provinces. The study reported a strong positive association between malaria incidence 

and environmental variables, particularly precipitation and minimum temperature 

(Shimaponda-Mataa, Tembo-Mwase, Gebreslasie, Achia, & Mukaratirwa, 2017). The 

small spatial scale of the study, however, would limit its usability at policy levels and 
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conceals essential subnational variations that coincide with the general implementation 

of interventions in Zambia. 

Thus, while these studies help describe the dynamics of malaria transmission at various 

subnational scales of analysis in Zambia, they are generally not comparable due to 

differences in the data sources, methods, scales and variables used. From this brief 

discussion of relevant studies in Zambia, it is clear that there is a lack of countrywide 

district-level analysis of climatic variables. Such studies would help to capture a more 

holistic view of prevailing subnational variations in malaria incidence, intervention 

distribution, and the significance of climatic variables as potential predictors of 

transmission during Zambia’s fight against malaria between 2000 and 2016. 

Based on the literature search, it was clear that there has been no nationwide sub-

provincial level long time series study exploring the association between climate change 

and malaria transmission in Zambia. This observation provided the motivation and 

incentive to include climate change as a primary focus of this thesis. This study explores 

the spatial and temporal interplays between climate change, the environment, and malaria 

transmission at district and sub-district levels from 2000 to 2016. It examines the 

implications of near-term climate change on the current national malaria control and 

elimination programs in the country. 

This study endeavours to identify, measure, analyse and hopefully better understand the 

fine-scale dynamics of country-wide climate change effects on malaria within Zambia. It 

is hoped that the outcomes from the study provides relevant information that is helpful to 

strategic policy makers and intervention program officers as they strive to eradicate 

malaria from the country. 

1.8 Aim 

The aim of this thesis is to investigate the spatio-temporal impacts of near-term climate 

change and other environmental factors on the transmission, control and potential 

elimination of malaria in Zambia. Four specific objectives were formulated to achieve 

this aim (See also Figure 1.3). 

i. Determine the spatio-temporal patterns of malaria incidence and mortality rates, 

risk and trends in Zambia from 2000 to 2016 

ii. Investigate the spatio-temporal impacts of near-term climate change on the rates, 

and trends between 2000 and 2016 
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iii. Investigate climate change and the dynamics of age and malaria incidence and 

malaria control interventions between 2000 and 2016 

iv. Model Health Facility level malaria and evaluate its potential for in-country and 

inter-country malaria control and elimination efforts 

 

Figure 1.3: Summary of the scope of work covered this study 

1.9 Thesis outline and overview of Chapters 

This thesis follows an academic paper (manuscript) format, with each of the four results 

chapters being presented as stand-alone contributions that are based on papers that have 

been either submitted or to be submitted to peer-reviewed academic journals. Each paper 

is presented as a separate chapter in the most updated form before the final manuscript 

submission. As such, each has its introduction, methods, results, discussion, and 

conclusions sections with independent reference lists depending on the targeted journal 

format requirement. 
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Figure 1.4: Graphical representation of the Thesis study outline 

Chapter 1: This current chapter gives a general overview of the study background aim 

and presents the aim, specific objectives, and the thesis structure. 

Chapter 2: Overview of data sources, pre-processing, and data quality 

This chapter provides background information on Zambia and focusses on describing the 

data and statistical modelling techniques used in the study. It also briefly discusses some 

of the limitations of the available datasets and what preliminary adjustments were applied 

before the modelling and analyses in subsequent chapters. 

Chapter 3: The spatiotemporal modelling of malaria incidence patterns (rates, risks, 

and trends) 

This chapter is an independent chapter based on the first paper. It characterises the base 

spatio-temporal distribution of malaria incidence and mortality in Zambia at the District 

scale level. It proposes a novel alternative method for identifying and quantifying malaria 

burden to help facilitate better targeting of strategies and intervention programs in high 

and low burden settings. 

Chapter 4: The impact of near-term climate change on malaria trends 

This chapter presents the results from a district-level analysis of near-term climate 

impacts on malaria. It provides an in-depth comparison of these impacts in contrasting 
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areas of increasing and decreasing trends over a 16 year period. The chapter considers the 

diurnal temperature range (DTR) as an alternative measure to the more widely used mean 

temperature variable. It investigates how intervention programmes are being impacted by 

seasonally sensitive near-term climate change. 

Chapter 5: The effects of climate change on age-related malaria and control 

interventions 

This chapter considers the use of both parametric and non-parametric statistics to model 

the effects of climatic and socio-demographic variables on age-specific malaria 

prevalence vis-à-vis control interventions. Particular attention is given to people aged ≥5 

years and those in rural areas.  

Chapter 6: Health Facility Spatio-temporal modelling of malaria incidence and risk 

in Zambia, 2009-2015 

This chapter focusses on a health facility level analysis of over 32 million reported 

malaria cases from 1743 health facilities in Zambia between 2009 and 2015 using 

Bayesian trend and spatio-temporal Integrated Laplace Approximation (INLA) models. 

A comparison is made between the Health Facility and district level malaria trends as part 

of an evaluation of the potential for adaptive scaling approach as an effective and 

resource-efficient means of developing and implementing intervention strategies. 

Chapter 7: Conclusions and Future Work 

This chapter considers how the aim and objectives of the study have been achieved and 

provide a synthesis of the overall study findings, the main conclusions and 

recommendations for further follow-on research.   
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2 CHAPTER TWO 

Methods Overview 

This chapter introduces the methods applied in the study. More detailed descriptions of 

specific methods applied in each chapter are covered in the respective chapters (3, 4, 5, 

and 6) as they were written in the manuscript formats for publication. The chapter first 

provides a brief context of the study area and how the health system is organised in 

Zambia. It then highlights the types and sources of data that were available to the study, 

with particular attention given to the spatial and temporal resolution of the data. The 

chapter also covers the pre-processing methods applied to the data before the full analyses 

were conducted. It concludes with a brief discussion of the ethical considerations and 

approval for the data access. 
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2.1 Introduction 

Chapter 2 introduces the study’s geographical context and how this plays into the choices 

of studies presented in subsequent chapters. It sets up the metrics used in the current study 

to map and visualise malaria transmission dynamics, burden, and climate change. The 

primary variables used in this study include (i) Malaria (incidence and mortality); (ii) 

Temperature indices (minimum, mean, maximum, and diurnal range); (iii) Vegetation 

index (normalised difference vegetation index - NDVI); (iv) Precipitation (minimum, 

mean, and maximum); (v) Elevation; (vi) socio-demographic (population density); and 

(vii) interventions such as indoor residual spray, and Insecticide-treated nets/Long-lasting 

insecticide-treated nets (IRS and ITNs/LLINs). Among the key climatic variables 

considered in this study, diurnal temperature range (DTR) has very rarely been used, 

while mean variables (temperature) has often been the most considered. We, however, 

use DTR to show novel effects not captured by any of the other temperature variables 

(see Chapter 4 for details). 

2.2 Study Area 

This study was conducted in Zambia, a landlocked country in Southern-Central Africa, 

bordering eight other countries, including Angola, Botswana, Democratic Republic of 

Congo (DRC), Malawi, Mozambique, Namibia, Tanzania, and Zimbabwe (Figure 1.2). 

Zambia has an approximate land mass of 752,000 sq. Km, with a population of circa 17 

million people.  

Zambia being landlocked shares national borders with some countries with very poor 

malaria epidemiologic status. This geographical juxtaposition has tended to complicate 

Zambia’s approach to epidemiological issues, which are often are intertwined and 

influenced by the economic status and interdependence with its neighbours. This means 

that countries like Zambia cannot successfully control or eliminate malaria without 

engaging in cross-border malaria initiatives. Zambia is currently threatened by the 

potential effects of cross-border malaria from DRC in the north, Angola in the north-west, 

Mozambique and Malawi in the south-east and Tanzania in the East. Similarly, it poses 

threats to two of the well-established malaria elimination frontline countries of Botswana 

and Namibia in the south. It is for this reason that a key area of interest in this study is the 

role of cross-border malaria transmission dynamics (see Chapter 6). 
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 Zambia’s Climate 

Zambia experiences a tropical or sub-tropical climate that is dependent on elevation. It 

experiences a hot and humid rainy season between November and April. The dry season 

extends from May until November. The beginning of the dry season is signified by a 

period of cold weather, usually between the month of May and August. It gets 

increasingly hotter between September and November. During this time, the temperatures 

are extremely high, but with little humidity. May to August represents the coolest period, 

characterised by cold nights, particularly in the south, where temperatures can often reach 

0 °C. Dry months extend from June to August. During this time, it basically never rains 

in most areas, and October usually is the hottest month of the year (Gannon et al., 2014). 

Rains start around mid-to-late November. The season extends until late April (the rainy 

season). Humidity is relatively higher during the rainy season and occurs predominantly 

in the form of torrential downpours or thunderstorms; hence, floods are quite regular. 

Although the rain distribution pattern across Zambia is homogeneous from November 

and March, the quantity fluctuates substantially. There is significant variability across the 

country with a substantial gradient between the north and the south in terms of quantity 

of rainfall, start and end dates (Hachigonta, Reason, & Tadross, 2008).  

The weather is heavily influenced by shifts in the inter-tropical convergence zone (ITCZ) 

(meeting belt of the subtropical high-pressure belts of the northern and southern 

hemispheres) (Hachigonta & Reason, 2006). The northern region of the country, namely, 

the Copperbelt, the Northern, and the North-Western provinces represent the wettest 

areas. Here, annual rainfall exceeds 1000 mm or up to 1400 mm in places (Brigadier, 

Barbara, & Bathsheba, 2015; Gannon et al., 2014). The most arid areas are in the south-

west, including the southern part of Western and Southern provinces, and the River 

Zambezi divides Zambia, Namibia and Zimbabwe. Here, rainfall is around 600 mm or 

less per year. 

Zambia's temperatures vary according to altitude and latitude. On the plateau, in the 

central and southern part of the country, the night temperature between May and August 

drops so low, to become cold. The altitude in most of the plateaux ranges between around 

900 to 1,500 m. However, some places slope down to about 500 m along the southern 

Zambezi River (and in Lake Kariba), and in the east along the Luangwa River. In contrast, 

altitudes in the northern plateau region can be around 1,800 m (near Mbala), reaching 

2,200 m in the northeast, near the border with Malawi.  
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Winters are milder, particularly nights, along the lowlands in the north located < 1000 m, 

and on the shores of Lake Kariba in the south. Meanwhile, the far north experiences 

consistently high temperatures even in winter, because it is only 8 degrees south of the 

Equator. Here, with about 1200 mm of annual rainfall, the downpours are between 

December and March and are prolonged for the rest of Zambia. In most years, typically 

> 100 mm falls from April to November, while it seldom rains between the month of May 

and October. 

 The administrative structure of Zambia 

Zambia is currently administratively divided into 10 provinces (previously 9), and over 

103 districts (previously 72). The creation of additional districts and province was done 

after the 2010 census and has been ongoing since then with some created or realigned as 

recent as 2018. The Zambian Ministry of Health is responsible for the provision of health 

functions such as service delivery, coordination, management, and policy. Various 

coordination structures exist through the national, provincial, district and community 

levels. The district coordinates the overall health service delivery at both districts as well 

as all lower-community levels (Presidential Malaria Initiative, 2019). 

The government runs public health facilities that provide the majority of healthcare and 

comprise the basic healthcare set of high-impact interventions. Health services offered 

are either at no cost or based on cost-sharing. The cost may depend on the location of the 

facility or level of the health facility (Hjortsberg & Mwikisa, 2002). In all rural districts, 

these services are provided absolutely free. 

 The structure of Zambia’s health system 

Zambia has a free universal public health care system, similar in form to the NHS in the 

UK that is available to all citizens of the country. Healthcare is offered at various levels 

of health facilities such as community, health posts, health centres, and at hospitals of 

levels 1, 2, 3, and central hospitals across the country (Zambian Ministry of Health, 2013). 

All health posts (HPs), health centres (HCs), or level 1 hospitals operate within the 

confines of the district, while levels 2 and 3 hospitals, with a referral or specialised 

function, are at the provincial level and central level respectively (Presidential Malaria 

Initiative, 2019; Zambian Ministry of Health, 2013).  

Level one hospitals (District Hospitals), operate within the district level. They are the 

third primary level of health care after referral hospitals. District Hospitals generally serve 

populations from 80,000 to 200,000. They provide such services as medical, surgical, 
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obstetric or complex diagnostic services. They also offer full clinical functions which 

support HC referrals. 

Second level hospitals (Provincial or General), operate at the province level. They should 

provide for catchment areas with more than 200,000 but less than 800,000 people. They 

generally offer services similar to those of 3rd level but are less specialised. They also 

often act as referrals for level one hospitals, including training (Zambian Ministry of 

Health, 2013). 

Level three hospitals (Specialist) are the highest referral facilities in the country. These 

cater for populations >800 000. They are subspecialised in internal medicine, training and 

research. They receive nearly all complex diseases that cannot be handled at 2nd level 

hospitals.  

Below the hospital, there 3 kinds of health facilities available, urban health centres or 

clinics (UHC), Rural Health Centre (RHCs), and Health Posts (HP). The former caters 

for catchment populations of between 30,000 and 50,000, while the latter caters for about 

10000 people. The lowest level for health care is provided at the health post level. They 

provide care to communities that are distant from health centres. Their catchment 

populations are about 3,500 in rural areas and between 1,000 to 7,000 in urban areas. For 

sparsely populated areas, they are often located within a 5 km radius. They offer essential 

health services such as first aid but rarely have higher level curative functions (Zambian 

Ministry of Health, 2013). 

A nation-wide enumeration conducted in 2012 found 1956 health facilities. However, 

more facilities were constructed since then, with about 650 newly constructed HPs and 

2nd and 3rd level hospitals. Some 2nd level hospitals have also been upgraded to 3rd level 

(Presidential Malaria Initiative, 2019). In 2010, it was estimated that about 99% of urban 

households live within the 5 km radius of a health facility, compared to half for those in 

rural areas. 

The National Malaria Elimination Center (NMEC), based in the country capital Lusaka, 

provides mostly technical but not operational assistance at these levels. NMEC, (formerly 

National Malaria Control Centre- NMCC) is one of Ministry of Health’s operational 

policy arms, tasked to lead the implementation of malaria efforts in Zambia. They provide 

technical leadership and coordination in line with the National Malaria Elimination 

Strategic Plan. NMEC collaborates with various partners, such as financial donors, local 

and international NGOs, and academic institutions. They ensure that all malaria research 
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is coordinated to avoid duplication of efforts, but also encourages partners to contribute 

to the broader national malaria agenda partly.  

The NMEC is the custodian of malaria data. Malaria is reported via the health 

management information system (HMIS) from paper to district health information system 

2 (DHIS2). The health data is collected from public facilities, mission health facilities and 

some private health facilities, reported monthly. Data originates from the health facilities 

through to the district and subsequently to the provincial level. These records are then 

transmitted to the HMIS, which sits within the Ministry of Health. The NMEC has access 

to these data through the HMIS. It maintains a web-based version of the data management 

system through the DHIS2.  

 A brief overview of Health financing in Zambia 

Zambia has undergone several health care user fee changes since its independence in 

1964. During the first 27 years (1964 – 1991) after Zambia's independence, health care 

services were provided free of charge. However, in the wake of the structural adjustment 

programme (SAP) implemented after the change of government in 1991, health care user 

fees were introduced in all public facilities (Lépine, Lagarde, & Le Nestour, 2018; 

Masiye, Chitah, Chanda, & Simeo, 2008). These were intended to remove public 

subsidies and government involvement in the provision of most social services such and 

promote community-driven participation, empowerment, responsibility and 

accountability in the health care planning and provision. With the withdrawal of 

government subsidies, user fees could also help generate supplementary income to 

enhance quality improvement of services. These fees consisted of each district 

determining a flat consultation fee to cover consultation and drugs, based on the 

population's ability to pay (Carasso, Lagarde, Cheelo, Chansa, & Palmer, 2012).  

As of 2006, the monetary range of this fee was typically described as very low for primary 

health care (McPake, Brikci, Cometto, Schmidt, & Araujo, 2011) being between US$ 

0.14 and US$ 0.27 or 5% - 10%, comparable to one day's average GDP per capita at the 

time. However, not all individuals could be charged these fees as patients aged <5 and 

>65 years old, pregnant women, indigents and those with a predefined illness such as 

HIV/AIDS and TB were exempt. Generally, children and the elderly were the most 

commonly exempted, comprising 66% and 7% respectively of all exemptions in 1998 

(Lépine et al., 2018). 
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In January 2006, Zambia changed the health care policy vis-à-vis the removal of all health 

user fees from all rural districts which comprise 75% of the total districts (n = 72) in the 

country (Lépine et al., 2018; Masiye et al., 2008). This policy change was partly meant 

to enhance universal access to health for all (Carrasso et al., 2010). It was argued that user 

fees were hindering equitable access to health care and led to a rise in poverty levels 

(Masiye, Seshamani, Cheelo, Mphuka, & Odegaard, 2006). The policy change was 

implemented in all publicly funded facilities, including both government‐run and mission 

facilities. Nonetheless, these facilities were still allowed to charge all patients coming 

from outside the catchment area and foreigners.  

By 2007, the remaining 18 districts had user fees removed from all health facilities located 

in peri‐urban areas where they were still enforced. Finally, in January of 2012, this policy 

for free health care was extended to the rest of the areas meaning health care was free for 

all citizens of the country. Since 2018, Zambia has been considering introducing another 

change towards an insurance-based health care system, but this had not been introduced 

at the time of writing this thesis. Several studies have shown that abolishing fees does not 

necessarily guarantee the beneficial effects initially intended. This is because such 

benefits may be heavily dependent on other contributing factors such as the levels of 

demand for healthcare services and the levels of success in the implementation process 

of the policy (Gilson & McIntyre, 2005; Meessen et al., 2011). 

2.2.4.1 Perceived effects of health-seeking and access due to change of user fee policy 

Although this is a highly debated issue in the literature, few studies from sub-Saharan 

Africa have suggested any increases in health care service utilisation are due to the 

subsequent removal health care fees (Hatt, Makinen, Madhavan, & Conlon, 2013; 

Lagarde & Palmer, 2008). These studies are, however, critiqued for their lack of 

methodological robustness in identifying the underlying causal impacts due to the policy 

(Lépine et al., 2018). Other evidence from more rigorous studies investigating the 

potential effects of free primary or curative care found no associated increase in the use 

of health care services in Mexico and India, except in Ghana where 3.7% increase of 

utilisation of service was reported (King et al., 2009; Mohanan et al., 2014; Powell-

Jackson, Hanson, Whitty, & Ansah, 2012, 2014).  

In Zambia, just like elsewhere, it was expected that individual income enables people to 

use public health care services and that a change in the cost of care‐seeking options could 

change health-seeking behaviour. Contradictory results from 4 studies have been reported 
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based on whether income affected the use of health care services in Zambia (Chama-

Chiliba & Koch, 2016; Lagarde, Barroy, & Palmer, 2012; Lépine et al., 2018; Masiye, 

Chitah, & McIntyre, 2010). More recent studies have shown that the removal of patient 

user fees from Zambia's health care in 2006 did not significantly alter the likelihood of 

primary care health-seeking behaviour in the population (Chama-Chiliba & Koch, 2016; 

Chitalu & Steven, 2017; Lépine et al., 2018). While two studies reported a substantial 

increase in outpatient visits from routine data (Lagarde et al., 2012; Masiye et al., 2010), 

the two studies could not explain the cause for their observation (Lépine et al., 2018). 

Besides, extending the period of the baseline of the assessment to the period between 

1998 and 2006 shows that there was already was an increasing trend in health care 

utilisation as shown by Lépine et al., (2018) 

In fact, besides the observed methodological challenges associated with the two studies, 

it has been argued that part of the observed increase may have been from richer patients 

previously seeking care in the private sector. In addition, as the demand for primary health 

care is price inelastic (Lépine et al., 2018), it is possible the demand was primarily driven 

by other factors, such as indirect financial costs, instead of a low fee. Furthermore, 

information from the Living Conditions Monitoring Survey of 1998 indicates that indirect 

access to care may well be important. For example, due to economic development, the 

public health system in Zambia still experienced an increase in patients seeking care from 

36% in 1998 to 57% in 2004, of which 90% of these sought care from a government and 

mission run facilities. Only 6% went to private health care providers. This report is 

corroborated by later studies which show that although fees were removed nationally, 

over 10% of patients from rural areas still reported huge health costs often due to transport 

which comprised over 70% of total costs incurred (Kaonga, Banda, & Masiye, 2019; 

Masiye & Kaonga, 2016).  

Thus, although the general potential effects of removing these health care charges from 

Zambia's health system have often been connected with a potential rise in health care 

utilisation, results from several studies have been mixed and do not fully support this 

assertion. Nonetheless, it was acknowledged that this change led to a virtual monetary 

transfer of about US$1.1 for the 50% most impoverished population per health visit 

(Lépine et al., 2018). Bennet et al. (2014) who looked at malaria data suggest that there 

was some evidence of an increase in all-cause OPD over the period 2011-2013 but could 

not ascertain whether this increase caused a rise in the total malaria OPD, or may be a 

result of increases in the total malaria OPD. This is because large proportions of all 
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outpatient attendance were due to malaria. From their comparison, the authors concluded 

that increases in non-malaria OPD were slight (Bennett et al., 2014). 

The abolition of fees would have been expected to increase health care utilisation if the 

fees created a significant financial barrier to accessing health care. However, Zambia's 

situation suggests this was not the case, as other factors like physical distance from the 

health facilities or perceived inadequate benefits of health care are suggested as the key 

drivers behind low utilisation and thus support the conclusions that removing financial 

barriers may still not have yielded significant impacts. This can also be further supported 

by a follow-up study from 2014, which found that 30% and 45% of patients in rural and 

urban health centres respectively, still incurred health care costs and that public sector 

primary healthcare access was highly reliant on individual socioeconomic status, disease 

type and the district of residence (Masiye & Kaonga, 2016). It is, therefore, challenging 

to accurately quantify the actual effects of financial healthcare accessibility changes 

during the period of this study, and particularly on reported malaria cases. 

 The evolution of Zambia’s HMIS system over the study period 

Since 2000, Zambia's collection of health-related indicators, including malaria data, has 

been through the Health Management Information Systems (HMIS). In this system, the 

collection of malaria data from health facilities was paper-based, collected quarterly from 

2000 to 2008. Each facility would record aggregated health information and transmit it to 

the district as part of its monthly reporting. The district office would prepare these and 

send on to the provincial health office, before finally being reported to the Ministry of 

Health under which the national malaria control centre (NMCC) falls. With the growing 

need to improve timeliness for disease monitoring purposes, the frequency of data 

collection was increased to monthly from 2009. 

Further need for improvements to provide a better quality of data essential for the malaria 

programme prompted the move to implement the District Health Information System 2 

(DHIS2) in 2013 (Chisha et al., 2015). DHIS2 is a web-based aggregate reporting system 

for the various health administration levels (national, provincial, and district). This system 

helped accelerate data reporting and access to various stakeholders and for prompt 

policymaking.  

The DHIS2 has since 2014 enhanced data quality, optimised the data workflow, thereby 

increasing the timeliness, and subsequent access to information. The implementation of 

DHIS2 encouraged the direct reporting of health facilities using mobile phones, making 
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weekly reporting and monitoring of malaria cases possible. Currently, Zambia has 

actively rolled out weekly malaria reporting in several districts, especially in urban areas 

of Lusaka, Southern, and Western provinces since 2011 (MACEPA, 2011). DHIS2 is also 

used by the National Malaria Elimination Programme (NMEP) for receiving data from 

facilities and community levels especially those in low malaria settings as part of the 

overall national goal to pursue malaria elimination in such places. 

 Changes to Zambia's network and expansion of health facilities from 2000 onward 

During the period of this study from 2000 - 2016, the number of health facilities in Zambia 

increased from 1285 in 2000, 1400 in 2006, 1883 in 2010, about 1900 in 2015, and 2500 

in 2016. The increase was made up from a combination of government, mission (faith-

based), and private providers (CSO, 2012; Ferrinho, Siziya, Goma, & Dussault, 2011; 

Hoppenbrouwer & Kanyengo, 2007; Zambian Ministry of Health, 2013). During the 

period between 2000 and 2000 and 2015, Zambia’s population increased by 56.5%, while 

the total number of health facilities increased only by 47% in the same period. It was, 

however, very challenging to source a consistent and accurate total number of facilities 

by district or to document changes in the geographic accessibility to healthcare over the 

study period other than noting the approximated increases between 2000 and 2016. Based 

on a comparison between population growth and the increase in health facilities, it seems 

evident that and acceptable to suggest that the construction of new health facilities was 

population growth driven. 

This study could not source evidence accurately estimate how much the change in 

geographical access to health facilities has made on health-seeking behaviours by district 

or province and can only assume they were equally distributed across the country. It can 

also be further argued that the population growth ratio was consistent with the provision 

of health care facilities per person and would not have significantly changed the 

availability of health facilities per head of population. For example, the health facility 

ratio per 10 000 population was 1.3 in 2000, 1.19 in 2006, 1.44 in 2010, 1.23 in 2015, and 

1.57 in 2016. Hence, if health facility availability was the key determinant, then rates of 

malaria would have stayed the same unless other factors were at play. These factors could 

include – climate change favouring malaria infections, the geographical variance of sub-

district malaria intervention distribution, or associate differences in the cultural attitudes 

towards utilisation of malaria interventions, all of which would affect the effectiveness of 

interventions against malaria. 



Chapter 1: CHAPTER TWO 

49 

 

Figure 2.1 shows the general location of Zambia within Africa and its administrative sub-

divisions at provincial and district levels.  
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Figure 2.1 The Location of Zambia in Sub-Saharan Africa 
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2.3 Types of data and their sources 

The overall study used a variety of ecological/environmental data, malaria 

epidemiological data, data on malaria interventions as well as socio-demographic 

information at different scale levels and time periods. 

 Malaria Epidemiological data 

Access to data on malaria epidemiology was obtained through the Zambian Ministry of 

Health (MoH) via the National Malaria Elimination Centre’s (NMEC) health 

management information system (HMIS). The HMIS contains data from the year 2000. 

Disease information is obtained from records collected by districts that have been 

aggregated from health facilities records and are more or less complete since 2000 (World 

Health Organization, 2008).  

Between 2000 and 2007, a malaria case was defined as a “fever with parasites” which 

generally includes all those that would need treatment using antimalarial drugs. Malaria 

mortality refers to the direct consequences of malaria infection, which primarily include 

the death from a progression of mild or severe disease to death (Greenwood et al., 1987; 

Mudenda et al., 2011). From a clinical perspective, a simplified sequence from the point 

of a plasmodium-infected bite is as follows (World Health Organization, 2014):  

𝑰𝒏𝒇𝒆𝒄𝒕𝒊𝒐𝒏 → 𝒂𝒔𝒚𝒎𝒑𝒕𝒐𝒎𝒂𝒕𝒊𝒄 𝒑𝒂𝒓𝒂𝒔𝒊𝒕𝒂𝒆𝒎𝒊𝒂 → 𝒖𝒏𝒄𝒐𝒎𝒑𝒍𝒊𝒄𝒂𝒕𝒆𝒅 𝒊𝒍𝒍𝒏𝒆𝒔𝒔 → 𝒔𝒆𝒗𝒆𝒓𝒆 𝒎𝒂𝒍𝒂𝒓𝒊𝒂 → 𝒅𝒆𝒂𝒕𝒉 

This is what is generally being measured by the health system and is one of the key 

indicators of malaria burden in a country. However, this measure is very often regarded 

as an underestimation of total malaria burden (Greenwood et al., 1987; Mudenda et al., 

2011; Snow et al., 1992) because the true burden depends on several other factors such 

as transmission intensity, age, acquisition of immunity, parity, co-morbidities, and health 

system factors such as access and quality of health care. Verbal Autopsy remains the 

primary diagnostic method of confirmation. However, it has poor specificity for malaria 

because malaria can simultaneously be both a contributory and an underlying cause of 

death. Confirmatory accuracy, therefore, still depends on many other factors within and 

outside the health care system. (Reyburn et al., 2004; Taylor et al., 2004) (Lynch, 

Korenromp, & Eisele, 2012; Mudenda et al., 2011; White, Dondorp, Faiz, Mishra, & 

Hien, 2012). 
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 Measuring the malaria burden using clinical incidence rate 

Various malaria metrics exist. Some are directly collected using the parasite 

measurements, vector mosquito measures, or clinical disease measurements. The most 

commonly collected and utilised measuring clinical malaria is the incidence rate (Snow, 

Guerra, Noor, Myint, & Hay, 2005). Incidence of clinical malaria is the rate of new cases 

occurring per 1000 population. This is often measured directly, from passive case 

detection (i.e. routinely collected health facility infections) or active case detection 

(proactive measure such as cohort surveys) of disease burden. It can also be measured 

indirectly via spatial estimates or through malaria mortality data (Tusting, Bousema, 

Smith, & Drakeley, 2014).  

While each metric has value, the usefulness of a measure of ongoing or transmission 

variation depends on metric precision. Factors that affect the accuracy or precision of 

most metrics of malaria include issues of general bias and seasonal variations (Tusting et 

al., 2014). This has significant consequences for current malaria surveillance as well as 

the appraisal of malaria control and intervention programmes. Measuring change in 

transmission requires two factors, a baseline which can be problematic against contextual 

seasonality, and trending, which can complicate the attribution of effects.  

The precision of malaria estimates requires consistency in diagnostics. Another factor 

may include the presence of considerable disparities in health-seeking behaviour, 

especially for estimations entirely dependent on passive case detection. Incidence varies 

relatively as a result of the acquired immunity of some individuals or due to other diseases 

(Ghani et al., 2009). This creates asymptomatics, a proportion which differs according to 

endemicity or equally varies due to household genetic influences, which may affect the 

advancement of the disease to develop symptoms or even severe malaria (Mackinnon, 

Mwangi, Snow, Marsh, & Williams, 2005). Clinical malaria, as measured by incidence 

rate, however, is still the gold standard used in clinical trials, particularly those for control 

interventions. This is despite their imperfect accuracy for various transmission settings as 

assessment tools for variation in transmission (Tusting et al., 2014).  

The advantages of routinely collected data are their immediate sensitivity to changes in 

incidence and the accessible day-by-day collection of malaria data by control 

programmes. This makes it easy to integrate with other data types to help with program 

evaluation and improvement. Nonetheless, the consistency depends on factors such as 

coverage and the quality of a surveillance system (The malERA Consultative Group on 

Health Systems, 2011). When estimations are done via passive detection of cases, the cost 
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tends to be lower than estimations from active case detection, which is why data from 

passive case detection is more readily available. 

For this reason, the approach to use trend measures (and optionally risk) as an additional 

parameter was proposed. This approach utilised various model outputs in combination, 

and the full description is explicitly described in Chapter 3 and partly in Chapter 6. 

Since 2001, all patients seeking care due to fever within the public sector could receive a 

malaria diagnostic test free of charge (Hjortsberg & Mwikisa, 2002). Between 2000 and 

2008, the main malaria test available in most health facilities was a microscopy 

examination of a blood slide. However, the WHO reported that children from most of 

sub-Saharan Africa aged below five years received treatment for all fever cases without 

parasite confirmation (World Health Organization, 2008). Thus, due to the shortage of 

medical personnel and the high volume of suspected malaria cases in most public 

facilities, diagnosis by clinical symptoms alone remained a large part of the malaria 

diagnosis process. 

Figure 2.2 shows both the malaria data captured by the HMIS (inside the dotted line) 

alongside the non-treatment-seeking and asymptomatic malaria cases which together 

comprise the total and true malaria burden in Zambia. The HMIS collects outpatient 

department (OPD), and inpatient cases of malaria data in the form of clinical cases, 

confirmed infections, and deaths disaggregated into children under five years and those 

five years and older.  

 

 

Figure 2.2: Summary of total malaria burden (with malaria cases data captured through 
the HMIS inside the dotted line 
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Globally, routine malaria surveillance records remain the most abundant source of 

information on malaria control progression in endemic countries (Endriyas et al., 2019; 

Ohiri et al., 2016). However, as already demonstrated (e.g. Figure 2.2), most of this data 

suffers from a variety of quality and completeness issues (Ashton et al., 2017). 

Consequently, using this data comes with inherent issues around potential bias through 

underreporting (due to record incompleteness) or over-reporting (due to the addition of 

unconfirmed malaria cases often treated without a confirmatory test). Although the 

routine collection of records has improved in terms of data quality in recent years, these 

data may still need to accommodate for treatment-seeking and sub-clinical malaria to 

reflect a more accurate picture of the overall malaria epidemiology (Ashton et al., 2017; 

World Health Organization, 2008). Nevertheless, most malaria control programs still use 

the raw un-adjusted (reported) malaria datasets for their everyday decision-making. 

The WHO’s methods of working routinely collected data including adjusting reported 

malaria cases for reporting completeness, care-seeking rates, and parasite positivity rates 

(the probability that patients were had the parasite), and is represented by the equation: 

(2.1) 

=  
𝐶𝑎𝑠𝑒𝑠௣௨௕௟௜௖ ௖௢௡௙௜௥௠௘ௗ + 𝐶𝑎𝑠𝑒𝑠௣௨௕௟௜௖ ௣௥௘௦௨௠௘ௗ  𝑋 𝑇𝑒𝑠𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑅𝑎𝑡𝑒௣௨௕௟௜௖ 

𝑅𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠
(1 + 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑠𝑒𝑒𝑘𝑖𝑛𝑔 𝑟𝑎𝑡𝑒) 

In this study, these adjustments were applied to the raw data along with other additional 

data quality checks and adjustments. Data standardisation, multiple imputations for 

missingness, and treatment-seeking were utilised to adjust the data for inherent quality 

issues as much as possible. These were performed depending on the spatial resolution of 

the data, availability of information on the basic adjustment terms, and the type of models 

or analysis being undertaken (see chapter 4, 5 and 6 methods). 

Malaria data between the year 2000 and 2008 was only available with a quarterly 

temporal resolution with the district being the smallest level of spatial disaggregation. 

The data between 2009 and 2016 was available at relatively higher spatial (health facility 

level) and temporal (monthly) resolutions. Malaria data is routinely reported in two broad 

age categories, namely, children (<5 years) and all others (≥5 years). This crude form of 

age reporting is consistent with the national and global malaria priorities adopted decades 

earlier due to the high susceptibility risk, vulnerability, and severity of exposure to 

malaria infection among young children. In the last two decades it was a priority to track 

progress in under-five malaria mortality and incidence which defined the subsequent 

focus on the under-fives in all Malaria Indicator Surveys (MIS), Demographic Health 
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Surveys (DHS), and global malaria reports (Murray et al., 2012; World Health 

Organization, 2008). 

The data for malaria obtained for this study consists of reports of the numbers of 

outpatients and inpatients (suspected) treated based on their clinical symptoms, and 

(confirmed) of laboratory tests carried out using rapid diagnostic tests (RDT), and slide 

positivity. This study used about 79 million malaria case and over 100,000 malaria death 

records. 

 Socio-demographic and interventions data 

Demographics data such as the national, provincial and district level populations in 

Zambia were compiled and estimated from publicly available and published national 

census reports for the years 2000 and 2010 (Central Statistical Office, 2000, 2012). 

Additional post census population estimates were accessed via the Central Statistics 

Office (CSO) official annual district projections (Central Statistical Office, 2013). Health 

facility-level population counts, however, were either derived from a combination of 

health facility headcount population estimates and CSO official estimates generated by 

district offices. 

These baseline population estimates were used to calculate the malaria incidence and 

mortality rates at various scale levels as well as being used to generate population 

densities and malaria intervention coverage rates.  

Information on all interventions implemented in the study areas was requested from the 

MoH and provided together with malaria data. In this study, two main interventions were 

used, as described in Chapter One. ITNs/LLINs and IRS (Masaninga et al., 2013), were 

the two primary malaria interventions implemented during the study period. Information 

about ITNs is collated from various ITN distribution systems such as antenatal clinics 

(ANCs), expanded paediatric Expanded Program on Immunizations (EPI) clinics, and 

through regular mass campaign distribution channels (Presidential Malaria Initiative, 

2018, 2019). This information was only available at the district level and a yearly 

temporal resolution. Environmental datasets 

This study utilised many environmental data types drawn from various sources. Table 2.1 

summarised of all the environmental datasets accessed and used in the overall study. 

Specific details about each can be found in methods sections of subsequent chapters. 

Precipitation, temperature, vegetation index, land cover-land use, humidity, and elevation 

are the primary environmental datasets used. 
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Table 2.1: Summary of Ecological Datasets and their Sources 

 

The selection of the data sources was based on satisfying the spatial and temporal data 

requirements, as well as being suitable for the various analytical and statistical techniques 

used in the study. Most of this was secondary data, pre-processed by the source. 

Environmental/ecological variables data were extracted using the R program’s Raster 

package (Hijmans, 2019). The method directly applied remote sensing/modelling using 

data analytics techniques to analyse the data. It also indirectly extracted and aggregated 

them according to area units of non-spatial structures such as health facility, district, or 

province-level to conform to other data variables from different sources. 

2.4 Modelling methods applied 

Two major small area statistical approaches were applied via Bayesian spatio-temporal 

conditional autoregressive (CAR) models, and Integrated Nested Laplace Approximates 

(INLA) (Rue, Martino, & Chopin, 2009).   

 Using Integrated Nested Laplace Approximation 

The approach was developed for its computational efficiency as a substitute to Markov 

Chain Monte Carlo (MCMC) methods. The approach is often used for fitting Latent 

Gaussian models (LGM), which have been very popular in epidemiological studies 

(Blangiardo, Cameletti, Baio, & Rue, 2013).  

In contrast with MCMC models, which use simulation methods and are often 

computationally expensive, INLA utilises approximation methods from a Bayesian 

framework for model fitting. Hence, in the class of LGMs, INLA can fit models quicker 

than MCMC-based methods. This model includes both spatially structured as well as 

unstructured components, a global linear trend, which represents a temporal effect; and a 
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specific time and space interaction trend (Blangiardo et al., 2013). In the implementation, 

it accounts for the spatio-temporal correlation implicit in the model (specific model details 

are explained in Chapter 6).  

 Bayesian Hierarchical models 
The study also utilised the specialised Gaussian Markov random field (GMRF) of 

conditional autoregressive (CAR) structure. These spatiotemporal models represent the 

neighbourhood of the districts through an adjacency matrix that detects whether areas are 

spatially contiguous to produce a binary value interpreted as spatial closeness for 

polygons that share boundaries. The models incorporate spatio-temporal autocorrelation 

in the response variable through latent random effects, using CAR-type prior distributions 

and spatio-temporal extensions. The Deviance Information Criterion (DIC), Watanabe 

Akaike Information Criterion (WAIC) along with its associated log pseudo-marginal 

likelihood (PML) were utilised to initially select the best conditional autoregressive 

models to use given the available data (Lee, Rushworth, & Napier, 2018; Spiegelhalter, 

Best, Carlin, & Van Der Linde, 2002; Watanabe, 2013) (see Chapters 3, and Chapter 4 

for details).  

The study also used a variety of supporting models, mainly implemented as mixed-effects 

models. These models were selected due to their flexibility and capability to capture 

spatial correlation and potential temporal changes within the random effects surface 

(Lawson & Lee, 2017; Lee, Mukhopadhyay, Rushworth, & Sahu, 2016). They also 

generally reduced the effects of collinearity of well-known spatially smooth 

environmental-based covariates involved in malaria transmission. 

 The new approach of malaria stratification using incidence rate, risk and trend 

The rationale partly follows the need to have more robust measures of malaria burden to 

aid accurate stratification. It also builds on various past stratifications of malaria risk 

zones in Zambia. Before 2015, for example, Zambia's malaria was epidemiologically 

categorised into three transmission zones: low (parasite prevalence <1%); low stable (≤ 

10%); and high (>20%) (Chanda, Kamuliwo, et al., 2013; Masaninga et al., 2013; 

National Malaria Control Center (NMCC), 2011). Low, stable and high transmission 

zones extended around south-eastern, north-western/south-central, and northern and 

eastern Zambia, respectively (Kamuliwo et al., 2013). Since 2017, malaria stratification 

is based on two strata <50 cases and ≥50 cases per 1000 population (National Malaria 

Elimination Programme, 2017) based on incidence rate alone. The study also provides an 
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alternative nationwide risk map, based on malaria incidence rates, risk, and trends at with 

district-level spatial resolution (discussed in Chapter 3), as well as a health facility level 

malaria risk map based on malaria trends (discussed in Chapter 6). 

The modelling techniques mentioned earlier were used to propose a novel methodological 

approach for stratifying high and low burden areas. While incidence rate remains the most 

utilised, against its weaknesses as a malaria metric (as discussed earlier), the proposed 

approach allows a malaria program to adopt or adapt the approach and easily apply it in 

their routine stratification of malaria. The method enables malaria programs in countries 

like Zambia to precisely apply a twofold approach of targeting high-burden areas with 

intensive control measures while pursuing malaria elimination efforts in all other areas 

(see Chapter 3, and Chapter 6). 

2.5 Study Ethics and relevant Permission  

We obtained study authorisation from the National Health Research Authority, and 

Reviewed by and approved by the Ulster University review board (Ref: 17/0049) and the 

Zambian ERES Converge IRB (Ref: 2017-Sept-011). Hence, the data is considered a 

property of the Republic of Zambia, and can be freely requested through the MoH, but 

cannot be shared without prior approval of the ministry.  

2.6 Chapter Summary 

This chapter introduced the core data and main analytical techniques with much fuller 

and more specific details being provided within each of the four results chapters and their 

associated supplementary appendices. 
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3 CHAPTER THREE 

Modelling of Malaria Risk, Rates, and Trends: A Spatiotemporal 

approach for identifying and targeting sub-national Areas of High 

and Low Burden 

 

 

 

This chapter is based on a manuscript submitted for second-round review in 

PlosComputational Biology Journal. This paper relates to objective number one of the 

thesis.  
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Abstract 

While mortality from malaria continues to decline globally, incidence rates in many 

countries are rising. Within countries, spatial and temporal patterns of malaria vary across 

communities due to many different physical and social environmental factors. To identify 

those areas that are most suitable for malaria elimination or targeted control interventions, 

Bayesian models were implemented to estimate the spatiotemporal variation of malaria 

risk, rates, and trends and determine the areas of high or low malaria burden compared to 

their geographical neighbours. 

The study presents a methodology using Bayesian hierarchical models with a Markov 

Chain Monte Carlo (MCMC) based inference to fit a generalised linear mixed model with 

a conditional autoregressive structure. This study modelled clusters of similar 

spatiotemporal trends in malaria risk, using trend functions with constrained shapes and 

visualised high and low burden districts using a multi-criteria index derived by combining 

spatiotemporal risk, rates and trend of districts in Zambia.  

The results indicate that over 3 million people in Zambia live in high-burden districts with 

either high mortality burden or high incidence burden coupled with an increasing trend 

over 16 years (2000 to 2015) for all age, under-five and over-five cohorts. Approximately 

1.6 million people live in high-incidence burden areas alone. Using the proposed method, 

the study developed a platform that can enable malaria programs in countries like Zambia 

to target those high-burden areas with intensive control measures while at the same time 

pursue malaria elimination efforts in all other areas.  

This method enhances conventional approaches and measures to identify those districts, 

which not only had higher rates but also increasing trends and risk can be used. This study 

provides a method, and a means that can help policy makers evaluate intervention impact 

over time and adopt appropriate geographically targeted strategies that address the issues 

of both high-burden areas, through intensive control approaches, and low-burden areas, 

via specific elimination programs. 

 

Keywords: Malaria elimination; stratification; Control; spatiotemporal modelling; High-

burden high-impact; targeted interventions 
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3.1 Introduction 

Malaria transmission trends and risk of infection are usually heterogeneous in time and 

space. The ability to detect common spatial and temporal variations of malaria burden in 

sub-national settings is of great interest and a considerable challenge to malariologists 

and public health experts in endemic countries.  

The global decline of malaria incidence rates has stalled, or the rate of reduction slowed 

in some countries, particularly sub-Saharan Africa (World Health Organization, 2018f). 

The 2017 and 2018 World Malaria Reports highlight this stagnation (Alonso & Noor, 

2017; World Health Organization, 2017b, 2018f) and have led to the World Health 

Organisation’s (WHO) launch of a new country-focused approach known as “high-

burden to high-impact” malaria response. They also call for the development of novel 

methods to address the problem (Ghebreyesus & Admasu, 2018; World Health 

Organization & RBM, 2018). 

Despite the continued fight against high malaria endemicity for the last half-century, 

Zambia is among those sub-Saharan countries affected by the reported stagnation in 

malaria progress (Kamuliwo et al., 2013; National Malaria Elimination Programme, 

2017). With a massive scale-up in interventions (Chizema-Kawesha et al., 2010; 

Kamuliwo et al., 2013; Masaninga et al., 2013; National Malaria Control Programme, 

2012) in the last decade, Zambia achieved considerable progress, resulting in a move from 

control targets to elimination aspirations (A. Comfort et al., 2017). Zambia embraced the 

currently renewed global interest for malaria elimination, and strategically positioned 

itself within a regional and global malaria eradication context.  

However, Zambia’s geographical location complicates its malaria control status vis-à-vis 

its elimination aims. For example, Zambia’s northern and south-eastern neighbours 

(Angola, Congo DR, Tanzania, Malawi, and Mozambique) are often among the WHO’s 

list of highest-burden countries (World Health Organization, 2017b, 2018f). In contrast, 

some of its southern neighbours are regional frontline target countries in the E-2020 

malaria elimination programme (E8 Secretariate, 2018). Similarly, this northern vs 

southern epidemiological contrast is manifest sub-nationally as; generally, Zambia’s 

northern regions have high malaria infections while the southern regions experience the 

opposite (President’s Malaria Initiative (PMI), 2017; Zambia National Malaria 

Elimination Centre, 2017). 
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Uncertainty in progress both regionally (E8 Secretariate, 2018) and nationally 

(Loewenberg, 2018) has not prevented Zambia from moving forward with its aim to 

eliminate malaria.  

In the past, countries generally embarked on countrywide elimination efforts or 

intensifying control in low-burden or high burden areas, respectively. Traditionally 

delineating these areas was logically based on incidence alone. As elimination and control 

are becoming a focal problem of subnational importance, malaria programs have to deal 

with the challenge of accurately delineating areas to pursue elimination in and those in 

which to intensify control strategies, in addition to the challenge posed by border areas.  

In order to ascertain the robustness of methods used for selecting these areas of a high or 

low burden to inform optimal control or elimination strategies and as a measure of 

progress towards country elimination targets, scholars have started thinking of better or 

more robust alternatives. Kitojo et al. recently compared multiple data sources such as 

the use of malaria tests from antenatal care against population-wide prevalence surveys 

in children under five years of age to examine them as a measure for malaria trends and 

progress towards Tanzania’s elimination at subnational levels (Kitojo et al., 2019).  

Routlege et al. (2019) used malaria individual-level cases for geostatistical estimates of 

spatio-temporal transmission to estimate the timeline to elimination or any imminent risk 

of resurgence in China (Routledge et al., 2019), and Amratia et al. (2019) used a 

combination of serology data, case tracing, and case reports in Haiti (Amratia et al., 2019) 

to comprehensively capture the transmission landscape. These studies are part of a 

subsequent search for more robust methods for country-specific transmission 

classification approaches to help inform the recently coined concept “high-burden, high 

impact” approach to tackling malaria. This approach encourages a much more targeted 

in-country implementation of malaria interventions according to the available resources 

and evidence.  

These studies cite the inadequacy of incidence or prevalence as a single metric, and their 

methods provide alternatives for multi-metric approaches using multiple data sources 

besides routine data. Despite their contribution towards a similar objective, the studies 

reviewed earlier have inspired Zambia's case but did not methodically inform the 

approaches used in the current study due to the substantial country-specific differences in 

the types of malaria data available, and the reliability of alternative data sources. As most 

endemic countries like Zambia have sufficient routinely collected data and very limited 
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population-based survey alternatives, there were no options for triangulating multiple 

data sources. Nonetheless, it does still allow for alternative multi-metric approaches using 

a single data source by combining three different methods of classification to understand 

better and guide the overall classification used to measure the progress towards malaria 

control and elimination goals. 

This is because, while malaria incidence or prevalence rate is a good indicator of how 

many people need treatment, it certainly only offers a snapshot of infections at a given 

time point, while missing other important underlying factors such as asymptomatic 

malaria, and case seeking difference. Travel and human movement remain key to malaria 

elimination, especially in low transmission settings, and local reductions in prevalence 

are unlikely to persist if surrounding areas maintain much higher prevalence. Hence, 

targeting interventions towards outliers with unusually high levels of malaria burden 

surrounded by low transmission areas after accounting for spatial trends are likely to be 

more sustainable in the long term.  

While the logic of targeting high burden areas using incidence alone is adept, deep-rooted 

in decades of its use, remains justifiable, and is well supported, the challenge comes with 

how low-incidence areas with increasing malaria may still be ignored if the basis remains 

incidence alone. Ignoring such areas with low but increasing malaria incidence (as a low 

priority with business as usual) compounds the problem soon after because of these areas 

of initially low incidence progress to moderate or even high incidence status. Considering 

the trend, however, reflects not only the stability in spatial patterns but also temporal 

patterns and gives equal weighting even where elimination efforts may be ongoing or 

planned. 

In Zambia’s approach, elimination is targeted explicitly in subnational areas where the 

disease exhibits a low incidence. At the same time, control measures are maintained and 

implemented in the rest of the country (Zambia National Malaria Elimination Centre, 

2017). With insufficient levels of funding for malaria control, the “High burden to high 

impact” approach could help reinvigorate the fight against malaria (World Health 

Organization & RBM, 2018) through the more focused and strategic use of evidence-

based decision making that can deploy the most effective malaria control tools in areas 

where they can have maximum impact. The approach presented in this paper supports the 

identification and targeting of high-burden areas. It facilitates the optimisation and 

prioritisation of locally owned country-led health strategies and priorities to achieve their 

impact maximisation. The study adds to the literature advocating that although disease 
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incidence is primarily the basis for decisions on disease control or elimination choice 

areas, intervention deployment, and decision making on this basis alone may be 

inadequate, but can be optimised without incurring any additional data collection cost. 

The study also highlights the ability of the method in defining and measuring high or low 

burden areas in line with the high-burden high-impact strategy in order to optimise the 

delivery of control interventions and tools (World Health Organization & RBM, 2018). 

The logic to target hotspots and high burden areas is a well-received concept among 

malaria control programs. Identifying the precise quantity and location of highest-burden 

areas would help programs focus their limited resources by targeting such areas for further 

investigations, treatment, prevention efforts, and any media campaigns. For example, 

cost-prohibitive strategies such as mass drug administration (MDA) become feasible for 

every individual in a small-targeted community hotspot but not feasible for population-

wide application. For instance, Zambia has mostly used targeted IRS to enhance and 

supplement universal ITN coverage (Kamuliwo et al., 2013); hence such accurate 

classification is essential in order to ensure the correct application of interventions to true 

areas of need. Targeting intervention efforts to those places with the highest disease 

burden relative to surrounding areas is essential because most malaria hot spots are in 

themselves risks and a source of malaria infections for surrounding areas. Targeting these 

would help generate a ripple effect that can significantly reduce transmission rates and 

risk across the recipient areas. 

This study investigated the spatiotemporal malaria risk, rate, and trends of all 72 districts 

in Zambia between 2000 and 2015 using the following process: i) estimate the relative 

risk and rates of malaria for each district for all ages, under-fives and the five years and 

older, ii) model overall spatial clustering and any related temporal trends and iii) apply a 

rigorous, but reasonably straightforward, matrix to identify and visualise high burden 

malaria districts to help inform and support national control and elimination targets. This 

approach supports and addresses the call for the targeted control or elimination of malaria 

based on delineated sub-national zones defined by high-burden clusters of risk, rate, and 

trend. 

3.2 Methodology 

Nomenclature for equations used. 

𝜙 Random effects 𝐃 =  𝑑௧௝ Temporal neighbourhood matrix 

𝜌𝑠, 𝜌𝒯  Dependence parameters 𝒯ଶ𝑸(𝑾, 𝜌𝑠)ିଵ Variance 



 

70 

 

𝒯௧
ଶ 

Temporary-varying variance 

parameter 
𝜌𝒯 

Temporal autoregressive 

parameter 

𝛿 Overall temporal trend 𝑓௦(𝑡|𝛾௦) Spatial trend 

𝑾 Adjacency matrix 𝑘 Spatial unit 

𝜔௞௝ Spatial closeness of areal units 𝜔఑ Binary indicator where 𝜔఑௦ = 1 

𝜓 Latent component 𝝀 Region-wide probability 

t Timepoint 𝜶 Priori distribution 

 Study area 

Zambia is a landlocked country in South Central Africa, neighbouring eight other 

malaria-endemic countries (Central Statistical Office, 2013; Kamuliwo et al., 2013), three 

of which, represent the frontline region-specific Elimination8 [E8] and E-2020 malaria 

elimination countries (Elimination8 Secretariat, 2017). Zambia’s geographic location 

creates a heterogeneous and complex malaria transmission landscape that is suitable for 

tailored micro-geographic intervention approaches. 

 Spatial, population, and malaria data 

District populations in the period from 2000 to 2015 were estimated using intercensal and 

postcensal exponential population growth model information from the Central Statistics 

Office (CSO) reports from 2000 and 2010 (Central Statistical Office, 2012). Post census 

population estimates and age groups of under-five and over-five-year-olds were obtained 

from the 2013 CSO report (Central Statistical Office, 2013). The derived estimates 

formed the basis for calculations of malariometric indices such as mortality and morbidity 

rates by age groups. The study obtained malaria epidemiological data through the 

Ministry of Health (MoH). Clinical and microscopy-confirmed malaria deaths and cases 

disaggregated by age groups were reported quarterly before 2008. With the countrywide 

introduction of rapid diagnostic tests (RDTs) between 2008 and 2011 (Chanda, 

Kamuliwo, et al., 2013; Chizema-Kawesha et al., 2010; National Malaria Control 

Programme, 2012; Steketee et al., 2008; World Health Organization, 2011; Yukich et al., 

2012), clinical and confirmed cases were reported separately and monthly (Mukonka et 

al., 2015). In order to retain the usability of the full dataset from 2000 to 2015, the study 

analysed data annually. It maintained the 72 original districts and used a combination of 

both confirmed cases and unconfirmed malaria cases. Malaria standardised incidence 

ratios (SIR) per 1000, and standardised mortality ratios (SMR) per 10,000 people were 

computed using a simple formula: SIR = (Observed Cases/Expected Cases) & SMR = 

(Observed deaths/Expected deaths). 
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The data’s completeness reporting during the period of study was not available at district 

or health facility level. Hence, a national average extracted from WHO’s world malaria 

reports (WMR) were generally high with a median = 87%, mode = 87%, mean = 88.3%, 

and SD =2.97%. Information on the missingness of data was only available at the district 

level. Thus, although missingness was dealt with at the district level, it is highly likely 

that any variations at the facility level will not be detected. However, missingness at 

district level stood at 3.4% in deaths among those aged 5 years and over, 2.7% in under 

5 deaths, and only 0.1% among reported morbidity.  

Random Forest was utilised to impute the 5% of missing values in the data. From missing 

values among malaria deaths alone, the normalised mean squared error (NMSE) often 

used to represent error derived from imputing missing values was 0.22 (20%), while it 

was 0.072 (7%) for missing case values and 0.094 (9%) overall for the whole dataset.  

We, however, did not adjust them for confirmation rates by use of Test Positivity Rate 

(TPR) because TPR was neither available nor collected between 2000 and 2008. In most 

instances, information on testing is not available at facility or district levels after 2009 

and 2015 [1].  

 Spatio-temporal modelling 

Conditional Autoregressive (CAR) prior method was implemented. The CAR method 

incorporates spatiotemporal generalised linear mixed models for unique areas with 

inference in a Bayesian environment using Markov Chain Monte Carlo (MCMC) 

simulations (Bennett, 2012; Hamra, MacLehose, & Richardson, 2013; Mabaso, 

Vounatsou, Midzi, Da Silva, & Smith, 2006; Reid, Haque, Roy, Islam, & Clements, 

2012). The model choice is based on its robustness and capability to estimate the effects 

of risk factors on response variables such as incidence and mortality (Lee et al., 2018).  

The study used the models for identifying clusters of neighbouring districts (Charras-

Garrido, Abrial, Goër, Dachian, & Peyrard, 2012) that display a repeated high risk 

(Napier, Lee, Robertson, & Lawson, 2018) of malaria compared with other adjacent areas. 

These models account for spatiotemporal variations within the same environment, mainly 

when using the CARBayesST R package (Lee et al., 2018; R Core Team, 2013). Malaria 

data counts are observed within districts with an assumption that the data has an 

independent distribution using a Poisson model. The model hierarchy defined and 

specified within its prior distributions would accommodate for any spatial correlations 

within the data (See Appendix A). 
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The two main models performed in this study included generalised linear mixed models 

of various forms. The first generates spatiotemporal patterns in the mean response with a 

general temporal effect but separate independent spatial effects for each year (Napier, 

Lee, Robertson, Lawson, & Pollock, 2016). This model is defined by Equation (1): 

𝜓 =  𝜙௞௧ +  𝛿௧, 

where 

𝜙௞௧|𝜙ି௞௧, 𝐖 ∼ 𝑁 ൬
ఘ௦,∑ ఠೖೕ

಼
ೕసభ థೕ೟

ఘ ∑ ఠೖೕ
಼
ೕసభ ାଵିఘ 

 ,
𝒯೟

మ

ఘ ∑ ఠೖೕ
಼
ೕసభ ାଵିఘ௦ 

൰, 

𝛿௧|𝜹ି௧, 𝐃 ∼ 𝑁 ቆ
𝜌𝜏, ∑ 𝑑௧௝

ே
௝ୀଵ 𝛿௝

𝜌𝜏 ∑ 𝑑௧௝
ே
௝ୀଵ + 1 − 𝜌𝜏 

 ,
𝒯௧

ଶ

𝜌𝜏 ∑ 𝑑௧௝
ே
௝ୀଵ + 1 − 𝜌𝜏 

ቇ, 

 

 𝒯ଵ
ଶ, … , 𝒯ே

ଶ, 𝒯ଶ, ∼  Inverse − Gamma(𝑎, 𝑏), 

𝜌𝑠, 𝜌𝒯 ∼ Uniform(0,1). 

The study implemented this model to show the common overall spatial effects for all 

periods, a common temporal trend, and independent space-time interactions. 

The second model is used for districts based on their temporal trends in the risk of malaria 

infection or death, with trend functions optimised by fixed parametric forms or 

constrained shapes (Napier et al., 2018). The model’s effects were utilised to follow a 

multivariate autoregressive process with order 1, using the Equation [2]: 

   𝜓 =  𝜙௞௧ +  ∑ 𝜔఑௦
ௌ
ୱୀଵ  𝑓௦(𝑡|𝛾௦),  

𝜙௞|𝜙ି௞ ∼ 𝑁 ቆ
𝜌 ∑ 𝜔௞௝𝜙௝

௄
௝ୀଵ

𝜌 ∑ 𝜔௞௝
௄
௝ୀଵ + 1 − 𝜌 

 ,
𝒯ଶ

𝜌 ∑ 𝜔௞௝
௄
௝ୀଵ + 1 − 𝜌 

ቇ, 

𝒯ଶ  ∼ Inverse − Gamma(𝑎, 𝑏), 

𝜌𝑠, 𝜌𝒯 ∼ Uniform(0,1). 

𝜔𝑘 = (𝜔𝑘1, … , 𝜔𝑘𝑆) ∼ Multinomial(1; 𝝀), 

𝝀 = (𝜆ଵ, … , 𝜆ௌ)  ∼ Dirichlet൫𝛂 = (αଵ, … , αௌ)൯, 

Where ϕ−k = (ϕ1, . . . , ϕk−1, ϕk+1, . . . , ϕK ). 

The model was implemented with 4 MCMC chains, 20000 samples obtained by 

generating 220 000 samples, and removed the first 20 000 as burn-in. Thinning was 

applied to the remaining 200 000 by 10 to reduce the autocorrelation. The outputs from 

[2] 

[1] 
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this model include a spatial visualisation (map) with credible intervals, a trend 

classification probability, a slope of trend change and summaries of the trend outcomes 

and parameters. However, although the study used all these for the interpretation of 

results, none of them is discussed in the text except the trend visualisation. 

Finally, the study classified and visualised districts as high-burden or low-burden based 

on a matrix score using the combined values of relative RIsk, RAtes, and risk Trend 

(RIRAT) implemented in ArcGIS 10.5 (Figures 3.6 & 3.7) (See also Appendix A-

methods).  
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3.3 Results 

 The spatiotemporal trend of malaria mortality and incidence rates from 2000 to 
2015 

Preliminary analysis of results show temporal progress in the reduction of malaria 

mortality; however, the trend of malaria incidence remains high. Figure 3.1a shows a 

significant decline of about 80% in overall malaria mortality from over 11 500 deaths in 

2000 down to near 2300 in 2015. Mortality rates among under-five children showed the 

most significant decline from 28 down to only 3.3 per 10 000 population at a 95% 

confidence interval, representing a circa 90% decline. Mortality among the over five 

population also declined from about 5.9 to 0.58 per 10 000 population.  

Figure 3.1b shows a significant reduction in incidence rates among under-five children 

from 1457 to 680 (95% CI) per 1000 population with an average reduction of 44 cases 

annually. Meanwhile, there was a 14% increase in malaria incidence among the five years 

and older, from 224 to 255 per 1000 population, but this was not statistically significant 

at 95% CI. 
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Figure 3.2 shows the spatiotemporal trends of malaria mortality (3.2a, 3.2b) and incidence 

(3.2c, 3.2d) for all ages. Figures 2b and 2d show temporal trends highlighted by the 

posterior national median (red) and 95% credible intervals (black) for (i) country-wide 

mean mortality rates and (ii) the level of spatial standard deviation in mortality and 

incidence trends. The blue dots are mortality and incidence rates for each district by year. 

The figures confirm that mortality has declined steadily over the study period with a 

significant decrease in spatial variance across the 72 districts resulting in a homogenously 

low risk across the whole country by 2015. In contrast, incidence rates have been unstable 

with a noticeable increase since 2008, along with an increase in spatial variance across 

the 72 districts. 
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Fig. 3.2a. Box plots showing temporal trends of all age malaria mortality and incidence (2b) from 2000-2015. Mortality decline 

comes with spatial homogeneity (2c), while the increase in incidence (2d) grew increasingly unstable and spatial transmission 
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Although the introduction of RDTs around 2008/9 may have affected the observed 

malaria trends, the results presented here still conform to those obtained from Zambia’s 

malaria indicator surveys (MIS) from 2006, 2008, 2010, 2012, and 2015, which indicated 

a decline in malaria between 2006 and 2008, but a speedy rise from 2008 to 2015. This 

confirms the inherent consistency in the trend captured in the routinely collected data as 

well. This is further validated by the improving quality of HMIS data observed from the 

declining portion of unconfirmed malaria reported in the HMIS from 55% in 2011 to only 

20% in 2015 (see Appendix A, and Figure S3.3).  

However, these observed spatial variances may be a result of factors such as staggered 

interventions especially IRS, which is not applied consistently in specific districts but 

rather targeted to supplement LLINs in very high transmission areas. This means that 

chances were high to have areas sprayed in one year and not another depending on the 

preceding year’s transmission levels. RDT stock-outs (Chanda, Kamuliwo, et al., 2013; 

Leung, Chen, Yadav, & Gallien, 2016; Presidential Malaria Initiative, 2019; USAID | 

Deliver Project, 2016; Vledder, Friedman, Sjöblom, Brown, & Yadav, 2019; World Bank, 

2010; Yadav, 2010; Zambia Ministry of Health Logistics Pilot Program Steering 

Committee, 2011) (recorded at ≈ 20% in 2015) or any differences in the adoption of RDT 

usage by clinicians could also cause such spatial variations. Further observation made 

was that the decline of 2008 predates RDTs by 2 years and comes on the backdrop of 

removal of health facility user fees that instead should have increased the cases captured 

and foster a rise rather than a decline. 

Nonetheless, it would be fair to assume that RDT adoption or stock could be an issue due 

to commodity distribution inefficiencies following this RDT implementation, especially 

for districts further away from the initial national/central hub. Hence, massive stock-outs, 

especially in further off rural districts were common before the optimisation of the supply 

chain (Vledder et al., 2019). These flaws in the medical supply chain management of 

commodities and equipment have been acknowledged in many other studies and reports 

(Chanda, Kamuliwo, et al., 2013; Leung et al., 2016; Presidential Malaria Initiative, 2019; 

USAID | Deliver Project, 2016; World Bank, 2010; Yadav, 2010). Nevertheless, the study 

acknowledges that although these persistent stock-outs have significantly reduced, they 

may still have random effects across the period mixed in with spatially observable 

differences.  
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The spatial patterns for both mortality and incidence rates can be seen in Figures 3.3a and 

3b.  

 Spatial patterns of malaria risk from 2000 to 2015 

Figure 3.4 shows the district level relative standardised mortality risk (SMR) and 

standardised incidence risk (SIR) for all age, under 5 and over 5 categories. The 

interpretation of the risk scores is that an SMR/SIR of 1.5 corresponds to a 50% higher 

risk compared with the countrywide average. In comparison, an SMR/SIR of 0.9 denotes 

a 10% lower risk. Based on the calculated SMR, few districts indicate a higher risk of 

mortality among under-five populations. Notably, some districts in the Eastern and 

Northern provinces have more than a 250% higher risk of malaria mortality for the under-

five age group above the national average. Generally, the Eastern province had the highest 

risk across the country. The figures also support the temporal trends observed earlier in 

that the under-fives have a higher risk compared to the over-five age-group. The risk of 

infections also shows the similar but less extreme variance in spatial patterns with 

concentrations of low-risk areas in the south and parts of the central and northern 

provinces. 
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 Spatial Clustering of areas exhibiting similar malaria trends  

Figure 3.5 shows the distribution of district clusters exhibiting similar temporal malaria 

risk trends. Districts were categorised as having either an increasing trend (red), a 

constant/no change trend (black) or a decreasing trend (blue) with the darker/deeper the 

shading, the higher the posterior probability for that trend and vice versa. There was very 
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little to no posterior uncertainty in the under-five mortality and incidence risk 

classifications assigned to each of the three trends (increasing, constant/no-change, and 

decreasing). In contrast, minimal uncertainties (probability = 0.5 - 0.75) are visualised in 

the increasing over-five mortality clusters and no-change in all-age clusters.  

With regard to mortality trends, in those districts with either a constant or decreasing 

trend, the pattern of change in trend over time has levelled-off and currently remains 
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Figure 3.5: Temporal trend of malaria under-five children and over five age group mortality and 
incidence trends, 2000-2015 
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steady. However, in those districts where the mortality trend has been increasing (i.e. 7% 

of districts for under-fives and 32% districts for over fives) the pattern of increase during 

the 16 year study period has been rising. This would indicate that there is a worsening 

situation in malaria mortality in those areas, creating a real potential to negatively 

influence national mortality figures if this situation continues (See Appendix A- Figure 

3.S1). 

Progress in reducing under-five mortality over the 16-year study period is consistent and 

evident across risk, rates, and trends while incidence across the three age categories is 

less consistent and more varied. Only 3% (2) of districts showed an increasing trend in 

under-five mortality while 71% and 26% experienced a decreasing trend or no-change, 

respectively (Table 3.1). For incidence risk in the under-fives, however, there was an 

increase in 10% of districts (mainly around the northern half and easternmost border 

region,), a decrease in 20% of districts around southernmost areas. In comparison, 45% 

remain unchanged (clustered mainly around the middle half of the country). The mortality 

trend among those aged five years and older is more varied (Table 3.1) with 3%, 69%, & 

28% of districts either increasing, decreasing or no-change, respectively with a model 

classification certainty of 75-100% (Figure 3.5a [ii]).  

A large cluster of districts in the southern region has a decreasing trend relative to the rest 

of the country (Figure 3.5b (i-iii).  

Table 3.1: Summary description of malaria mortality and incidence trends 
in <5 years old children, ≥5 years age group, and all age combined 

NB % represents the proportion of the 72 districts assigned to each trend, i.e. Decrease, 
Increase, or No-change. 
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The trend for over-five incidence in Table 3.1 shows that over half of all districts (62%) 

are increasing, while only 14% are decreasing and 24% exhibit no-change (all results are 

statistically significant at a 95% credible interval).  

 A classification matrix for determining overall malaria burden 

While rate and risk trend clusters show a clear picture of overall district-level 

classification, i.e. decline, no-change or increase (Figure 3.4 and Table 3.1), reviewing 

these trends separately may conceal or mask the overall underlying picture which in turn 

might undermine the actual implications of these trends for malaria control. For instance, 

a district with high risk, high rate, and showing no-change in trend could be more 

Figure 3.6: Data preparation and processing to determine areas of highest/lowest burden 
Stages of data analysis from initial, intermediate, to final outputs. The classes relate to 1, 2, 3 scores 
with 1= low, 2 = medium and 3 = high applied to risk, rates, and trends. 
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alarming compared to a district that has low risk, low rate and no change or an increasing 

trend. Therefore, the study created a matrix (RIRAT) of the combined indices for malaria 

risk, rates, and trends to accurately classify high-burden and low-burden districts (Figure 

3.6) (See Appendix A -methods for matrix detail). 

Figure 3.7 shows comparative district level maps for mortality and incidence burden for 

the two age categories on the spectrum of low (green), medium (yellow), and high (red) -

burden (See Appendix- Table 3.S1 for details). Figures 7a and 7c show the districts in 

2015 (mostly in Eastern and Luapula provinces) with the highest under 5 mortality-

burden (8 districts) or highest incidence-burden (8 districts) representing an estimated 

half a million children in that age cohort. Twelve unique districts were classified with 

either high-mortality or high-incidence burden while four had both. For the five years and 

older, 15 districts were identified as high-incidence burden areas representing 

approximately 2 million people in that age group. Only two districts had both high-

mortality and high incidence burden representing about a quarter-million vulnerable 
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Figure 3.7: High/low burden malaria mortality (3.7a & 3.7b) and incidence (3.7c & 3.7d) 
districts using matrix scores of risk, rate, and trends 
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people, while an additional 1.5 million people aged over five lived in the 13 districts with 

a high-incidence burden only. 

Derived from matrix score, more than 3 million people live in districts with generally 

high incidence risk, high incidence rates and an increasing trend. This population is 

exposed to at least twice the risk of malaria compared to other areas in the country. 

To assess the method further, differences among incidence classification of those aged 

≥5 years were observed through a comparison of the derived results using raw rates alone 

against the method. There was a considerable difference in the proportion of districts 

classified as high or low burden compared to those identified by the method. For example, 

only 55% of districts identified as high incidence using raw rates alone were also deemed 

high-burden using the overall weighted combined method. Similarly, 45% of those 

districts identified as high in the raw rates dropped into the moderate burden category, 

and 30% of districts identified as low ended up as moderate-burden districts. The 

differences observed here highlight the limitations of using raw incidence rates as a basis 

for identifying and targeting intervention strategies at the subnational level.  

3.4 Discussion 

These findings have important implications for malaria policy in Zambia, and the various 

intervention approaches used within the country. As shown, in both age groups, it is clear 

that there has been remarkable progress in mortality reduction but less so in incidence 

reduction. Both the under-five and the over five age groups experienced a similar rate of 

reduction in mortality (85% and 90% respectively). However, the under-fives continue to 

experience approximately five times the incidence rates and at least 2.5 times the 

mortality burden compared to those aged five years and older.  

Without overemphasising the observed declining malaria mortality, the overall results 

would indicate that more can still be done to further reduce the under-five mortality 

burden by targeting the highest-burden areas. The benefit of the high precision district-

level analysis presented in this study provides an opportunity to move away from the one-

size-fits-all approach, and optimise resource deployment in a more focused, efficient and 

geographically targeted manner. The findings also demonstrate how a small number of 

high burden areas can skew the national averages and overshadow the actual progress 

achieved so far in the country as a whole. This study has provided a means of determining 
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districts with high malaria burden where, if prioritised, targeted malaria control efforts 

could help maximise impact (Appendix A -Figure 3.S2). 

With proposed sub-national elimination approaches soon to be implemented in Zambia, 

the method, based on an analysis of 16 years of data has identified those areas that are 

most suitable for malaria elimination (Appendix A - Figure 3.S2). The method can be 

applied to help other countries identify high-burden areas and achieve maximum impact 

through the appropriate use of tools and interventions efficiently and effectively. This is 

important when considering the use of expensive interventions such as indoor residual 

spraying, which requires rounds of minimum spray coverage thresholds of up to 85% 

(Pinder et al., 2015). 

An additional point of particular interest in Zambia is that most high-burden areas 

comprise districts along the national borders with Angola, Democratic Republic of 

Congo, Malawi, Tanzania, and Mozambique. All these countries are unequivocal, high-

burden malaria-endemic countries that have often been ranked among the top ten high-

burden countries in the world. This observation highlights the significance of the need for 

countries to engage in bilateral and collaborative regional malaria initiatives for 

successful control along borders. While Zambia is part of the Elimination8 countries 

cross-border malaria collaborations, this only applies in southern bordering countries. No 

such formal undertakings are present with Zambia’s northern bordering countries 

(Elimination8 Secretariat, 2017).  

The patterns and trends presented here reflect Zambia’s geographic location and 

adjacency with contrasting high-burden and low-burden neighbouring countries and 

highlight the potential influence and impact of cross-border malaria risk in border districts 

(Chihanga et al., 2016; Simon et al., 2013). This method, if carefully applied, could 

additionally benefit other low resource countries and encourage broader regional 

collaborations, particularly for targeted cross-border initiatives. 

This study has presented an empirical but rigorous approach for the identification of high-

burden/low-burden malaria incidence and mortality in affected countries. In the case of 

Zambia, it would be proposed that a review of the current under-five malaria intervention 

strategies be done, especially for high-mortality burden districts so that any potential 

problems or issues can be identified and addressed. It would also be recommended that 
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more focus is given on ongoing operational research to assess the progress and identify 

specific challenges at the community level (Haque et al., 2010). 

While this study focused more on the identification of high burden malaria control areas 

than those most suitable for elimination, the approach still provides sufficient evidence 

and information that can accurately inform both control and elimination approaches. The 

approach provides the information base needed to facilitate further research into the 

specific factors that might explain within-country differences between regions and age 

cohorts, including the value and impact of intervention programmes over time. For 

example, Figure 3.8 shows the relationship between mortality and incidence trends with 

significant malaria policy changes and guidelines on interventions and diagnostics in 

Zambia between 2000 and 2015.  

Of interest is the post-2008 trend of increasing incidence rates despite the various 

intervention strategies. The spatio-temporal modelling and the identification of those 

specific areas where incidence burden and risk is highest provide essential information to 

support future geographically targeted initiatives. Such initiatives could replace 

expensive country-wide programmes, thus facilitating more efficient and effective use of 

scarce resources. 

It is recognised that some of the changes in malaria policy, diagnostics, definition, and 

collection methods during the 16 years may have introduced potential biases in this study. 

The incorporation of malaria cases by clinical symptoms added some level of non-

malarial fever burden, and which could lead to an over-estimation, especially between 

2000 and 2008. This bias, however, would be declining in the post-2008 period (see 

Appendix A).  

It is also worth noting that the long period of analysis on which this study is based saw 

several health care data system changes which may contribute to some of the observed 

trends in the results. For example, it is realistic to expect a widening financial and 

geographic access to healthcare as a result of an increased number of available health 

facilities, and /or removal of patient user fees could increase the clinical incidence of 

malaria over time. Nonetheless, evidence from literature did not fully support this 

assertion as studies generally report contradictory result on the effects of financial 

changes (See Section 2.2.4 and 2.2.4.1 for details). Furthermore, greater use of RDTs 

might reduce the clinical incidence of malaria and may, to a greater extent, counteract 
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this. Furthermore, there is evidence of improvements in record-keeping and data 

completeness. For example, the move from HMIS to DHIS2 in 2014 might have reduced 

misreporting, and improved feedback to health facilities and thereby reduce variations in 

the clinical incidence data set over time.  

Such barriers to incorporating these relevant covariates reflecting changes in the 

healthcare data system over time, in addition to the lack of consistent data on the number 

of facilities per district through the whole study period make it extremely challenging to 

ascertain and quantify the extent to which the analysis here could have been affected. 

Nonetheless, the results obtained from this study are still valuable, as they are in line with 

the current, generally accepted and well-known limitations of the types of data used by 

the malaria programme. Besides, similar trends showing increasing malaria in most parts 

of the country have been reported from malaria indicator surveys conducted between 

2006 and 2012 (Bennett et al., 2016). These partly confirm that, despite the given 

limitations of HMIS data, it still captures the true malaria dynamics with adequate 

accuracy compared to survey data. This may be due to the often high reported average 

health-seeking behaviour across the country, as shown in many past World Malaria 

Reports (WMR) (World Health Organization, 2011, 2015e, 2018e).  
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Significant malaria policy changes and guidelines, interventions and diagnostics in Zambia 2000- 2015. Note that this study did not include any changes that were 

progressive, e.g. IRS. Major policy changes undertaken in Zambia, 2000–2015 (Source of data: Steketee et al. 2008, Chanda et al., 2013, Redditt et al. 2012, 

Kamuliwo et al. 2015) 

 2003: Chloroquine (CQ) replaced by artemisinin-lumefantrine (Coartem®) as first-line malaria treatment and new diagnosis and treatment guidelines 

for malaria to reflect drug policy change launched;  

 2006: Use of Insecticide Treated Nets (ITNs) adopted;  

 2006-8: Training of additional microscopists, scale-up of RDTs distribution; free distribution of insecticide-treated bed-nets (ITNs) through antenatal 

care (ANC) and intermittent preventive treatment (IPT) using sulfadoxine-pyrimethamine (SP);   

 2011: Consideration for future elimination begins with the alignment of NMCP strategic plan 2011-2015 with the national vision “a malaria-free 

Zambia by 2030”] 

Figure 3.8: Incidence and mortality trend against major policy changes 
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For example, the observed changes in prevalence rates over time may in some parts have 

been influenced by changes in diagnostic tools or methods used in case reporting rather 

than representing real changes in malaria incidence. This could be more relevant in rural 

health facility settings (Mukonka et al., 2015) where limited availability of trained human 

resources still exist. It also noted that this study gives a long-term time-series of mean 

trends, risks and rates up to 2015, and therefore presents conclusions accurate to this 

period of study. Usage for present decision-making would have to be based on an analysis 

of more recent and relatively short time datasets of 3 to 5 years. 

In this study, other potential limitations that could have influenced some of the observed 

results may include: i) the potential presence of unquantifiable effects due to the lack of 

reliable subnational treatment-seeking rates capable of indicating existing subnational 

variations if present, ii) uncaptured subclinical malaria which is long known to have a 

severe impact on transmission, especially in the older age groups due to partial immunity; 

and iii) the unknown effects of any differences on how quickly RDT use was adopted 

across the country. These if present may affect the conclusions of what the actual malaria 

burden in the population is (see Appendix A for details on asymptomatic malaria).  

Having said that, the increasing availability (reduced lag) and improvement (inaccuracy) 

of health management information system (HMIS) data presented here provide a much 

greater opportunity for such data to be used with more confidence in the future. This is 

particularly true given the more expensive alternatives such as surveys that may not 

always provide comprehensive longitudinal information and analysis at the times when it 

is most needed.  

3.5 Conclusion 

The study has presented a method here that augments conventional measures of 

identifying malaria risk and provides a practical approach for the identification of areas 

of high and low malaria burden at the sub-national level within countries. By applying a 

rigorous spatio-temporal approach that uses longitudinal rates, risks and trend clusters, 

policymakers can determine priority areas to deploy scarce resources for high impact 

control interventions in high-burden areas and elimination strategies in low burden areas.  

This easy to implement and replicable methodology will help those policy makers and 

malaria control/elimination program staff in malaria-endemic countries who may not be 
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fully cognisant of or technically skilled in advanced statistical methods. The novelty of 

the method is not in the statistical algorithms, which are well-established techniques in 

their own right, but in the approach of combining the typically independent measures of 

rates, risk, and trend over time and space that better represent malaria prevalence within 

a country and are easy to replicate and use at an operational and practical planning level. 

The application of this approach could be extremely beneficial to countries embarking on 

their malaria elimination strategies as part of the global malaria eradication agenda. This 

could be particularly effective through informed sub-national programs at even finer 

levels of geographic aggregation, such as health facility catchments, which are suitable 

for targeted control and elimination strategies. 
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4 CHAPTER FOUR 

Near-Term Climate Change Impacts on Sub-national Malaria 

Transmission 

 

 

 

 

 

 

 

This chapter is based on a manuscript submitted for the first-round review in Nature 

Scientific Reports Journal. This chapter relates to objective number two. 
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Abstract 

The role of environmental factors, and climate change in particular, on global malaria, 

have been highlighted by recent World Health Organisation (WHO) reports, but little is 

known about short-term effects at sub-national levels. Bayesian spatio-temporal 

modelling was implemented to examine district-level malaria trends in Zambia from 2000 

to 2016 and negative binomial mixed regression models to investigate the relationship of 

near-term environmental change with malaria incidence. It included the diurnal 

temperature range (DTR) as an alternative environmental measure to the more standard 

and widely used mean temperature. The results show that intra-regional near-term 

variations in the environmental variables are significantly associated with malaria 

incidence. The analysis indicates that DTR, as a consequence of increasing minimum and 

decreasing maximum temperatures, is a key influential factor in malaria incidence rates, 

even in those areas where there is a general declining trend in rates. 

Additionally, it is evident that the impact of DTR is seasonally sensitive, with the majority 

of effects occurring in the first and second quarters of the year. So, for the first time, this 

study has been able to demonstrate how the substantial investment in intervention 

programmes are negatively impacted and offset by near-term climate change, most 

notably since 2010. Based on the findings relating to the importance of seasonality, it is 

argued that targeted season-specific interventions, such as Seasonal Malaria 

Chemoprevention (SMC), in those areas with an increasing trend in malaria could be a 

very efficient, cost-effective means of reducing rates quickly. 

 

 

Keywords: Climate Change, Trends, Increasing malaria, Diurnal Temperature Range 
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4.1 Introduction 

An estimated 3.4 billion people in 92 countries are at risk of malaria infection (World 

Health Organization, 2018b). Malaria eradication is possible within a generation, 

although achieving this goal requires improvements and continuous progress in socio-

economic and environmental trends (World Health Organization, 2018b). At the same 

time, there needs to be improved coverage of current malaria intervention activities. The 

World Health Organisation (WHO) indicates that climate change could cause 

approximately a quarter million additional deaths per year between 2030 and 2050, from 

malnutrition, malaria, diarrhoea and heat stress (World Health Organization, 2018a). It 

has been noted that the impacts of climate change on malaria transmission are already 

being felt in most regions. However, some places continue to make good progress against 

malaria over the last decade (World Health Organization, 2018f).  

The African continent continues to carry the highest burden of malaria in the world while 

recording the lowest mean relative humidity and precipitation compared to Australia, 

Asia, Europe, North America, and South America (Climate.copernicus.eu, 2019). Such 

variations persist across various climate variables (e.g. temperature) and spatial scales 

down to the smallest level where the changes have a direct effect on individual wellbeing 

and survival. The general association of variable malaria incidence with a range of climate 

measures has been evident at various geographical scales from the global to the very small 

area level within countries (Aal & Elshayeb, 2012; Abeku et al., 2004; Caminade et al., 

2014; Ferrao, Niquisse, Mendes, & Painho, 2018; Gething et al., 2010; Hurtado, Calzada, 

Rigg, Castillo, & Chaves, 2018; Imai et al., 2016; Moukam Kakmeni et al., 2018; Parham 

& Michael, 2010; Semakula et al., 2017; Tompkins & Thomson, 2018; Zhai et al., 2018). 

Zambia, for example, has experienced considerable progress in reducing malaria 

mortality in the last two decades (Chizema-Kawesha et al., 2010; World Health 

Organization, 2008). This progress came as a result of progressively better case 

management, prompt diagnostics (e.g. using rapid diagnostic tests (RDTs)) (Mukonka et 

al., 2015) and a large scale-up of malaria interventions through vector control measures 

such as insecticide-treated nets (ITNs) and indoor residual spraying (IRS) (Chanda et al., 

2011; Chizema-Kawesha et al., 2010; Kamuliwo et al., 2013). Many districts within the 

country have transitioned from having a ubiquitously high malaria mortality burden to 

having only a few deaths annually (Shimaponda-Mataa et al., 2017). Previously, high 

rates were mainly attributed to delays in seeking treatment, self-medication, and low 



 

100 

 

immunity, especially in children aged under five years old (Presidential Malaria Initiative, 

2019). 

Between 2000 and 2016, Zambia’s within-country malaria incidence rates generally 

declined in most areas before increasing again post 2008. This trend has occurred despite 

improvements in the quality and availability of RDTs since 2009, and the uniform 

distribution of interventions applied as a national strategy over the intervening period. 

Consequently, while Zambia experiences a moderate-to-high and spatially heterogeneous 

malaria transmission pattern countrywide (Pinchoff et al., 2015), the question remains as 

to why the burden of malaria has not decreased in all areas despite the application of 

various control measures (Nkumama et al., 2017). 

Climate change, among other factors, has been cited as a potential cause for the persisting 

malaria incidence and the notable increases in some areas (Bennett et al., 2016; 

Shimaponda-Mataa et al., 2017) as the condition is particularly sensitive to changes in 

temperature and rainfall. The distribution of mosquito vectors depends on a range of 

factors such as the biology of the mosquito species, the local ecology, and the 

effectiveness of vector control programmes (Benelli, Jeffries, & Walker, 2016; Carpenter, 

Pearson, Mitchell, & Oaks Jr, 1991).  

Climatic factors are also strongly associated with mosquito reproduction habits, whereby 

extreme conditions can restrict their longevity resulting in potential changes in vector 

density and infections. Recognising this connection, studies of the impact of purportedly 

anthropogenic induced climate change on malaria have increased in recent years (Arab, 

Jackson, & Kongoli, 2014; Bennett et al., 2016; Caminade et al., 2014; P. Martens et al., 

1999; W. . Martens, Niessen, Rotmans, Jetten, & McMichael, 1995; W. J. . Martens, 

Jetten, & Focks, 1997; Ukawuba et al., 2017; Van Lieshout, Kovats, Livermore, & 

Martens, 2004). 

In order to understand the role of short term changing environmental conditions (i.e. 

climate change) in explaining different malaria trends at the sub-national district level in 

Zambia, this study investigated the potential role of climate variables in transmission 

dynamics over seventeen years (2000-2016). All districts that showed a declining trend 

in malaria incidence were selected and compared with those that had an increasing trend 

with respect to the temporal trends in quarterly temperature (maximum, minimum, and 

diurnal ranges), precipitation, the normalised difference vegetation index (NDVI) and 

elevation. 
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4.2 Methods 

 Study Area - Demographics and information on malaria  

Zambia is a Southern African country of 752,000 km2, with a population of c. 17 million 

people and has a tropical climate (Central Statistical Office, 2013). This study acquired 

estimated district level populations from intercensal and postcensal exponential 

population growth models based on the Central Statistics Office (CSO) reports from 2000 

and 2010. Routinely collected malaria epidemiological data were obtained from Zambia’s 

Ministry of Health (MoH) through the National Malaria Elimination Centre (NMEC). 

Since 2009, all confirmed malaria incidence data were derived from a laboratory 

diagnostic test or a rapid diagnostic test (RDT) result, while the presence of malaria 

symptoms, including a fever but with no confirmed diagnostic testing, was defined as 

unconfirmed (or clinical) malaria. The data were adjusted for reporting completeness, 

missingness, treatment-seeking, and outliers at the district level. 

 Climate and ecological data  

Environmental variables were obtained from satellite-based imagery datasets. Daily 

precipitation data were extracted from the Climate Hazards Group archive with a spatial 

resolution of 5 x 5 km (Funk et al., 2015); daily temperature data were sourced from 

NCEP Climate Forecast System Reanalysis (CFSR) at the 20 x 20 km level (Saha et al., 

2012). Normalised Difference Vegetation Index (NDVI) was obtained from Copernicus 

Global Land Service (CGLS) at the 1x1 km and 10-day spatio-temporal resolutions 

(Smets, Jacobs, Swinnen, Toté, & Wolfs, 2018; Smets et al., 2013). All the environmental 

variables were extracted by district using the R Program raster package (Hijmans, 2019). 

The study extracted aggregated quarterly mean, minimum and maximum seasonal rainfall 

(mm) averages as well as mean (Tmean), maximum (Tmax), and minimum (Tmin) values 

of temperature (°C) for the period from January 2000 to December 2016 for all 72 

districts. The choice of the two primary climate variables (temperature and rainfall) was 

based on current evidence from the literature confirming an existing relationship between 

malaria, temperature and rainfall (Abiodun, Maharaj, Witbooi, & Okosun, 2016; Blanford 

et al., 2013; Colón-González, Tompkins, Biondi, Bizimana, & Namanya, 2016; Krefis et 

al., 2011; Mohammadkhani, Khanjani, Bakhtiari, & Sheikhzadeh, 2016; Nkumama et al., 

2017; Odongo-Aginya, Ssegwanyi, Kategere, & Vuzi, 2005; Okuneye & Gumel, 2017; 

Suk, 2016). Seasonality was matched with yearly quarters calculated as January-March 
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(Quarter 1), April - June (Quarter 2), July - September (Quarter 3), and October - 

December (Quarter 4). Most published studies show a 1-3 months lag in incidence 

reporting (Aal & Elshayeb, 2012; Darkoh, Larbi, & Lawer, 2017; A. H. . Kilian, Langi, 

Talisuna, & Kabagambe, 1999; Phung, Talukder, Rutherford, & Chu, 2016; Wu et al., 

2016), which fitted with the quarterly definition. Computations of mean seasonal 

(quarterly) trend detection and change-point analysis for Tmax, Tmin, Tmean, mean 

rainfall, and maximum rainfall variables, were applied to detect any trending of climate 

change points in the data. Diurnal temperature range (DTR) was computed and extracted 

from the daily Tmin and Tmax variables for the duration of the study. 

Other groups such as the Malaria Atlas Project utilised mosquito larval conditions based 

on their capability of affecting adult mosquitoes' life-history traits and in the long run 

influencing malaria transmission (Lyimo, Takken, & Koella, 1992; Moller-Jacobs et al., 

2014; Okech, Gouagna, Yan, Githure, & Beier, 2007). It is not surprising that most 

available studies, including the Malaria Atlas Project, measured periods of successive 

days within the temperature range suitable for Anopheles larval development. However, 

this study used DTR whose relationship with adult mosquito survival, and vectorial 

capacity is directly associated with common control interventions such as treated bednets, 

IRS, repellents and screening, all of which are used to control and primarily target the 

adult stage. The rationale for the choice of DTR as an environmental variable in this study 

was because it captures the period within which the temperature range is suitable for adult 

mosquito biting, and thereby directly translating these effects into potential transmission 

cases and capture the clinical onset of malaria case symptoms with at least seven days of 

lag from the time of the infectious bite.  

This choice corroborates with more recent evidence from Murdock et al. (2016), who 

show the effects of increasing DTR leading to an overall decrease in mosquito vectorial 

capacity and an increase in mosquito mortality. Current model results from directly 

supporting this and show that DTR is also a better predictor of clinical malaria infections. 

In An. Gambae for example, the increase in DTR by 3 °C from temperatures ≥27 °C 

significantly reduced the vectorial capacity to levels that potentially halve 

transmission. DTR significantly affects adult mosquito longevity when it is at its widest 

range. It can increase the mosquito’s transmission potential through the daily rate of 

inoculations, and subsequently, determine the probability of future infective bites from a 

currently infected case. 



 

103 

 

DTR has demonstrated its direct biological plausibility effects on clinical incidence 

through directly affecting mosquito survival, and by influencing biting activity (Murdock, 

Sternberg, & Thomas, 2016). As shown by Murdock et al., (2016), this directly translates 

into the potential for DTR to increase or decrease malaria infections driven by adult 

mosquito activity. 

 Data analysis and overall models used 

The study implemented mixed models using binomial regression analysis to establish the 

independent effects of environmental conditions on the malaria incidence trends exhibited 

by each district. It also tested for any apparent effects in the variation of vector 

interventions to control for differences in malaria vector interventions deployed in these 

areas. 

An analysis of Zambia’s malaria trends between 2000 and 2016 was run, first by 

classifying the district spatio-temporal trends into declining, increasing, or constant 

(Napier et al., 2018). A Bayesian hierarchical mixture model was implemented with an 

inference through Metropolis-coupled Markov chain Monte Carlo ((MC) 3) model. The 

inference was based on a sample size of 200,000 iterations, M = 4 parallel chains, a 

thinning of the degree of 10, and a burn-in of 20,000. The study used Gelman’s trace plots 

and visual diagnostics to determine the convergence of the models (Gelman, Carlin, 

Stern, & Rubin, 2004; Hamra et al., 2013). 

The general model structure and formulae of the temporal model are given by equation 

(1): 

𝑌௞௧~ 𝑝(𝑦௞௧|𝜇௞௧), where 𝐾 = 1, … , 𝐾, 𝑡 = 1, … , 𝑁,  

𝑔(𝜇௞௧) = 𝑂௞௧ + 𝑿்
௞௧𝜷 + 𝜙 ෍ 𝜔௞௦

௦

௦ୀଵ

𝑓௦(𝑡|𝜸𝒔) 

Where malaria trends fs(t|γS) estimated in the study were represented by (a) Constant 

trend - β1; (b) Linear increasing trend - β1 + γ1t, with γ1 > 0; and (c) Linear decreasing 

trend - β1 + γ2t, with γ2 < 0. The trends classification is summarised according to the 

following:  

a. Constant: 𝑓(𝑡)  =  0.  

b. Linear: 𝑓(𝑡|𝛾 )  =  𝛾𝑡, which can be constrained as increasing via the prior 

specification by 𝛾 ∼  𝑁(0, 1000)𝕀[𝛾 >  0] or decreasing via 𝛾 ∼

 𝑁(0, 1000)𝕀[𝛾 <  0], whereby 𝕀[. ] is an indicator function.  

(1) 
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 A more detailed description of this model is given elsewhere (Lee et al., 2018; Napier et 

al., 2018). 

The model outputs were used to map the malaria trends of the 72 districts over 17 years 

of the study period, from which the areas that exhibited an increasing trend or declining 

trend in malaria incidence risk among both under 5 children and those 5 years and older 

were selected. Regression against environmental and intervention variables known to 

have a biologically plausible effect that either stifles or exacerbates malaria transmission 

were implemented. These included climate variables such as temperature, rainfall, 

normalised difference vegetation index (NDVI), all known to affect mosquito vectors, 

and malaria indoor residual spraying (IRS) and insecticide-treated nets (ITN), known 

interventions as vector prevention or management mechanisms. 

The preliminary analysis explored the regression suitability of fixed and random effects 

models for the variables. The tests used are presented in Appendix B - Table 3.S2. The 

diagnostic plots obtained from both linear models informed decisions made from the pre-

analysis comparisons and mixed models diagnostics using plots from generalised linear 

and logistic regression models (Appendix B - Figure 4.S1). To detect trends in climatic 

variables, the study utilised several climate-sensitive tests such as linear regression, and 

other parametric and non-parametric statistics as applied in other studies (Jaiswal, Lohani, 

& Tiwari, 2015; Wijngaard, Klein Tank, & Können, 2003). It detected distribution trends 

at 95% significance by the Mann-Kendall test, Multivariate (multisite) Mann-Kendall 

test, Pettit’s test, and Seasonal slope estimator. The Cox-Stuart Trend Test and the 

Buishand’s Range Tests helped in change point detection and homogeneity testing in 

climatic variables. 

The spatiotemporal mixed model allowed for spatio-temporal autocorrelation via random 

effects, which capture autocorrelation remnants in the malaria data after the impact of the 

known covariates have been accounted for. It also tested for the presence of spatial 

autocorrelation in the data by computing the residuals from a simple over-dispersed 

Poisson log-linear model that incorporated the covariate effects. 
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4.3 Results 

 Malaria Incidence trends from 2000-2016 

Figure 4.1 shows the posterior probabilities of disease trends assigned to each district, 

categorised as either having an increasing trend, a constant trend or a decreasing trend. 

The classification is based on the maximum posterior probabilities to capture uncertainty 

— the darker/deeper the shading, the higher the posterior probability for that trend and 

vice versa. There was very little posterior uncertainty in the trend classifications for all 

districts. Of Zambia’s 72 districts, 25 (35%) were identified with increasing malaria, 

while 13 (18%) were classified with declining malaria and 34 (47%) had neither declining 

nor increasing malaria (i.e. a generally mixed non-significant trend for the two population 

age categories). There is a very distinctive spatial pattern of district clustering with areas 

of declining malaria mostly being located in the southern part of the country 
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Figure 4.1: Malaria trends in Zambia districts between 2000 and 2016 
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During the study period, there is a uniform seasonal malaria trend between 2000 and 2008 

(Figure 4.2). After 2008, the first and second quarters (Q1 and Q2) exhibit a general 

increase in the mean incidence per 1000 population, Q3 remains relatively constant (pre 

and post-2008) while Q4 maintains the new lower level attained by 2008. The figure 

shows that most of the observed increases in seasonal malaria during the study period 

were due to changes in Q1 and Q2, representing the months from January to June. 

However, this trend is not consistent across all 72 districts (see Appendix B figures). 
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Figure 4.2: Mean Seasonal/Quarterly malaria transmission 2000-2016 
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 Short-term climate variable trends in areas classified with declining or increasing 
malaria 

 

Figure 4.3: Temporal trends of Temperature variables in 72 districts 

Shaded areas show the inter-quartile range of the measured data, while the red line is the regression line. 

The results in Figure 4.3 show that the temporal trend for temperature was generally 

declining in areas with declining malaria. There was a very small but significant decline 

in Tmax with slope = -0.05, R2 = 0.005 (95%, p = 0.03) and equally small but significant 

increase in Tmin with slope = 0.09, R2 = 0.02 (95%, p = 0.001). This supports the 

observed non-significant increase (slope = 0.04, R2 =0.002, p = 0.12) in the diurnal range 
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and indicates that temperature has been reasonably stable in areas of declining malaria. 

The DTR also has a strong negative relationship with malaria.  

The temperatures in areas with increasing malaria trends also declined. However, there 

were much greater significant declines in both Tmax and Tmin (slopes = -0.14, and -0.07; 

R2 = 0.04 and 0.01, p < 0.05), respectively. There was also a significant difference in the 

two slopes as the Tmax had a slope twice as that of Tmin (slope, p = 0.004), and validating 

the observed significant decline in DTR (95% CI) during the study period. 

 

Table 4.1: Regression model of environment and malaria 

Variable Estimate Std. Error Pr(>|z|) 
Areas with Declining Malaria (AIC = 34647) 
DTR -0.19859   0.07828   0.0112 *  
Tmin 0.16239   0.07131   0.0228 *  
Tmax  -0.22441   0.08876  0.0115 *  
Elevation -0.06927   0.09595  0.4704   
NDVI 0.08429   0.07011   0.2293   
Mean Rain -0.01751 0.05218  0.7372   
Max Rain -0.06918   0.04707  0.1417   

Areas with Increasing Malaria (AIC = 17842) 
DTR -0.08990   0.01617  2.71e-08 *** 
Tmin 0.028166  0.013510   0.0371 *  
Tmax  -0.122918  0.016230  3.64e-14 *** 
Elevation -0.04081 0.05617  0.4675   
NDVI -0.04081   0.01687  < 2e-16 *** 
Mean Rain -0.04382   0.01702  0.0100 *  
Max Rain -0.00831   0.01209  0.4919   
Signif. codes:  0 ‘***’  0.001  ‘**’  0.01  ‘*’  0.05  ‘.’  0.1  ‘ ’  1 

 

Table 4.1 and Appendix B - Figures 4.S1, - Figure 4.S3 show details of the regression 

model results of environmental variables against malaria incidence. In areas of declining 

malaria, only Tmax and DTR had significant negative correlations while Tmin had a 

positive effect. NDVI, Elevation, and rainfall (min and max) were not significant (see 

Figure 4.S1 and 4.S2). For those areas with an increasing malaria trend, mean rainfall and 

temperature (Tmin, Tmax, & DTR) showed significant effects. In contrast, maximum 

rainfall and elevation had no significant relationship with malaria (Appendix B -Figures 

4.S1 and 4.S3). Overall, the results demonstrate a much stronger correlation of 

environmental variables with malaria in areas of declining malaria.  
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Further analysis to examine the more recent trend from 2010 to 2016 revealed an overall 

decline of DTR across the whole country (Figure 4.S4). This is validated by specific 

trend-based results, which show that districts with increasing malaria had increases in 

Tmin (slope = 0.19, R2 = 0.02), but a continued decline of Tmax (slope = -0.22, R2 = 

0.01). Both trends (statistically significant- 95%), further denote a continuous decline in 

DTR with higher regression coefficients during the post-2010 period. In comparison, 

areas with declining malaria experienced a significant (p<0.05) increasing trend in Tmin 

(slope = 0.22, R2 = 0.02) but a non-significant (p>0.05) increasing trend in Tmax (slope 

= -0.08, R2 = 0.001). There was no significant difference in the slopes of Tmin and Tmax 

and the trend for DTR, which, although declining, was not statistically significant. 

 

 Appendix B - Figures 4.S5a and 4.S5b show that the standard deviations of random 

effects relative to the model outcomes between districts with increasing malaria and 

those with declining malaria are very different. Declining areas tend to have a more 

uniformly low standard deviation about the intercept (Appendix B - Figure 4.S5a), 

with random effects quantiles ranging between -0.05 and 0.05 (See Appendix B- 

Figure 4.S6). In contrast, the large variations existing among districts with increasing 

malaria, indicate that there may be different probabilities of success depending on the 

Figure 4.4: Areas of declining malaria Figure 4.5: Areas of increasing malaria 

Red respresent districts with average SDs below the Mean while Blue repsents the opposite 
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interaction in response to model variables with wider random effect quantiles at least 

seven times higher (range between -0.37 -0.37) than those of districts with declining 

malaria) (see Appendix B -  Figure 4.S5b and Figure 4.S7). 

 Seasonality Trends 

 Further analysis of seasonal malaria between areas with differing trends (increasing, 

decreasing or constant) indicated a direct relationship with variances in the seasonal 

DTR. For example, there was no spatial or temporal seasonal difference in areas with 

declining malaria, with all seasons experiencing similar declining trends (95%) across 

the study period. The same was true for seasonal DTR, which exhibited a non-

significant declining trend in Q1 and Q2, but significant increasing trends in Q3 and 

Q4 (Figure 4.4a and 4.5a). 
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 In contrast, areas with increasing malaria had distinguishable significant increases 

(p<0.05) in Q1 and Q2, which become more acute after 2008 (Fig 4.4c). A possible 

argument that the observed differences might be an artefact of changes in reporting is 

questionable, as it would be expected that improved reporting should have resulted in 

increased trends across all the annual seasons and all districts. Figure 4.4c, for 

instance, shows a clear split in trends between the first half of the year and the second 

half with a significant increase (p<0.05) in the first two quarters. The opposite was 

true for DTR (Figure 4.5c) which had significant declines (p<0.05) in Q1 & Q2, but a 

declining trend in Q3 and Q4 which was not statistically significant (see Appendix B 

- Table 4.S1 for full details). Figures 4.4b and 4.5b characterise the trends presented 

above and falling mostly within non-significant trends in either malaria or temperature 

variables and are not discussed here. 

Figure 4.6: Seasonality of malaria in areas of decline, increase, or constant trends 
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Figure 4.7: Seasonality of DTR in areas of decline, increase, or constant trends 

 Trends in malaria vector interventions 

This study investigated the role of malaria interventions, particularly mosquito nets 

(ITNs/LLINs) and indoor residual spraying (IRS) (Appendix B - Figure 4.S8). 
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Figure 4.8: Malaria interventions implemented in areas of malaria decline vs increase 

The results indicate that there was no significant difference in intervention distribution 

and coverage reported between the two areas (slope = 0.26, p>0.05). The regression 

statistics also indicate that the slopes of LLIN coverage are not significantly different 

(95%) from zero, nor are the intercepts of the two trend areas. IRS, however, showed 

that there was a significant difference in the amount of spraying between the two areas. 

In the regression analysis between malaria and intervention variables (LLINs and IRS) 

(see Appendix B - Figure 4.S1), it was observed found that LLINs and IRS showed 

negative effects in areas of declining malaria. However, IRS was not statistically 

significant, while neither showed any significant effects in areas with increasing 

malaria. 

4.4 Discussion 

The results presented above confirm that there are prevailing spatio-temporal 

differences in malaria progress within Zambia over the period 2000 to 2016. The 

analyses show that while some areas exhibit continuous declines, others have 

experienced increasing trends, and some had no discernible change. These differences 
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occur despite the reported uniformity in the deployment of interventions across the 

country. 

Findings obtained from this study suggest changes in the seasonality of malaria 

incidence in districts where malaria is increasing (especially in Q1 and Q2) and 

support the case for more targeted interventions, such as seasonal malaria 

chemoprevention (SMC) in those areas (Bousema et al., 2013, 2016; Carter, Mendis, 

& Roberts, 2000; Walker, Griffin, Ferguson, & Ghani, 2016). Such micro spatio-

temporal targeting has the potential to be a more cost-effective means of reducing 

infections in those areas of highest risk to levels where they could become areas for 

potential elimination, as experienced in other countries (Kitojo et al., 2019) where 

SMCs have been successfully introduced. 

The results here demonstrate that there are significant near term spatio-temporal 

variations in environmental variables at the intra-regional district level in Zambia and 

that they are associated with similar variances in malaria incidence. 

While the frequency of extreme weather events is typically used to measure climate 

change effects (i.e. extreme temperatures in minimums, maximums and range), the 

observed general temperature dynamics during the period of the analysis may imply 

that in some cases a narrowing of the temperature range could support more 

favourable all-year-round malaria transmission conditions compared to wider-ranges 

that may provide temporary transmission cut-offs (via extreme highs and lows). This 

could explain why malaria is consistently high in areas with a narrowing diurnal range, 

as shown in the study, where the narrowing is a consequence of near-term trends away 

from high and low-temperature extremes. 

The study has shown here that the change in malaria prevalence rates corresponds 

with significant increases in minimum temperature and declines in maximum 

temperature. This confirms the significance of the relationship between temperature 

and malaria, whereby a rise in minimum temperature causes a subsequent rise in 

malaria, as does a decline in maximum temperature. Most studies tend to use the mean 

value of environmental variables to look for such effects. However, the study here 

showed that using mean values alone may not detect the more subtle trends, like a 

narrowing of the diurnal temperature range, that produce more favourable 
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transmission conditions and associated increases in malaria infection rates (Braganza, 

Karoly, & Arblaster, 2004; Roget & Khan, 2018). 

The observed increase in malaria incidence when the temperature in the malaria 

transmission suitability range narrows is consistent with theories which state that 

infectious rates are lower in periods of extraordinarily high or lower temperatures. 

This observation is corroborated by the argument that even minimal changes in 

temperature trends significantly increase parasite transmission because organisms can 

amplify such small variances (Chaves & Koendraat, 2010). 

The use of DTR provides the potential for a single reliable measure that can be used 

to understand better the dynamics of the transmission range of malaria in spatio-

temporal studies at the sub-regional level within all countries at risk of malaria 

infection. 

The results also support the contention (Murdock et al., 2016) that An. gambiae 

mosquitoes (which are one of Zambia’s primary vectors) can experience substantial 

reduction effects in their vectorial capacity by over 80% with increasing optimum 

temperatures. Similarly, a decrease around the optimum temperature could increase 

transmission potential by over 600%. In contrast, increases in diurnal temperature 

range alone can reduce vectorial capacity by half, with range increases of around 9 °C 

or higher exacerbating the adverse effects on daily mosquito survival (Murdock et al., 

2016; Paaijmans et al., 2010).  

It has been argued, quite correctly, that in order to impact improvements made in 

reducing malaria prevalence within countries, the potential negative effects of climate 

change would have to exceed the combined beneficial effects of economic 

development and increasing malaria control efforts (Gething et al., 2010). It is 

proposed here that, based on the evidence since 2000, the true potential and positive 

effects of economic development and/or interventions in some parts of Zambia are 

being impacted and offset by the negative effects of near-term climatic change at the 

sub-regional district level. 

Such a phenomenon has been observed elsewhere where, for example, the application 

of intervention programmes has been consistent throughout the year while malaria 

outbreaks tend to be seasonally high (Kiszewski & Teklehaimanot, 2004). It may well 

be that while the observed temporal trends in temperature variance coincide with a 
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significant up-scaling in national intervention programmes, the observed variations in 

vector response to these interventions and malaria infections (via insecticide-

associated selection) may be primarily controlled by local vector compositions (Lobo 

et al., 2015).  

Differing levels of urbanisation and rurality within and between districts may be 

another potential factor that influences IRS effectiveness, as urban districts have a 

higher probability of receiving IRS than their rural counterparts. This may be due to 

factors such as population density, ease of access and better-targeted structure surface 

suitability for spraying (World Health Organization, 2015c), which potentially create 

a systematic bias favouring urban areas. Nevertheless, IRS remains a supplementary 

intervention strategy to LLINs. Where effective, it should reduce the annual seasonal 

peaks of malaria transmission equally, which is persistent in contrast to the observed 

seasonal increases found here. Similar results showing persisting malaria burden 

despite a scale-up of control interventions have been reported elsewhere (Mukonka et 

al., 2014).  

Therefore, while economic development and/or urbanisation may well be important 

in the fight against malaria in Africa, the results here indicate that the level of positive 

influence such factors may have could well be negatively impacted and offset by 

seasonally variable near-term (and by inference long-term) climate change at sub-

national spatial scales. It is acknowledged that environmental conditions alone cannot 

sustainably control or eliminate malaria in the tropics, as their effects do not act in 

isolation.  

Nonetheless, the study has shown that changes in near-term small-scale environmental 

factors play a significant role in the complex matrix of factors that influence malaria 

rates. As such, these need to be incorporated as part of ongoing monitoring and 

analyses of rates and in elimination planning at the sub-national level. The relationship 

between intervention programmes and near-term environmental change may well be 

the difference between a successful malaria reduction/elimination program and 

persistent malaria transmission. Thus, if care is not taken, and climate change 

continues to drive these increases, there is a genuine danger that malaria in those areas 

of current decline might well start to increase again, thereby reducing the current 

malaria control and elimination agenda into a second failed global malaria program. 
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It is imperative to acknowledge that the impacts of short-term climate change on 

malaria are at hand and undeniable. Planning for adaptation, mitigation, and 

continuous monitoring is essential if minimisation of the imminent effects, especially 

at the micro-scale community level has to be achieved. SMCs may provide an 

opportunity to target those areas with high seasonality impacts, especially in under 5 

children. Consequently, it is essential that environmental change monitoring is 

considered along with monitoring of interventions and prevalence rates so that 

appropriate preventive mechanisms to counteract transmission, such as SMC, can be 

introduced. The study findings highlight how essential the discussion about climate 

change and malaria still is today and demonstrates the seriousness of the potential 

consequences if it is ignored. 
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5 CHAPTER FIVE 

Climate change and the dynamics of age-related malaria 

incidence in Southern Africa: A focus on Zambia 

 

 

 

This chapter is based on a manuscript submitted for the first-round review in the Journal 

Environmental Research. This chapter relates to objective number three 
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Abstract 

In the last decade, many malaria-endemic countries, like Zambia, have achieved 
significant reductions in malaria incidence among children <5 years old but face ongoing 
challenges in achieving similar progress against malaria in older age groups. In parts of 
Zambia, changing climatic and environmental factors are among those suspected factors 
behind high malaria prevalence. Changes and variations in these factors potentially 
interfere with intervention program effectiveness and alter the distribution and incidence 
patterns of malaria differentially between young children and the rest of the population. 

The study used parametric and non-parametric statistics to model the effects of climatic 
and socio-demographic variables on age-specific malaria prevalence vis-à-vis control 
interventions. Linear regressions, mixed models, and Mann-Kendall tests were 
implemented to explore trends, changes in trends, and regress malaria against 
environmental and intervention variables. 

This study shows that while climate change affects the whole population, its impacts are 
felt most by people aged ≥5 years. Climate variables influenced malaria substantially 
more than mosquito nets and indoor residual spraying interventions. It establishes that 
climate change is negatively impacting malaria control efforts by exacerbating the 
transmission conditions via more conducive temperature and rainfall environments, 
which in turn are exacerbated by cultural and socioeconomic exposure mechanisms. It is 
argued that an intensified communications and education intervention strategy for 
behavioural change targeted explicitly at  ≥5 aged population where incidence rates are 
increasing, is urgently required and call for further malaria stratification among the ≥5 
age groups in the routine collection, analysis and reporting of malaria mortality and 
incidence data. 

 

 

 

Keywords: Climate change, malaria interventions, age, Bayesian Models 
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5.1 Introduction 

Like many other southern African countries, Zambia has made considerable progress in 

malaria mortality reduction in the last decade, achieving declines of up to 70% between 

2010 and 2015 (Elimination8 Secretariat, 2019). However, in both mortality and 

incidence, this trend is not consistent across age groups (typically reported as <5s or ≥5). 

Trends in official published prevalence rates show that there were subnational declines in 

most administrative districts (N=72) during the period 2000-2008 before experiencing a 

sustained increase between 2010 and 2017 (of 43%) in both age categories (Kamuliwo et 

al., 2013; World Health Organization, 2018f). While over the whole of the study period 

(2000-2016), incidence rates in <5 children showed a 53% decline and those aged ≥5 had 

a 13% increase in malaria. Little has been done to consider age group targeted malaria 

intervention responses, especially among ≥5s and most published studies and available 

data continues to be analysed for the <5 and ≥5 age group categories. 

Among suggested reasons for increasing malaria prevalence in several areas is mosquito 

resistance to dichloro diphenyl trichloroethane (DDT) used in indoor residual spraying 

(IRS); chemical pyrethroids in long-lasting insecticide nets (LLIN) (Chanda et al., 2011; 

Loewenberg, 2018; Manyando, 2016); population movement (K.M. Searle et al., 2017), 

and environmental factors driven by climate change (Bennett et al., 2016; Manyando, 

2016).  

Trends in temperature and rainfall, especially in regions of extreme climate diversity (Yue 

& Hashino, 2003), are often studied to detect significant spatiotemporal change (Adarsh 

& Reddy, 2015; Bisanzio et al., 2018; Drápela & Drápelová, 2011; Freeman & Bradley, 

1996; Jaiswal et al., 2015; Jhajharia et al., 2013). However, few studies have examined 

comparative differences in how climate-induced ecological changes affect various 

population age groups vis-à-vis malaria communities. This is becoming ever more 

important given the recent trends in increasing rates for the ≥5 population. While the 

primary focus of intervention programmes has been the highest risk <5 cohort, there 

remains a danger that, if left unattended, rates in the ≥5s could continue to rise resulting 

in considerable health and socio-economic burdens on communities. The economic 

consequences alone could be substantial, particularly if increases occur 

disproportionately in younger, economically active populations. 

Studies have shown that the rates in some areas are being driven by the five to fifteen 

(Hast, Searle, Chaponda, Lupiya, Lubinda, Kobayashi, et al., 2019; Kapesa et al., 2018; 
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Teh, Sumbele, Meduke, Ojong, & Kimbi, 2018) and fifteen to twenty-five-year old 

cohorts (Bouyou-Akotet et al., 2014; Griffin, Ferguson, & Ghani, 2014; Nkumama et al., 

2017; Pinchoff et al., 2016; Wotodjo et al., 2018) which supports concerns about the 

future long term economic impacts on communities through related impacts on economic 

productivity and capacity. However, with data generally being collected and reported in 

only two age categories it remains challenging to determine whether the reported 

increases in the ≥5 category rates are being driven by differentially higher rates in the five 

to fifteen category, the over forty fives or some other cohort in between. 

It is predicted that in the near future, malaria will become an adult disease shifting from 

children to those older (Bouyou-Akotet et al., 2009; Brasseur et al., 2011; Brooker et al., 

2017; Carneiro et al., 2010; Ceesay et al., 2008; Mawili-Mboumba et al., 2013). Possible 

reasons in support of this contention include successfully targeted intervention 

programmes at the very young along with various social, cultural, and economic 

behavioural factors, which increase exposure and reduce the uptake and effectiveness of 

interventions in the older age groups. Such factors may include; how communities 

socialise, the time they go to bed, how late they stay before entering their homes, how 

early they wake, their daily economic activities and their attitudes toward interventions 

and health-seeking. To date, little is understood and investigated on the potential impact 

of the changing climate or environmental variables on differential age-related malaria 

incidence rates.  

The study used malaria prevalence data to explore the extent of influence that 

environmental variables have had on the observed increase in the prevalence of malaria 

because of climate change. This study follows on from work by Bennett et al. (2016) on 

the relative effect of climate variability study on malaria prevalence in 0-59-month-old 

children over four survey periods using sampled malaria survey data.  

The study investigated age-specific trends in malaria incidence in Zambia in relation to 

intervention programmes and climatic/environmental variables. Both <5s and ≥5 age-

groups were investigated for i) the role of malaria control measures on the observed 

increase or decline of age-related malaria prevalence without the impact of climate 

change; ii) the role of climate change in the observed increase or decrease in malaria 

prevalence without control measures; and iii) the role of climate change in the observed 

increase or decrease in malaria prevalence after adjusting for control measures. 
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5.2 Methods 

 Study Area 

Zambia is a country in south-central Africa, with a typically tropical climate and 

approximately 18 million people living in an area of 752,000 sq. Km (Central Statistical 

Office, 2013). The population is comprised of c. 20% of children <5 and 80% aged ≥5 

years old. Based on a pre-analysis of rainfall and temperature variables, the study 

classified seasonality to coincide with annual calendar quarters and to align with 

conventional transmission time lags. It then investigated “seasonality” based on mean 

seasonal shifts of up to one-month lag mainly via the seasonal onset of rains based on a 

recent study (Makondo & Thomas, 2020).  

Seasonality was synchronised according to annual quarters from January-March (Quarter 

One), April - June (Quarter Two), July - September (Quarter Three), and October - 

December (Quarter Four). The data is within the typical one to three months lag applied 

by many studies between the variables and incidence reporting (Aal & Elshayeb, 2012; 

Darkoh et al., 2017; A. H. . Kilian et al., 1999; Phung et al., 2016; Wu et al., 2016), 

suitable for the quarterly definition. 

Data was adjusted for the varying quality using reporting completeness, health-seeking, 

and missingness. The study used Random Forest for multiple imputations to estimate the 

values of the 5% missingness in the data. Equation one summarises the final adapted 

calculation of estimated malaria cases (WHO Malaria Policy Advisory Committee, 

2018): 

 

=  
𝐶𝑎𝑠𝑒𝑠௣௥௘௦௨௠௘ௗ + 𝐶𝑎𝑠𝑒𝑠௖௢௡௙௜௥௠௘ௗ

𝑅𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠
(1 + 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑠𝑒𝑒𝑘𝑖𝑛𝑔 𝑟𝑎𝑡𝑒) 

Computations of seasonal (quarterly) average trends detection and change-point analysis 

were applied for maximum, minimum and mean temperatures (Tmax, Tmin, Tmean 

respectively), diurnal temperature range (DTR), mean rainfall, and maximum rainfall 

variables, to identify the presence of trends or significant climate change points in the 

data. Population data were obtained from national census reports and population estimates 

(Central Statistical Office, 2013). Data on malaria and interventions were obtained from the 

National Malaria Elimination Centre, via the Ministry of Health (Chizema-Kawesha et 

al., 2010; Yukich et al., 2012). (See Appendix C file for the full discretion of data and 

their sources). 

(1) 
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 Modelling and statistics 

To ensure model suitability and adequately detect patterns between malaria and 

environmental variables, the study explored the data using simple regression, mixed 

methods, Ordinary Least Squares regression models (OLS), and the Bayesian Conditional 

Autoregressive (CAR) prior method. CAR models implemented spatiotemporal 

Generalised Linear Mixed Models (GLMM) for unique areas (Bennett, 2012; Mabaso et 

al., 2006; Reid et al., 2012) with inference in a Bayesian environment using Markov 

Chain Monte Carlo (MCMC) simulations.  

Poisson data likelihood was implemented with an autoregressive hierarchy structure 

specified within its prior distribution to handle any spatial autocorrelation in the data 

using the CARBayesST R package (Lee et al., 2018). The study then modelled the 

GLMM using spatiotemporal autocorrelation, via random effect structures from a 

conditional autoregressive prior distribution (Lee et al., 2018). This model was used to 

estimate the evolution of the spatial response surface of malaria from 2000 to 2016 (see 

Appendix C for further details of the model).  

The model specification is given by Equation 2: 

𝜓 =  𝜙௞௧, 

𝜙௧|𝜙௧ିଵ ∼ 𝑁(𝜌𝑇𝜙௧ିଵ, 𝒯
ଶ𝑸(𝑾, 𝜌𝑠)ିଵ)  t = 2,…,N, 

𝜙ଵ  ∼ N(𝐎, 𝒯ଶ𝑸(𝑾, 𝜌𝑠)ିଵ) 

𝒯ଶ  ∼ Inverse − Gamma(𝑎, 𝑏), 

𝜌𝑠, 𝜌𝒯 ∼ Uniform(0,1). 

 

 

This study also compared these results with those from the generalized linear mixed 

models (GLMM) with a negative binomial (Brooks et al., 2017; Nakagawa, Johnson, & 

Schielzeth, 2017) to check for the robustness of the results as the malaria count dataset 

Y(t) and X(t) were collected at discrete times t∈{1,...,n} by 

Y(t)=μ+X(t)+ε(t)    (3) 

Nomenclature for equations used 
𝜙 Random effects 𝒯ଶ𝑸(𝑾, 𝜌𝑠)ିଵ Variance 

𝜌𝑠, 𝜌𝒯  Dependence parameters 𝜌𝒯 
Temporal autoregressive 
parameter 

𝒯௧
ଶ 

Temporary-varying variance 
parameter 𝜶 Priori distribution 

𝑾 Adjacency matrix t Timepoint 
𝜓 Latent component   

(2) 
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where μ is the mean value parameter, X(t) represents a stationary AR(1) process, with 

covariance cov(X(s),X(t))=σ2exp(−θ|t−s|)cov(X(s),X(t))=σ2exp(−θ|t−s|). The ε(t) is the 

measurement error term, with independently identically distribute (iid) as the normal, i.e. 

N(0,𝜎଴
ଶ). 

The choice on the final models was based on their suitability following Zuur et al.’s 

protocol (Zuur, Ieno, & Elphick, 2010) and partly using the  DHARMa R package (Hartig, 

2019) (see Appendix C Table 5.S2 and Figure 5.S1). Computation of the seasonal 

(quarterly) mean trend and applied change point analysis for all temperature and rainfall 

variables were applied as the premise for determination of trend, change point, and 

subsequent impact. 

Cooks distance and residual diagnostic plots from linear models and other tests were 

applied to determine which models were suitable for the dataset (Figure 5.S1). Finally, 

the study also implemented spatiotemporal mixed models, which accounted for 

spatiotemporal autocorrelation via random effects. 

5.3 Results 

 Malaria spatial and temporal distribution and trends 

The analyses of current malaria trends since 2000 show an increasing overall trend in 

incidence among those aged ≥5 and a generally declining trend in <5s (Figure 5.1). The 

trend for the <5s (Figure 5.1(c)) has relatively and consistently been declining (except for 

2008 and 2009), while the average rising trend for the ≥5s (Figure 5.1(d)) exhibits a very 

noticeable increase since 2008.  
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Figure 5.1(a) & 1(b) show individual district incidence temporal trends while (c) and (d) show the mean temporal trend of incidence in Zambia from 2000 to 2016 among under 
5 and over 5 years age groups. 

(a) (c) 

(b) (d) 

Figure 5.1: Mean malaria temporal trends 
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Figures 5.1(a) and 5.1(b) indicate that these incidence rates are not consistent across 

all districts and Figure 5.2(a-d) show that the trends are not consistent geographically 

across the country either. Appendix C Figure 5.S2 also shows that the proportion of 

malaria cases in <5s reduced from about 60% in 2000 down to ≈35% while that of the 

≥5s increased from ≈40% to 65%. 

 

Figure 5.2: Mean malaria incidence risk surface, and individual district trends 

Figure 5.2 and Figure 5.2 (a) & (b) shows the mean malaria incidence risk in maps 

among <5 and ≥5s. Individual district Temporal distribution of malaria incidence 

among <5 children had fewer districts with increasing malaria incidence rate among 

Zambia’s 72 districts from 2000 to 2016 than among people aged ≥5 years. 

The study then fitted generalised linear mixed models of Negative Binomial (NB) (2) 

using quadratic increases in variance with the mean (Brooks et al., 2017; Hardin, 

Hardin, Hilbe, & Hilbe, 2007). With district as the fixed effects parameter, the results 

accounted for dependence through random or fixed effect interaction parameters.  
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Table 5.1 summarises the results from the NB GLMM and the autoregressive (AR) 

GLMM models. The results show that the interventions (LLIN and IRS) have a more 

substantial effect on incidence for the <5 than the ≥5s. LLINs had a weak negative 

correlation (95%: -0·08 – -0.05) among the <5s but a weakly positive correlation 

(95%: 0·01-0·06) in the older age group. 

IRS had a similar effect in the <5s, while the association was not significant in the 

older age group. Population density had the highest significant correlation coefficients 

across both age groups (-0.25 in <5s and -0.35 in ≥5s). In contrast, elevation, district 

latitude, and longitude (of population-weighted centroids – see Appendix C-[methods 

and Figure 5.S4]) all had weak non-significant correlation coefficients. NDVI 

generally showed a strong significant positive correlation across both age groups (see 

Figure 5.3 & Figure 5.S5 for detailed summaries of regression slopes). 

 

  

 Table 5.1: Correlation coefficients and significance testing using negative binomial regression 

Table 5.1: Correlation coefficients and significance testing using negative binomial regression 
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Having excluded mean temperature due to multicollinearity, only minimum and 

maximum temperature or DTR in the models were used. The maximum temperature 

showed a significant negative correlation (95%: -0·21 – -0·14) to malaria prevalence 

across both age categories, whereas minimum temperature had a significant positive 

(95%: 0·05 – 0·11) correlation. Similarly, DTR had even more definite significant 

negative (95%:  -0·19 – -0·11) coefficients in all ages (95%: -0·12 and -0·19 among 

<5s and ≥5s respectively).  

 

 
  

Figure 5.3: Summaries of overall temporal trends of environmental variables from 
2000 – 2016 using LOWESS model 
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(a) 

(b) 

Figure 5.4: Regression slopes of the relationship between malaria, environmental and interventions 
by age. The Red line is a regression line, and the red shading represent P.values, while the Blue line is the mean distribution of data. 
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Finally, mean rainfall was negatively correlated (95%: -0·1 - -0·04) to malaria 

prevalence across both age categories while maximum rainfall was positively 

correlated, but was only significant (95%: 0·01 – 0·06) in the older age group (see 

Table 5.1 and Figure 5.4(a) & 4(b)). 

 Impact of Climate, and importance of Interventions on current malaria 
distribution 

Although, only mean rainfall showed a significant (95%) declining trend, temperature 

trends show declines in maximum (adjusted R2 = 0·025) and minimum temperature 

(R² = 0·011). The observed trend changes in malaria along with those of temperature 

coincide with a switch and scale-up in nation-wide intervention programmes between 

2008 and 2010, making it difficult to evaluate the specific effects of either 

environmental changes or interventions on changing rates in malaria.  
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Figure 5.5: Percentage model prediction error by scenario 
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In order to address this problem, further modelling and visualisation of the effects of 

isolated climatic variables on malaria transmission were done by fitting Bayesian 

models to compare predicted versus actual incidence rates while controlling for 

interventions and vice versa.  

For both age-groups, the results show that environmental variables had a better model 

prediction accuracy (Figure 5.5(a-f) and Figure 5.S3) and were better predictors 

exhibiting a more substantial influence on malaria transmission. The study also reports 

that environmental variables had better prediction accuracy in the ≥5 age group than 

in <5s, while models from interventions made better predictions in the <5 malaria 

rates (Figure 5.S5 (a-f) and Figure 5.S3).  

Although this effect was subtle between the period 2000 and 2006, from 2008 

onwards, however, environmental variables are highly influential, with consistent 

prediction accuracy compared to interventions for the same period. The years 2007 

and 2014 were characterised by a significant scale-up in nets (Figure 5.S7 using a 30% 

attrition rate (A. Kilian et al., 2011; Pulkki-Brännström, Wolff, Brännström, & 

Skordis-Worrall, 2012; Tan et al., 2016)) and may be associated with a significant 

decline in <5 malaria prevalence in successive years. 

In summary, modelling of predicted malaria cases using environmental variables and 

holding LLIN & IRS constant showed a much higher positive impact than when the 

environment is held constant. However, as indicated earlier, environmental effects on 

post-2006 intervention predictions have lower variance and mostly high off-season 

prevalence and low peak-season prevalence (Figure 5.S6).  

Predicted values from all variables combined were similar to observed malaria while 

predicted values using only environmental variables were more accurate than those 

modelled from interventions alone. Environmental variables had more influence on 

prevalence than interventions, and their respective models also had relatively lower 

prediction accuracy and better comparative model performance using Deviance 

information criterion (DIC), Watanabe-Akaike information criteria (WAIC) and the 

loglikelihood (Figure 5.S3). While the temporal trends of temperature were not 

statistically significant in themselves, they did suggest that changes in intra-periodic 

variability of temperature range might well be an essential factor. 
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5.4 Discussion 

The results presented in Figures 5.1, 5.2 and 5.S3, despite discordances in trends 

between mortality and incidence, form the backdrop for Zambia’s current malaria 

policy agenda. However, the policy does not include any age-specific guidelines, apart 

from the World Health Organisation recommendations for LLINs and intermittent 

preventive therapy for infants (IPTi) and pregnancy (IPTp), coupled with effective 

treatment of malaria infections following prompt diagnosis (World Health 

Organization, 2018c).  

The corresponding reported change in overall prevalence rates with a significant rise 

in minimum temperature post-2010, and an observed decline in maximum 

temperature, confirm the significance of the relationship between temperature and 

malaria. It was found that an increase in minimum temperature causes a subsequent 

rise in malaria, as does a decline in maximum temperature. This validates the observed 

trends in malaria; especially post 2010, where significant environmental changes tend 

to favour a more suitable transmission range (Figures 5.3, 5.4a, & 5.4b). The 

increasing minimum temperatures towards less extreme lows are favourable for higher 

malaria transmission, as is a narrowing DTR. These reported changes are further 

supported by the decline in the DTR in many districts and increasing malaria 

prevalence trends in both age-groups, similar to those found elsewhere (Bennett et al., 

2016). 

 DTR had a stronger independent association with the ≥5s age group (-0·19) than the 

<5s (-0·12), both being statistically significant (95%). The decline in maximum 

temperature and the corresponding increase in minimum temperature result in the 

observed decline in the DTR. The result is a move towards longer malaria 

transmission seasons and shorter malaria off-peak seasons. It may also result in an all-

year-round transmission cycle in some areas. The observations here support the 

conclusion that ≥5s have a stronger significant association of increasing malaria 

incidence and risk with DTR and a higher environmental risk exposure than children 

<5 years old. The findings support the call for further malaria stratification among the 

≥5 age groups as shown in other study findings of malaria mortality (Dondorp et al., 

2008) and incidence (Gerardin, Ouédraogo, McCarthy, Eckhoff, & Wenger, 2015; 

Griffin et al., 2014). 
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Taking age into perspective might imply that few people among the ≥5s are actively 

using the LLINs. It was also clearly shown that IRS was more effective than LLINs 

among the ≥5s. Factors affecting this may include higher adult exposure to vector 

mosquitoes especially during extended working hours (i.e. economic influences), and 

spending evening times (peak biting hours) outdoors (i.e. social factors) compared to 

younger children. High LLIN misuse predominantly by fishing communities (Baume, 

Reithinger, & Woldehanna, 2009; Brieger, 2017; Eisele, Thwing, & Keating, 2011; 

Minakawa, Dida, Sonye, Futami, & Kaneko, 2008), high resistance of mosquitoes to 

pyrethroids (Chanda et al., 2011; Loewenberg, 2018; Manyando, 2016), low exposure 

to IRS due to targeted coverage and low LLIN usage thresholds despite high 

ownership (Brieger, 2017) especially among poor households have all been reported 

to undermine the expected protective effects of LLINs. Such information, where 

available, and in association with appropriate monitoring of environmental factors, 

may further help to understand the source of limited intervention effectiveness in 

different parts of the country.  

The decrease in the <5 prevalence rates may be an indication that more comprehensive 

and effective implementation of interventions is needed in this target population. The 

converse might also in part explain the malaria increase among ≥5s, whereby 

culturally at the household-level, priority and effort is given to the implementation of 

intervention measures among the <5s and pregnant mothers relative to the ≥5s. Hence, 

an observed delay in disease onset from initially protected <5s leads to more disease 

episodes happening later in older ages when culturally and practically they become a 

lower priority. Such challenges undermine the expected positive effects of 

interventions from materialising in the older age group. Consequently, an intensified 

communications and education intervention strategy for behaviour change that targets 

a more active and aggressive uptake of interventions among the ≥5s is urgently 

required. 

As malaria transmission intensity and prevalence are still at least five times higher in 

the <5s than the ≥5s, careful consideration must be taken to monitor the transmission 

dynamics among the ≥5s, taking account of region-specific socio-economic and 

cultural nuances. If left unchecked, the rate of transmission increase observed during 

the study period could soon outweigh that of the <5s. Should this happen, it would 
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have significant direct economic and social impacts on local communities, where the 

economically productive population would directly carry the burden. 

Other studies reported small-scale movement patterns during peak biting hours, 

frequently among <18-year-olds (Hast, Searle, Chaponda, Lupiya, Lubinda, 

Kobayashi, et al., 2019), and higher RDT positivity odds (8·8) among 5-17-year-olds 

(Hast, Chaponda, Muleba, Kabuya, Lupiya, Kobayashi, et al., 2019; Pinchoff et al., 

2016), as inferred effects of delayed malaria onset. It can be concluded that the ≥5s 

are often highly exposed to environmental risk through everyday activities to and from 

high-risk environments. This is especially true for those engaged in fishing, farming 

or the school age-group who spend most of the time in risky areas outdoors (Hast, 

Searle, Chaponda, Lupiya, Lubinda, Kobayashi, et al., 2019; Pinchoff et al., 2016) and 

are less likely to sleep under bed nets that are prioritised for children <5 years old.  

These results strongly suggest the need for more granulated disaggregation of age 

groups in the routine collection, analysis and reporting of malaria data. The 

introduction of data reporting protocols in 5-17 and ≥18-year-olds would capture the 

40% school-going population, and the more economically active population, 

respectively. School-based interventions show great potential in the reduction of 

anaemia, and the risk of Plasmodium infections, and as such are a potentially cheaper 

alternatives for addressing the high malaria burden among schoolchildren (Ayi et al., 

2010; Clarke et al., 2017; Maccario et al., 2017; Staedke et al., 2018). 

The study has shown that climate change has, to a considerable extent, offset the 

impact and the expected effectiveness of interventions. This trend is likely to continue 

with the consequence of increasing the minimum scale and cost of interventions 

needed to achieve an adequate observable reduction in malaria incidence rates. 

Climate variables, particularly temperature, are becoming increasingly more suitable 

for malaria transmission in many areas, and can broadly explain the observed high 

and increasing malaria transmission rates in parts of Zambia.  

While the analyses show that intervention measures like IRS and LLINs have not fully 

offset negative environmental influences, it is noted that, if adequately applied, they 

still offer considerable potential for optimisation of their impact where resistance is 

contained (Chanda, Chanda, et al., 2013), and high ITN use is encouraged. Thus, 

climate change has a significant effect on malaria prevalence, and the older population 
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age groups are more affected because intervention measures are better implemented 

and applied amongst the <5 age group.  

This study has, among other limitations, the nature of the data used to measure the 

intervention effect. Although such data is often widely used for similar purposes, it 

introduces errors outside of the researcher’s control. District use of the availability or 

distribution of bednets as a measure for implementation has associated errors, for 

example, even using the rate of two people per net may not fully capture or accurately 

measure the effective use of these interventions. This is because though often used as 

a proxy for bednet coverage, successful distribution or implementation of bednet 

interventions does not always translate into true usage patterns within each district. 

The inability to measure within district supply patterns and the lack of 

verified/confirmed bednet use (other than as reported) may have subtle underlying 

influences in the capturing of the true effects from interventions among the 

populations within districts and subsequently on the associations with environmental 

variables on malaria incidence found in this study. 

Nonetheless, this study has captured the fundamental and underlying transmission 

dynamics between the two age groups and explained malaria prevalence in Zambia’s 

decade of success in reducing mortality. This information can help intervention 

program strategies to focus on and take advantage of periods of less suitable 

temperatures and rains by driving malaria rates down to unrecoverable levels using 

such tools as mass drug administrations. 

5.5 Conclusion 

The study established that although <5 children remain at a higher risk of malaria, 

those aged ≥5 years have a consistently increasing risk, more so than previously 

thought and which, if ignored, could soon be a significant problem for Zambia and 

other similar southern African countries. The results corroborate those of earlier 

studies on the <5s (Bennett et al., 2016) but highlight that people aged ≥5 years are 

being affected by climate change-driven transmission. The findings also augment the 

information and evidence base that could help to understand better the drivers behind 

the current spatial and temporal trends in malaria prevalence in Zambia. 
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It is evident that even short-term environmental change plays a crucial role in high 

malaria transmission and must be considered when planning and implementing 

intervention programmes, especially for elimination purposes in low transmission 

contexts. The study has shown that the influence of climate change on malaria at the 

sub-national level is real and must be an essential part of appropriate preparedness and 

remedial action against the disease in tandem with direct remedial environmental 

interventions. Finally, it should be noted that although climate change constitutes only 

some of the numerous influencing factors, it should not be treated as the sole or 

primary factor in malaria transmission (Chaves & Koenraadt, 2010; Molyneux, 2014). 

Similarly, uncertainty regarding the magnitude of climatic impacts on malaria should 

not be a reason for neglect either! 
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6 CHAPTER SIX 

Health Facility Spatio-temporal modelling of malaria incidence 

and risk in Zambia, 2009-2015 

 

 

This chapter is based on a manuscript to be submitted for consideration Nature 

Communications Journal. This chapter relates to objectives number four 
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Abstract 

The considerable spatial and temporal variability inherent in malaria transmission within 

countries means that targeted implementation of malaria elimination interventions at 

subnational levels is a practical necessity. Identifying the spatio-temporal rates, risks and 

trends at different administrative geographies within malaria-endemic countries is crucial 

for the development and introduction of cost-effective, subnational elimination and 

control intervention strategies. 

To date, there have been very few fine-scale nationwide studies of malaria at the base 

operational health facility level. The study used Bayesian trend and spatio-temporal 

Integrated Laplace Approximation (INLA) models to analyse over 32 million reported 

malaria cases from 1743 health facilities in Zambia between 2009 and 2015. The results 

show that there was an overall increasing average trend in national malaria incidence over 

the period. There was a clear north to south continuum of spatial transitioning from areas 

of increasing malaria to areas of decreasing malaria. Over 47% of health facilities 

(incorporating 4.8 million people) have an increasing trend of malaria, while 26% 

(incorporating 5.1 million people) have a decreasing trend (95% credible interval). 

Optimised hotspot detection methods identified significant high-risk hotspots (95% CI) 

along the borders with the Democratic Republic of Congo and Mozambique prompting a 

recommendation for countries like Zambia to instigate urgent, bilateral cross-border 

malaria initiatives with neighbouring high endemic countries. A comparison of health 

facility and higher-level district trends identified significant sub-district level variations 

in trends. It supports the recommendation for an adaptive scaling approach in the 

implementation of both malaria monitoring and interventions for control and elimination 

strategies. 

 

Keywords: Malaria elimination, Control, Health facility, Stratification, Hotspot 
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6.1 Introduction 

Malaria remains one of the leading causes of death in children and pregnant women in 

sub-Saharan Africa (World Health Organization, 2019c). With global progress in 

reducing incidence rates now levelling off, malaria is generally on the rise, especially in 

some high-burden African countries. The current pressures of funding demand that 

available, often limited resources, be more effectively directed at targeting those areas 

and populations where the most significant impact can be achieved (Espié et al., 2015; 

Korenromp et al., 2016; Winskill, Walker, Cibulskis, & Ghani, 2019). 

With considerable spatial and temporal variability generally inherent in malaria 

transmission within endemic countries (Bousema et al., 2012; Ihantamalala et al., 2018), 

targeted implementation of interventions is a practical necessity (Winskill et al., 2019). It 

also highlights the importance of pursuing strategies that are suitable for malaria 

elimination in both low-moderate and high transmission settings. The process of choosing 

the most appropriate strategy comes with many challenging and complex issues and 

decisions such as timing (when to embark on malaria elimination); strategy or tools 

(which malaria interventions to implement); stratification (where to apply them); and 

application or implementation thresholds (what intensities to use for each). 

This is especially true for those countries approaching the pre-elimination and elimination 

stages in their fight against malaria. Targeted interventions, particularly in elimination 

settings, aim to interrupt local transmission as it becomes increasingly concentrated in 

small areas that are often very hard and costly to reach (Shretta et al., 2017). 

Understanding the fine-scale spatio-temporal dynamics of prevailing malaria 

epidemiology is imperative to facilitate and successfully target those remaining residual 

reservoirs and infection hotspots (Bousema et al., 2012, 2013). 

Zambia is one of those countries concurrently pursuing intensified control strategies as 

well as pre-elimination and elimination strategies at the district level. This approach has 

been gaining momentum since 2007 (Nájera et al., 2011; Rabinovich et al., 2017) 

following the recommendation to use a malaria continuum measure rather than 

specifically targeted milestones to monitor progress (Rabinovich et al., 2017). In this 

context, pursuing malaria control or elimination at subnational scales was designed to aid 

strategic targeting and the delivery of suitable malaria intervention strategies and 

resources for different transmission intensities. In the all-important elimination phases, 

this would mean identifying and targeting the hardest to reach hotspots of malaria.  
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This paper investigated the spatially structured temporal trends that characterise fine-

scale malaria burden in Zambia as a means of providing the relevant operational-level 

evidence base required by decision-makers, public health officers, policy practitioners 

and disease surveillance experts. The overall aim is to generate the information needed to 

help countries attain better cost-effectiveness, foster improved policy integration and 

sustain the levels of progress already achieved in their fight against malaria. For example, 

the findings will help improve the geo-spatial stratification of risk in small areas for better 

targeting and improved efficiency in the allocation of health service resources and malaria 

intervention planning. 

6.2 Methodology 

 Health Facility data 

Monthly reported malaria case data for 2531 health facilities was obtained from the 

Zambian District Health Information System (DHIS2)/ Health Management Information 

System (HMIS) for the years 2009-2016. Of the total, 398 (15.7%) of health facilities 

reported zero malaria cases for the period and were excluded. Another 214 (8.4%) 

facilities were excluded because they only had data for a single year (2016) meaning they 

were either newly constructed facilities and/or not fully operational during the whole of 

the study period.  

A further 76 facilities, randomly spread across the country, were excluded from the 

analysis because they had no recorded baseline population information to use as a 

denominator in calculating incidence rates and standardised risk ratios. The reported 

malaria case data for these health facilities accounted for 0.8% of all recorded cases over 

the study period. After separating 100 hospitals from the dataset, the remaining 1743 

facilities comprised the complete dataset analysed (Figure 6.1) (and see Appendix D). The 

final working dataset includes 1743 monthly health facility reports, comprising at least 

146, 000 observations, and capturing over 32 million cases over seven years (2009 - 

2015). 
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 Spatiotemporal models and hotspot analysis 

The study implemented a Bayesian trend model, and a spatio-temporal Integrated Laplace 

Approximation (INLA) model to analyse spatio-temporal trends over the seven-year 

study period. INLA is a deterministic approach of algorithms by Rue et al. (2009), 

designed for inference in a Bayesian environment, centred on integrated nested Laplace 

approximations. It is considered a flexible subclass of structured additive regression 

models, intended for latent Gaussian models (Bakka et al., 2018). INLA benefits from the 

speed of its computation, thereby allowing for Bayesian inference separate from the 

complex Markov Chain Monte Carlo (MCMC) algorithms. 

2531 Health Facility 
monthly Dataset 
(2009-2016) 

398 facilities with 0 
cases 2009-2016 

1919 facilities with 
cases > 0 (2009-
2015) 

214 facilities with 0 
cases 2009-2015  

2133 facilities with 
cases > 0 2009-
2015 

76 facilities with cases 
>0 (2009-2015) but No 
populations 

1843 facilities 
considered for the 
full analysis 

100 Public Hospitals 
(operate differently) 

Monthly malaria count data from HMIS/DHIS2 
Health Facility monthly Dataset (2009-2016) 

1743 facilities 
considered for the 
full analysis (2009-
2015) 

Facilities Excluded 

Figure 6.1: Summary Schema of final facility-level analysis 
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The study used the Integrated Laplace Approximation (R-INLA) package approximation 

strategy (Rue et al., 2009), as implemented in the R program (R Core Team, 2013). And 

given the extensive number of observations in the dataset (over 145 000), the simplified 

Laplace approximation, because it is relatively less computationally intensive than the 

full Laplace and generally compensates for a slight loss in accuracy (Rue et al., 2009). 

The study also leveraged computation power from the shiny SSTCDapp (Chang, Cheng, 

Allaire, Xie, & McPherson, 2017) to be able to run several comparative model fitting 

performance tests, so that it could determine and select the model with the best fit, using 

comparisons of deviance information criterion (DIC). 

This study applied spatio-temporal models with prior distribution for the spatial random 

effect with a reparameterised modification (BYM2) (Riebler, Sørbye, Simpson, & Rue, 

2016) of the Besag, York, and Mollié model (BYM) (Besag, York, & Mollié, 1991). The 

BYM2 model contains both an Intrinsic Conditional Auto-Regressive (ICAR) component 

and an ordinary random-effects component for spatial auto-correlation and non-spatial 

heterogeneity (Morris et al., 2019). The model allows all parameters to have clear reading 

and a straightforward selection of hyperpriors (Morris et al., 2019). The models were 

implemented with a random walk of order 2 (RW2) prior distribution for the random 

temporal effect and an unstructured temporal random effect. A space-time interaction of 

type (ii) random effect term was further added to account for both spatial and temporal 

autocorrelation. 

The study computed a spatial neighbourhood matrix from an ESRI shapefile (ESRI, 1998) 

within which two health facilities were considered neighbours if they shared a common 

border. It then fitted health facility catchment areas made from Voronoi polygons to 

generate a unique geographic catchment area with an associated year ID for the temporal 

variable with RW2. This assumes that variables take periodic random steps away from 

previous values, using independently and identically distributed (iid) size steps. Finally, 

a Bayesian temporal model to detect specific malaria trends over the study period was 

implemented. ESRI's ArcGIS 10.6 was also utilised for the optimised hotspot analysis 

(see Appendix D [methods]).  
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6.3 Results 

 Spatio-temporal patterns of health facility level malaria rates and risk 

There was an overall increase in the national average trend in malaria incidence at the 

health facility level between 2009 and 2014 with one slight yearly decrease in 2015 

(Appendix D - Figure 6.S1). 

Figure 6.2 shows the pattern of the mean geographical distribution of malaria incidence 

from 2009 – 2015 at the health facility level. Generally, the pattern mimics that of malaria 

risk presented in Figure 6.3, where large areas of low malaria incidence are observed in 

the southern parts of the country with progressively increasing incidence rates as one 

moves northwards. 

Figure 6.2: Mean crude malaria incidence rates 2009- 2015 
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High malaria risk is observed in the north-west parts of Zambia, mostly around the 

Luapula province, with the high-risk pattern extending almost continuously in a south-

easterly direction towards the Mozambique border. This high-risk area generally follows 

the national boundary with the Democratic Republic of Congo (DRC), covering the three 

North-Western provinces of Luapula, Central and Copperbelt. Other noticeable high-risk 

health facilities are found further towards the south-east of Zambia along the 

Mozambique border. 

  

Figure 6.3: Standardised malaria incidence ratio (Risk) 
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Using optimised hotspot detection methods, implemented in ArcGIS 10.6, it was 

observed that four statistically significant malaria high-risk hotspot regions comprising 

578 (33%) health facilities and four low-risk cold spot regions comprising 484 (27%) 

health facilities (Figure 6.4. The two most significant hot spots areas follow Zambia–

DRC and Zambia-Mozambique borders while the distinct low-risk cold spots are in the 

north-east and south-east of the country. Within both the hot and cold spot clusters, 

minimal variability was detected through outlier detection tests (see Appendix D Figure 

6.S2). 

The modelling of trends indicates that there is a strong spatial context to the stratification 

of areas from increasing to decreasing trends and vice versa (Figure 6.5). Generally, the 

southern parts of Zambia have a declining trend. These areas are adjacent to other parts 

of south-western Zambia with a mix of no significant trend (no change), partly declining, 

or increasing trends. In northern Zambia, many areas with no significant trend change in 

malaria tend to be continuous with areas of increasing trends. At the same time, there are 

very few areas with declining trends in this region.  

 

Figure 6.4: Significant malaria risk hot spots and cold spots 
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Detailed results from the model indicate that 27% of health facilities (469, incorporating 

5.1 million people) had a significant average (linear) declining trend, 26% (448 

incorporating 3.1 million people) had no significant trend change and 47% (826 

incorporating 4.8 million people) had a significant average (linear) increasing trend (see 

Appendix D - Table 6.S1 for significance levels). Health Facilities with a decreasing trend 

were more likely to be located in urban areas (including the national capital, Lusaka) with 

much larger catchment populations compared to those with increasing trends which 

tended to be more rural with smaller populations (hence the differences in health facility 

percentages and population numbers).  

The results from the R-INLA model using posterior means of incidence rates and 

posterior exceedance probabilities (greater than a threshold of 50 cases per 1000 

population) show the spatial, temporal, and spatio-temporal patterns in the data. The value 

of 50 cases per 1000 population was used as it is the current threshold set by the Zambian 

national malaria elimination program whereby areas with a value below 50 are considered 

for malaria elimination interventions or, if above, for more intensified control 

interventions.  
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Figure 6.5: Health-facility-level malaria trends between 2009 and 2015 
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The posterior exceedance probabilities are the likelihood that areas have a higher 

incidence than expected and, as seen in Figure 6.6, the higher than expected incidence 

rates occur predominantly in the northern regions, similar to the pattern of mean incidence 

rates presented in Figure 6.2. Of note, however, is the very distinct and continuous annual 

increase in the number of health facilities reporting higher than expected rates over the 

seven-year period with an equally distinct north-south spatial drift. All the results were 

statistically significant at 95% credible intervals. 

Figure 6.7: Posterior exceedance probabilities of threshold 50 

Figure 6.6: HF Malaria Incidence Trends between 2009 and 2015, 95% Credible Interval
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The study further modelled and mapped (Figure 6.7) the seven-year trends using the year 

2011as the baseline change point and applying a more detailed five class stratification of 

continuous yearly Increase, continuous yearly Decrease, remained Constant, changed 

from an Increase to a Decrease, and moved from a Decrease to an Increase.  

The continuous yearly increasing trend category accounted for the highest proportion of 

health facilities (31%), followed by areas with a change from an increase to a decrease 

(19%). Those areas with a decreasing or constant trend each accounting for 18% of Health 

Facilities, while the proportion of areas moving from a decrease to an increase accounted 

for 12%. There was a clear continuum of spatial transitioning of regions from areas of 

declining malaria to areas of increasing malaria, for instance, in the southern province, 

where the concentration of areas with declining malaria (blue) is virtually encircled by 

areas whose trend was moving from declining to increasing (hatched). In Eastern 

Province and along the North-West border of the country, there is a distinct geographical 

clustering of areas transitioning from increasing trends to declining trends (dots) that are 

adjacent to substantial areas with increasing trends. 

 

The rate of change between those health facilities that experience a declining trend and 

those with an increasing trend indicates that health facilities with increasing malaria have 

a much sharper rate of change (Figure 6.8). 

Comparison of Health Facility and District level trends 

The study compared the Health Facility level (Figure 6.5) results with those from the 

administrative district level (Appendix D - Figure 6.S3) to examine the influence of spatial 
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Figure 6.8: Overall rate of trend change 
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scale on malaria trends, and investigate the potential and relative value of each as an 

optimal operational scale level for malaria control and elimination efforts. 

Table 6.1: Trend variation between District and HF level trend models 

 

There was little cross-trend variation in malaria risk between the district and health 

facility-level. Table 6.1 shows that at least 67% of health facilities exhibited the same 

trend as that observed in the district in which it was located. Just over 15% of Health 

Facilities had an increasing trend where the associated district had no change. In 

comparison, only 1.4% (24/1743) of facilities had a trend difference from a decline to an 

increase or vice versa. There was a statistically significant (p<0.001) positive correlation 

(Kendall Tau_b = 0.66) between District-level trends and Health facility trends. 

Using Zambia's 2015 district-level population estimates (Central Statistical Office, 2013), 

the proportion of the total population living in areas with different average trends showed 

that 37% (5.76 million) of people live in districts with declining malaria, 34% (5.2 

million) live in districts with no trend change, and 29% (4.5 million) live in districts that 

had an increasing malaria trend.  

At the Heath Facility level, where the recorded total population was 13.73 million 

compared to the district level total of 15.46 million, similar proportions of populations 

living in areas with a declining trend, 37% (5.1 million) were observed. There were 

differences in proportions of populations in facilities with no change and those that had 

an increasing trend with 28% (3.8 million) and 35% (4.8 million) respectively. The total 

Facility Trend District Trend # of facilities % Change 
Decline Increase 

 
10 0.6% 1.4% 

Increase Decline 14 0.8% 

Increase Increase 524 30.1%  

67.5% No change No change 276 15.8% 

Decline Decline 377 21.6% 

Decline No change 58 3.3%  

 31.1% No change Decline 
 

82 4.7% 

Increase No change 272 15.6% 

No change Increase 130 7.5% 
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recorded health facility-level population was 10% lower than the estimated district level 

total. 

6.4 Discussion 

The countrywide micro-scale analysis of malaria at the Health Facility level shows that 

between 2009 and 2015 there has been a relative increase in Zambia's malaria incidence 

that is mostly being driven by a north-south transmission pattern very closely associated 

with proximity to the borders of neighbouring countries with high malaria rates.  

The incidence and risk patterns show a strong cross border influence with the DRC and 

Mozambique, both of which have consistently presented with the second and fourth 

highest malaria incidence rates in the world  (World Health Organization, 2013, 2014a, 

2015f, 2016c, 2017b, 2018e) during 2011-2019. Similarly, the recent WHO world malaria 

report 2019 indicates that four of Zambia's adjoining neighbours together accounted for 

over 24%  of global malaria mortality (DRC 11%, Tanzania 5%, Angola 4%, and 

Mozambique, 4%) (World Health Organization, 2019c). 

These observations demonstrate how important it is for countries to actively pursue 

collaborative cross-border malaria initiatives with neighbouring high endemic countries. 

For Zambia, this will become even more essential as the country progresses its relatively 

short-term plans to eliminate malaria. While Zambia already has strong cross-border 

collaborations along its southern borders, funded through regional initiatives of the 

Elimination8 (Lover et al., 2017; The Global Fund, 2018), evidence of such bilateral 

initiatives with the DRC or Mozambique are as yet to be seen.  

Despite cross-border meetings held in 2011, proper functioning or bilateral operational 

initiatives, are now long overdue if Zambia is to make significant headway with its control 

efforts in these border regions. As the E8 states, "a  country will never achieve and sustain 

malaria elimination as long as transmission continues in neighbouring countries" 

(Elimination8 Secretariat, 2018). The fact remains that mosquitoes and malaria do not 

respect political boundaries, and consequently, eliminating malaria cannot be achieved 

and sustained by independent within-country initiatives alone. 

The spatiotemporal analysis suggests there are geographically large and relatively stable 

hot and cold spot distributions of incidence rates across the country. In comparison with 

higher-level District trends, nearly 70% of all Health Facilities presented with the same 

trend pattern as the districts they were situated in which would initially tend to suggest 
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that pursuing intensive malaria control or elimination efforts at the sub-district (i.e. Health 

Facility) level may not yield additional benefits vis-à-vis the additional increase in 

logistical and operational costs. 

On the other hand, the analysis of health facility level trends (Figure 6.7) revealed some 

very interesting patterns that are extremely relevant for the monitoring and planning of 

intervention strategies going forward. Firstly, the observed trends in the eastern region 

show a very distinct geographical clustering of areas that are transitioning from having 

increasing rates to decreasing rates. These areas tend to be contiguous with other areas 

that are continually increasing, and they are predominantly along the eastern border 

region of the country. This is significant as this region has received intensive intervention 

activity from the government as part of a deliberate, targeted intervention strategy since 

2013. The results provide evidence that the strategy and programme are delivering 

tangible successful outcomes even in a relatively short period and in those areas where it 

is needed most. 

Secondly, the patterns found in the southern part of the country showed that there is a 

significant cluster of areas with relatively low incidence rates that are transitioning in the 

opposite direction from a decreasing to an increasing trend. Similar to the eastern region, 

these areas are contiguous with areas that have a continuous declining rate. The results 

show that there is a substantial reduction in the number of areas where malaria is declining 

suggesting a deterioration in the general malaria situation that is not evident at the higher 

district level but is very obvious at the health facility level.  

The implications of this are that some areas of decline, as measured at the sub-district 

level, may be changing but are not receiving adequate attention or appropriate levels of 

interventions and consequently are starting to regress and lose the gains made over the 

previous two decades. The findings also lead to the conclusion that in the southern region, 

a sub-district health facility level intervention strategy is urgently required to stop the 

changing trend from decreasing to increasing rates.  

It was also found that 15% of all health facilities have an average increasing rate but are 

located in districts where the malaria trend has been constant over the last seven years. 

While those health facilities are not geographically clustered in any particular region of 

the country, they do show that sub-district targeting of resources, even in districts where 

malaria is generally constant could be beneficial. 
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Limitations in this study include those relating to the population denominators used to 

convert the counts of malaria into incidence rates. This is despite the fact that the 

populations used for calculating malaria incidence rates at health facility-level are official 

estimates from district census figures. These counts have accuracy issues that are driven 

by the data sources from which they were obtained. Hence, the clinical incidences values 

derived in the analysis may not fully reflect the actual incidences obtainable if such 

population denominators were truly accurate and highly reliable. It is, therefore, possible 

that some of the observed facility-level variations in clinical incidence may be explained 

by the use of inaccurate population denominators, thus causing under or overestimations. 

Nonetheless, the population denominators used in this study still represent the best 

available official dataset, used by the Ministry of Health. 

Nonetheless, this study has shown that malaria trends vary depending on the scale level 

at which they are being measured and that adopting a single scale level approach (e.g. 

administrative districts in Zambia) for the monitoring and implementation of intervention 

strategies may not be as effective or efficient as a dual or multi-scale level approach (e.g. 

district and health facility level). The study would suggest that in general, higher district-

level strategies may well be appropriate for those areas where incidence rates are high, 

and trends are increasing but that health facility level strategies may be more efficient and 

effective in areas with low rates and stable or decreasing trends.  

The work of Bousema et al. supports the contention that areas with widespread malaria 

transition would benefit from high-level untargeted community-wide approaches 

(Bousema et al., 2013, 2016). Their findings and recommendations further support the 

proposal for an adaptive multi-scale approach to intervention planning. They showed that 

micro-scale targeting of interventions below the Health Facility level would not be most 

effective at the hotspot or 'nucleated' household level where spillover benefits into the 

surrounding local community are limited. This approach, however, would be suitable at 

the sub-health facility level in areas where rates are low, and trends are rising.  

Those Health Facility areas where rates may be significantly different and higher than the 

average trend of their district could be the ones most suitable for targeted micro-scale 

hotspot interventions and strategies such as focal Mass Drug Administrations, or test and 

treat/step D community strategies (Kelly M. Searle et al., 2016). 
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6.5 Conclusion 

It is strongly recommended that countries re-assess and carefully reconsider their malaria 

programmes and strategies (including monitoring) to accommodate for the dynamics of 

malaria incidence rates and trends at different operational scale levels. The nationwide 

analysis of health facility level trends in Zambia has identified that there are significant 

sub-district level variations in malaria trends that are positive in some regions in the east 

and negative in the south. The results demonstrate the value of establishing national-level 

monitoring and reporting of malaria incidence and trends contemporaneously at both the 

district and health facility levels.  

The study has shown how such an approach can help governments identify those areas 

where the planning and operationalisation of intervention strategies are appropriate at the 

district level and where a sub-district approach is more appropriate. This has significant 

implications for resource efficiencies and savings through adaptive scaling and targeting 

of interventions where they are most needed. This means, not only targeting those areas 

with the highest rates and increasing trends but also including those areas where 

substantial gains have already been made, rates are low, but they are now in a negative 

transition phase and at risk. 

Maintaining recent gains against malaria should be equally as important in countries like 

Zambia, where the aim is to extend the regions currently designated for malaria 

elimination. The study also highlights the importance of border effects on rates, trends 

and observed malaria burden (Pringle et al., 2019) in countries like Zambia. For endemic 

countries pursuing malaria elimination with neighbours that have a poorer 

epidemiological status, the study stressed the urgency for such countries to form 

meaningful bilateral cross-border malaria initiatives. In the case of Zambia, the DRC, 

Angola, and Mozambique are the immediate priorities. 
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7 CHAPTER SEVEN 

Overall Summary, Discussion, Conclusions and 

Recommendations 

The agenda pursued by endemic malaria countries to move from high malaria burden to 

low malaria burden or from malaria control to malaria elimination is not straightforward. 

Many aspects of the fight against malaria are both complex and interlinked, and 

approaches need to be systematic and holistic. In this study, the aim was to investigate 

climate change and the past and present spatio-temporal dynamics on the malaria burden. 

This was investigated in relation to factors that could potentially stifle success (e.g. 

ecological and demographic) as well as those that could potentially help nations succeed 

(e.g. interventions) as they embark on programmes to achieve a malaria-free Southern 

Africa, as an extension of the E8 malaria elimination efforts.  
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7.1 The bigger picture perspective  

Overall, this study aimed to investigate the spatial and temporal impacts of climate change 

on malaria transmission, control and elimination efforts in Zambia. In order to achieve 

this, several objectives were defined and subsequently formulated as stand-alone but 

related results chapters in the thesis. The first stage explored the past and current spatial 

and temporal epidemiology of malaria in Zambia by analysing 16 years of quarterly sub-

national malaria incidence and mortality data using a novel approach of creating a 

composite measure of malaria burden incorporating: risk, rates and trends at the sub-

national district level. 

The results highlighted the need and importance of understanding observable spatial 

heterogeneities of malaria, despite the introduction of a uniform and generally universal 

policy of implementing malaria interventions within the country. The findings strongly 

emphasise the importance and value of applying robust mapping and spatial analytical 

techniques in providing valuable information that can support a more efficient, practical, 

and effective implementation of expensive intervention programmes. The results also 

identified some significant differences between the under 5 and over 5 age categories, 

and in particular, the somewhat counterintuitive trend of increasing malaria in the over 

fives where one might have expected to see gains in malaria immunity. 

The findings from this first stage of analysis guided and formed the focus for the second 

and third stages. The second stage was an examination of the potential role that near-term 

climate change might play in explaining the observed differences in malaria trends at the 

district level. The findings clearly showed that near-term climate change, marked by a 

strong seasonal pattern, had impacted areas with either increasing or decreasing malaria 

incidence trends. The study also highlighted the importance of diurnal temperature range 

as the most significant environmental variable, something previous studies had neglected 

to examine or identify. 

The third stage investigated the role of malaria interventions and changing climatic and 

ecological predictors on age-related (<5 years and ≥5 years old) malaria transmission 

dynamics. The analyses found that climate variables had a more substantial influence on 

malaria than interventions and that the relationship was stronger in the ≥5 than in the <5s 

while the effect of interventions was stronger in the <5s. It was established that climate 

change negatively impacts malaria control through more conducive temperature and 



 

177 

 

rainfall environments that are compounded by cultural and socioeconomic exposure 

mechanisms. 

The final stage of analysis drew on the findings from the three earlier stages. It focused 

on applying the composite malaria burden measure introduced in stage one to examine 

fine-scale health facility level spatio-temporal patterns and trends. Optimised hotspot 

detection methods identified significant high-risk hotspots particularly along border areas 

with neighbouring high endemic countries drawing attention to the criticality of bilateral 

cross-border malaria initiatives in the fight against malaria. A comparison of health 

facility level results with those at district-level revealed important spatial scale 

differences highlighting the potential benefits that could be realised from a flexible 

adaptive-scaling approach to the implementation of both malaria monitoring and 

intervention programmes for control and elimination strategies.  

The following sections discuss the key findings of each of the original objectives in more 

detail before some concluding remarks and recommendations from the thesis. 

7.2 Objective 1: Determine the spatio-temporal patterns of 

malaria incidence and mortality rates, risk and trends in Zambia 

from 2000 to 2015 

Chapter Three presented a malaria situation analysis to characterise the subnational 

spatio-temporal patterns of malaria between 2000 and 2015 in Zambia from which there 

were four key outcomes. The study introduced a new method for sub-national 

stratification of malaria using three core input metrics - rates, risk, and trends. Targeted 

interventions, particularly in elimination settings, aim to interrupt local transmission, 

especially where it becomes increasingly clustered. Zambia's approach to simultaneously 

pursue sub-national malaria elimination in areas with low malaria incidence while 

intensifying control strategies in areas with higher malaria suggested the need for robust 

stratification approaches (Presidential Malaria Initiative, 2019). 

The present study established a more robust alternative stratification method that is 

responsive and sensitive to needs in both malaria control as well as elimination needs. It 

used a flexibly weighted or unweighted classification of malaria burden through a 

composite method that accounted for the trend, the risk, and incidence rates for 

implementation of strategic and targeted interventions.  
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 Area-based malaria stratification using incidence rates alone captures the current state of 

malaria in snapshots of time. It does not, however, provide the information required to 

adequately plan for near future intervention strategies without accounting for trends in a 

broader classification strategy. The inability to detect and monitor trend changes, 

especially in areas undergoing malaria elimination efforts, has the real potential to 

threaten past gains and undo many years of time and investment on intervention 

programmes.  

Many countrywide programs in southern Africa continue to use incidence rates as the 

primary source of information to pursue strategies for the control or elimination of 

malaria. Having easy access to essential evidence from trends could help inform better 

decision making on the need for alternative strategies in both high and low burden 

contexts. For example, not being able to detect and address an increasing trend in malaria 

incidence rates in an area with low burden could have significant implications later if that 

trend persists and results in increasing burden.  

Neglecting increasing trends in low burden elimination areas, while focusing attention 

and resources in the high burden control areas could well lead to a situation of shifting 

gains and losses whereby achievements in control areas are offset by the loss of hard-

earned gains in low burden elimination areas. It is therefore critically important in a 

national context that governments and policy makers have the ability to consider both 

rates and trends right across the malaria epidemiological spectrum when planning control 

and elimination strategies. 

The model developed here incorporates trends as a key element in defining malaria risk 

and addresses many of the current limitations identified above. It also highlights the 

importance of trends in defining malaria burden. For example, malaria burden trends are 

significant, especially if, as this study has shown, the dynamics of malaria transmission 

indicate an increasing trend in older children/young adults that affects economic 

productivity. Measures that take account of trends, such as the one developed here, can 

provide valuable additional complementary information to standard measures like 

disability-adjusted life years (DALYs) for monitoring and planning purposes. 

Other important outcomes from the study results in Chapter three included the 

establishment that while malaria was linearly declining or constant in a majority of 

districts, it was increasing in others. The method demonstrated that 35% of districts in 

Zambia, containing over 3 million people, with high mortality or incidence burden had 
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experienced an increasing trend over the period from 2000 to 2015 despite the generally 

universal and uniform distribution of malaria interventions across the country.  

The results also showed that these trends were not uniform across those aged <5 and ≥5-

year-olds. Often, the <5 age group exhibited a significant decrease in malaria incidence 

while the ≥5s showed an increase. This implies that malaria is gradually shifting to 

becoming an older/adult disease with potentially severe negative economic consequences 

for already economically disadvantaged developing countries. This is a counterintuitive 

finding which defies the usual narrative that malaria exposed populations over the age of 

five years would have been exposed enough to the disease enabling them to develop 

partial-immunity (Chiyaka, Garira, & Dube, 2007; Doolan, Dobaño, & Baird, 2009), and 

prompts the need to investigate further (World Health Organisation, 2014).  

These significant findings provided the foundation and basis for further study (in chapters 

4, 5 and 6) to investigate what potential external factors, particularly ecological and 

environmental, could help explain these differences and what implications they might 

have for strategic intervention planning. 

With the current challenges faced in the quest to increase domestic and international 

funding, efficient prioritisation and subsequent use of currently available limited 

resources should be optimised. The value of the spatio-temporal statistical techniques 

here is that they provide triangulated and adaptable metrics to aid geographically targeted 

intervention, prevention and control strategies based on these methods and findings. 

7.3 Objective 2: Investigate the spatio-temporal impacts of near-

term climate change on the rates, risk and trends between 2000 

and 2016 

Chapter Four, drawing on the key findings from Chapter three highlighting the variable 

trends and risk of malaria burden between districts, was primarily focussed on the 

potential impacts that short or near-term climate change may have had on these trends. 

The rationale for focusing specifically on climate was that the programmes for malaria 

interventions, such as LLNS and IRS, had in theory been applied uniformly nationwide 

and as such the expectation would have been that malaria rates and trends would have 

declined reasonably equally across the country. So, the hypothesis was that some other 

key influential factor was contributing to the observed variances.  
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Also, while the effects of longer-term global climate change on health have been 

comprehensively modelled and reported, little is known about the possible ongoing 

effects of short-term climate change at sub-national levels. Consequently, in this section 

Bayesian spatio-temporal modelling was used to examine district-level malaria trends in 

Zambia from 2000 to 2016 and negative binomial mixed regression models applied to 

investigate the relationship of near-term environmental change with malaria incidence.  

The results showed that intra-regional near-term variations in the environmental variables 

are significantly associated with malaria incidence and that Diurnal Temperature Range 

(DTR), as a consequence of increasing minimum and decreasing maximum temperatures, 

is a key influential factor in malaria incidence rates, even in those areas where there is a 

general declining trend in rates.  

The study also found that the impact of DTR is seasonally sensitive, with the majority of 

impact occurring in the first and second quarters of the year. This study has demonstrated 

how substantial investments in intervention programmes are negatively impacted and 

offset by near-term climate change, most notably since 2010. It is subsequently argued 

that targeted season-specific interventions, such as Seasonal Malaria Chemoprevention 

(SMC), in those areas with an increasing trend in malaria could be a very efficient, cost-

effective means of reducing rates quickly. 

These findings are significant in that they have provided clear evidence that short term 

climate change can influence malaria transmission rates at sub-national scales and, if not 

monitored and taken into consideration by strategists and planners, has the potential to 

undermine expensive investment in implementing broad nationwide intervention 

strategies. It highlights a possible lack of recognition, or at worst, neglect of the important 

role that environmental factors and near-term climate change must play in effective 

frontline operational planning against malaria. 

The findings prompted the recommendation for targeted intervention programmes based 

on key environmental factors. For example, study results strongly support other studies 

using mosquito population models (Chaves & Koendraat, 2010; Murdock et al., 2016) 

that show narrowing DTR has a significant association with mosquito activity and 

infectivity based laboratory experiments. This, however, creates corroborative 

implications which in our study translates to the disease triggering an increased risk of 

malaria in the first and second quarters of the year. This increasing seasonal risk could be 

mitigated by the use of geographically targeted seasonal malaria chemoprophylaxis 
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(SMC). The recommendation is that targeted SMC particularly for four months from 

January to April in districts with increasing malaria, could effectively reduce the overall 

malaria burden (Diawara et al., 2017; WHO, 2013). 

7.4 Objective 3: Investigate climate change and the dynamics of 

age and malaria incidence and malaria control interventions 

between 2000 and 2016. 

This chapter focussed specifically on age-related malaria dynamics, looking in particular 

at any differences between the under-five age group and the rest of the population. It was 

not possible to break down the over 5 category into more meaningful subgroups as this 

was the way the data had been recorded, reported and provided by the NMEC. Of 

particular interest was the potential influence of environmental and climate change factors 

on incidence rates as well as the influence of interventions. The specific interest with 

interventions was because many intervention programmes, whilst administered uniformly 

in the population, tend to be targeted and more actively applied in the very young. This 

is very much in line with government and global policies and priorities.  

The chapter revealed how climate variables influence malaria incidence substantially 

more than intervention programmes (mosquito nets and indoor residual spraying) with 

the impacts being more profoundly felt in the ≥ 5 age category, and more noticeable in 

rural areas. Interestingly, and as initially suspected and hypothesised, it was found that 

interventions have a more significant impact on the <5s.  

The results also show that while the overall malaria incidence trend for the < 5's is 

decreasing, it is actually increasing in the over ≥5's. Just as important, it was established 

that climate change negatively impacts malaria control efforts by exacerbating the 

transmission conditions via more conducive temperature and rainfall environments, 

which in turn are exacerbated by cultural and socioeconomic exposure mechanisms.  

A direct consequence of this is that the anticipated returns from substantial financial and 

resource investment in national intervention programmes in Zambia, and quite possibly 

in other similar endemic countries as well, are not being realised, due to near-term 

climatic influences. The investment in malaria interventions globally was US$4.3 Billion 

in 2016 and estimated at around US$119.5 Million in Zambia for the same year, 

(Haakenstad et al., 2019; Patouillard, Griffin, Bhatt, Ghani, & Cibulskis, 2017).  
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It is neither reasonable nor practical to expect that resources should, could or would be 

diverted from interventions to climate change activities. However, strategists and 

planners must recognise the effects and impacts that climate change can make and use the 

available evidence, as shown in this thesis, to pro-actively modify and target approaches 

and resources at those areas where the most considerable benefits can be realised. Failure 

to do so will result, if it has not already, in the introduction of operational complications 

and disappointing outcomes for within-country malaria strategic planning and resource 

management. 

Most previous studies on the impact of climate change on malaria either focused on 

children only (Bennett et al., 2016; McCord, Conley, & Sachs, 2017; Shah et al., 2019), 

or all ages (M’Bra et al., 2018; Midekisa, Beyene, Mihretie, Bayabil, & Wimberly, 2015; 

Ukawuba et al., 2017) or did not highlight the importance of age in the relative impacts 

of climate and interventions (Sadoine et al., 2018). The role of age is often downplayed, 

even though malaria is becoming an older age disease (Nkumama et al., 2017). This study 

has shown that while malaria interventions remain effective in young children and tend 

to somewhat moderate the effects of ecological predictors, the situation is very different 

for those aged five years and over.  

The findings strongly suggest that an intensified communications and education 

intervention strategy for behavioural change targeted explicitly at ≥5 aged population is 

urgently required and could bring significant improvements in incidence rates. Similar 

evidence from other studies shows that 5-18 year olds may be responsible for the observed 

high transmission rates in the ≥5s (Hast, Searle, Chaponda, Lupiya, Lubinda, Kobayashi, 

et al., 2019; Pinchoff et al., 2016) which supports the contention and recommendation 

here that school-based intervention programs would be the most appropriate measures to 

capture the most affected age group (Swana et al., 2018). 

These findings also support the call for further malaria stratification among the ≥5 age 

groups in the routine collection, analysis and reporting of malaria mortality and incidence 

data. Better age stratification would help further identify and understand which specific 

age groups are responsible for the observed rise in incidence rates. These effects have 

potentially significant social and economic consequences (e.g. DALYs) where the 

economically productive population would directly carry the burden with knock-on 

effects on the already vulnerable economically dependent young and old populations.  
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7.5 Objective 4: Model Health Facility level malaria and evaluate 

its potential for in-country and inter-country malaria control and 

elimination efforts 

This chapter focused on a sub-district (health facility –level) spatiotemporal analysis of 

malaria trends and incidence patterns over a seven-year study period (2009-2015). 

It was initially intended to replicate and include the analyses from chapter four and 

investigate the potential influences of climate variables and climate change at the health 

facility level. After some preliminary analyses using generalised additive models (GAM) 

and mixed models, it was decided that this was not feasible. There were two main reasons. 

The first was that the raw data supplied at Health Facility level pre 2009 was not reliable 

or comprehensive enough to facilitate the calculation of detailed, robust incidence rates 

with sufficient confidence. As such, the study period was reduced to only seven years of 

duration, restricting the potential to capture near-term climate change. Secondly, some 

preliminary results demonstrated that there was a lack of variance in the climate variables 

data (e.g. temperature, humidity, and rainfall) between health facilities within districts 

thus limiting the potential to identify environmentally driven patterns and trends.  

Future research, however, could explore the health facility level effects of climate 

variables across the entire country. Such a study could use fine-scale prediction surfaces 

of malaria suitability against actual malaria incidence from health facilities. It could also 

help re-calibrate the national-level ecological suitability or risk at a very fine-scale. Such 

fine-scale mapping would be useful for micro-scale larviciding or larval habitat 

identification studies, especially hotspot mosquito vector breeding sites. 

Given those limitations, the health facility level analysis focussed on spatio-temporal 

trends using the composite malaria burden method developed in chapter 3. Several 

interesting findings were made. Firstly, it was shown that the average trend in national 

malaria incidence was increasing over the period and that there was a clear north to south 

continuum of spatial transitioning from areas of increasing malaria to areas of decreasing 

malaria. Nearly 4.8 million people reside in health facility catchment areas with an 

increasing trend of malaria, while 26% (incorporating 5.1 million people) have a 

decreasing trend (95% credible interval). In a comparison of trends at the district level, it 

was found that almost exactly one-third of Health Facilities have a trend different to that 
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of their parent district and over two-thirds of those (20% of all health facilities) have a 

worse tendency.  

The results also show that using regional district level incidence alone to stratify malaria 

control or elimination may miss some vital clues that can only be observed if trends are 

considered alongside rates. For example, it was shown that the recent and ongoing pre-

elimination efforts being implemented in Zambia's Eastern province might be causing a 

decline in malaria incidences. At the same time, some areas in the southern region, with 

generally low malaria incidence and earmarked for elimination have started experiencing 

malaria increase. This has potential implications for creating zero gains as progress made 

in one area gets offset by losses incurred elsewhere.  

 The results show that there is considerable variance in malaria trends and risk between 

the district and health facility levels and that the majority of within-district variance 

occurs in districts that have low incidence rates and either a constant or declining trend. 

These findings are important as they suggest that in some areas where malaria is 

considered to be less of a risk and possibly be designated for elimination, based on the 

district level data, may well have underlying negative trends indicating malaria may be 

on the increase again. Figure 7.1 shows the trends from a random set of health facilities 

relative to the 50 cases per 1000 threshold that currently determines whether an area is 

marked for either malaria control or malaria elimination interventions.  

These findings suggested that an adaptive scaling approach may be beneficial in the 

implementation of both malaria monitoring and interventions for control and elimination 

strategies. For example, it may still be appropriate to have district-level strategies in areas 

where malaria is high, and trends are increasing. At the same time, a health facility level 

strategy might be more effective in those districts with low rates and constant or declining 

trends but with considerable differences among their health facilities. It has only been 

through a nationwide spatio-temporal analysis at two scale levels, using the novel 

composite malaria risk model, which provides the detailed evidence not only to identify 

the differences but also the means through which new strategies can be developed, 

implemented and monitored.  
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The second key result presented in chapter 6 indicated substantial cross-border influences 

on patterns of malaria transmission, primarily along the DRC, Mozambique, and parts of 

the Angolan borders. A stretch of nearly 2000 km of shared border with DRC and parts 

of the Angolan borders exhibited generally higher risk and incidence rates compared to 

the rest of the country. A similar pattern is observed in an area of about 560 km along the 

Zambia -Mozambique border. In addition to the figures presented in Chapter 6, Figure 

7.2 shows that a high malaria incidence and an increasing health facility level malaria 

trend extends at least 100 km inland from these borders. The results from Chapter 6 also 

suggest that the observed cross-border patterns of high malaria are expanding outwards 

from the immediate border areas and may soon threaten the regions of malaria elimination 

where malaria has consistently been generally declining.  

Without the benefit of further in-depth studies, it is challenging for this study to determine 

the relative roles of ecological factors (mosquitoes) or human factors (infected humans) 

Figure 7.1: Health Facility malaria spatio-temporal trends of incidence using 50 cases/1000 
probability exceedance threshold 

Low – High: Elimination to control (b) High - Control (c) Constant: Elimination or control (d) Low: Elimination

(a) 

(b) 

(c) 

(d) 
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in creating the very distinct observed border patterns. In reality, it is most likely a complex 

combination of both.  

Figure 7.2: Smoothed cross-border malaria risk between Zambia, DRC, Angola, and 

Mozambique 

For example, a recent study conducted in a border town on the DRC and Zambia border, 

in Northern Zambia's Nchelenge district, showed a lack of genetic diversity in malaria 

parasites across the border, which suggested this region as being a contiguous 

transmission zone and that transmission is primarily ecologically driven (Pringle et al., 

2019). Alternatively, some border posts in Zambia’s Eastern province exhibit a potential 

influence from human movement across the border where substantial socio-economic 

activities, such as micro-scale trading and entrepreneurship, are driving high population 

cross-border movement (Al Zahrani et al., 2018). Cross-border malaria could equally 

occur in these areas because of limited or no access to interventions for preventing, 

diagnosing and treatment of malaria (Wangdi, Gatton, Kelly, & Clements, 2015; World 

Health Organization, 2018d) due to remoteness, socioeconomic and/or political 

complicating factors that are common along many border areas. 
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Where human movement is the primary issue, setting up dedicated health posts at the 

border points could help with mitigation, such as those implemented successfully in the 

southern border regions via cross-national agreements (Elimination8 Secretariat, 2018). 

These findings prompted a very strong recommendation for Zambia to urgently establish 

bilateral or multilateral malaria control agreements with neighbouring high endemic 

countries. 

The land-locked geographical location of Zambia makes it impossible for the country to 

eliminate malaria anytime soon, without successfully engaging all its neighbours. While 

the country enjoys southern-based cross-border malaria initiatives through the E8, the 

imminent threat of cross-border malaria is not in the south but the northern border regions. 

High endemic neighbouring countries, especially the DRC, Angola, and Mozambique, 

pose severe threats to Zambia's success in controlling malaria in the northern regions, 

especially along the DRC border. 

7.6 Challenges and limitations of the study 

It is worth noting that there were several data and related methodological challenges that 

posed some limitations in this study. First, the health facility level catchment areas are 

not part of the regular census or officially recognised population count administrative 

units for data collection. Hence, there is an inherent lack of accurate denominator service 

populations of health facilities. While some health facilities may have very accurate but 

limited records from their catchment headcounts, these counts are not deemed official. 

They cannot be used for analysis for decision making. The most common population 

denominator is from estimates taken from census district-level population. These 

population estimates are available and more readily acceptable as official though they 

have shown some serious accuracy problems in some instances (Walter, 2018).  

Furthermore, it remains challenging to accurately ascertain the real population attending 

specific health facilities, as the geographic distance is not always the reason for the choice 

of a health facility. Often, other factors such as proximity to the road, quality of services, 

functional level of service delivery, and physical barriers like rivers and hills (in rural 

areas), and or any service charges (in urban areas) play a critical role in the choice of 

health facility, thereby affecting the potential numbers of people attending given health 

facilities. Thus, some of the observed differences within the district level analysis in this 

study may well be influenced by unreliable population denominator estimates. Thus, 

although the study in Chapter 6 used a combination of sources such as population 
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headcounts and official census estimations, the primary source was from census 

estimates, and therefore requires a cautious interpretation of the differences observed in 

comparison with district-level models. 

It must also be highlighted that differentiating disease trends due to climate change was 

partly challenging because it happens alongside other health care system changes. For 

example, the period of analysis 2000-2016 saw several potential health care data system 

changes including the change of malaria diagnostics from microscopy/clinical based 

between 2000 up to about 2008/9 to more ubiquitously available RDTs since then. 

Secondly, the changing number of health facilities driven by population increase or health 

capacity to provide health services as close to the people as possible may well have 

affected health-seeking behaviours, with a potential to increase the proportion of people 

attending health facilities due to increased proximity. Such effects, although subtle, may 

have had some underlying influences on the conclusions and trends found in this study. 

Finally, as indicated earlier, it is challenging to discuss the findings on the effectiveness 

of interventions with certainty as the only information available on ‘intervention use’ was 

the annual number of distributed malaria interventions (e.g. bednets) within a district. 

This is essential information, but it says little about the actual intervention uptake within 

the district population, especially that of LLINs. It has been documented that some 

people, especially in rural areas may have access to a bednet but are unlikely to use it 

(e.g. keeping it for later usage or actively using it for purposes other than intended for 

malaria prevention). Besides, the records of the annual distribution of bednets don't show 

the appropriate distribution of bednets within district populations nor the within-district 

geographical distribution pattern which, if coupled with potentially long delays before 

reaching some communities, may affect the actual initialisation of effects from the 

interventions. 

It is therefore encouraged that the work presented here and its conclusions should be 

interpreted and understood alongside specific limitations associated with it as discussed 

earlier. 

7.7 Conclusions and recommendations 

Overall, the research presented in this thesis found a strong association between near-

term climate changes and age-stratified malaria incidence, risk and trends. A common 

thread throughout has been the use of spatio-temporal modelling techniques to analyse 
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hitherto unknown geographical malaria trends and associated causal factors in Zambia 

over a 16 year period since 2000. Adopting this specific approach has enabled the 

identification of patterns and trends that are implicit in the data, but to date, had never 

been analysed in this way. The techniques underpinned the development of the risk 

burden classification method introduced in chapter 3 and used in chapters 4, 5 and 6 

(Figure 7.3).  

 

 

Figure 7.3 Schema of the use of spatio-temporal analytical techniques in the thesis 

Along with other cluster analysis techniques, the spatio-temporal methods facilitated the 

identification of key hot spot areas that would require attention and, where appropriate, 

specific targeted intervention programmes that could result in significant benefits in terms 

of reducing malaria and helping Zambia move more quickly towards eradication. Four 

specific examples are most noteworthy. Firstly, the initial trend analysis in Chapter 3 

highlighted many areas where the actual rates of malaria are low but have an underlying 

increasing trend which, if not addressed, risk losing hard-won gains and a return to high 

incidence.  

Secondly, the analysis in chapter 4 was able to show that intra-regional near-term 

variations in climate variables significantly influence malaria incidence to the extent that 

it may well be offsetting any benefits accrued from expensive intervention programmes. 

This is something that strategic malaria planners may not be aware of and need to know.  
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Thirdly, the sub-district Health facility-level analysis highlighted significant within-

district variances in trends which prompted a recommendation for an adaptive scaling 

approach to intervention planning, especially in areas where the district rates are low, and 

trends are stable or declining. Fourthly, the detailed information presented on the 

significant influence of border effects on incidence highlighted the urgent need for 

specific cross border initiatives with neighbouring high-endemic countries such as the 

Democratic Republic of Congo. 

While spatio-temporal techniques and algorithms are complex and require specialised 

skilled analysts, the actual outputs produced, such as those produced in the new three-

class burden risk method in Chapter 3, are easy to interpret and understand and can be 

widely disseminated and used for malaria planning from top national-level strategies to 

district level health care management.  

These four examples highlight the value that has been gained by applying spatio-temporal 

techniques in analysing malaria data and constitute the main findings and contributions 

of this thesis. The techniques, like the data, as highlighted in each of the four results 

chapters, are not perfect and cannot answer all questions. However, this thesis has 

demonstrated its potential for further research in Zambia and other malaria-endemic 

countries.  

The true value of this work is that it has a tangible real-world applied relevance and the 

potential to make a positive difference in addressing this disease. As such, it is appropriate 

and fitting that the thesis concludes with a shortlist of key recommendations, some 

specific to Zambia and some for all malaria-endemic countries, that have been derived 

from the research: 

7.8 Recommendations 

Several recommendations already discussed in parts of this Thesis include the following: 

i. The strong seasonal increases in seasonal malaria during the study period in 

districts with increasing malaria suggest the need to test/pilot Seasonal Malaria 

Chemoprevention. 

ii. Zambia's central government should actively pursue bilateral or regional cross-

border initiatives with the DRC as well as other bordering countries.  

iii. Further research should be undertaken to characterise Zambia's northerly cross-

border malaria problems to distinguish, for example, whether this may be due to 
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the movement of infected people crossing borders, or from malaria transmission, 

or both. 

iv. Introduce an adaptive scaling approach in the monitoring, reporting and 

operationalisation of malaria interventions in order to benefit from sub-national 

high-burden, high-impact strategies. 

v. Introduce better disaggregation of age in malaria data and reporting, e.g. with a 

category between 5 and 17 years old to monitor and address an ageing trend in 

malaria incidence 

vi.  Pilot targeted interventions or behavioural change campaigns for school-going 

age groups. 

vii. Maintain and improve quality monitoring of the data received through the health 

management information system (HMIS) to allow for better, more sophisticated 

use of the data (e.g. spatio-temporal analysis). 
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APPENDIX A: APPENDICES FOR CHAPTER THREE 

8.1.1.1 Supplementary methods for Chapter 3 

 

Section 1: Describing and explaining the Health Management Information System 
(HMIS) dataset used  

Section 2: Structure of the Bayesian Hierarchical models used 

Section 3: Generating malaria risk and rates 

Section 4: Working the Matrix Details 

Section 5: The definition of terms used in the paper 

 

8.1.1.2 Section 1: Describing and explaining the HMIS dataset used 

Zambia has had a rich and unique HMIS data source since the beginning of the last 

decade. Disease information from records collected via districts, aggregated from health 

facilities records, have been more or less complete since 2000 (World Health 

Organization, 2008). During this period, a malaria case was defined as a “fever with 

parasites” which generally defines all those cases that would need treatment using 

antimalarial drugs. The data consists of reports of the numbers of outpatients and 

inpatients treated based on either their clinical symptoms (suspected cases), or by 

laboratory tests carried out using RDTs, and slide positivity (confirmed cases). 

8.1.1.2.1 Malaria case and mortality definitions 

Malaria mortality refers to the direct consequences of malaria infection, which primarily 

includes the death from a progression of mild and severe disease to death (Greenwood et 

al., 1987; Mudenda et al., 2011). From a clinical view, a simplified sequence from the 

point of a plasmodium-infected bite is as follows (World Health Organization, 2014b):  

𝑰𝒏𝒇𝒆𝒄𝒕𝒊𝒐𝒏 → 𝒂𝒔𝒚𝒎𝒑𝒕𝒐𝒎𝒂𝒕𝒊𝒄 𝒑𝒂𝒓𝒂𝒔𝒊𝒕𝒂𝒆𝒎𝒊𝒂 → 𝒖𝒏𝒄𝒐𝒎𝒑𝒍𝒊𝒄𝒂𝒕𝒆𝒅 𝒊𝒍𝒍𝒏𝒆𝒔𝒔 → 𝒔𝒆𝒗𝒆𝒓𝒆 𝒎𝒂𝒍𝒂𝒓𝒊𝒂 → 𝒅𝒆𝒂𝒕𝒉  

This is what is generally measured by the health system, but is often hugely 

underestimated (Greenwood et al., 1987; Mudenda et al., 2011; Snow et al., 1992) as the 

true burden depends on several other factors such as transmission intensity, age, 

acquisition of immunity, parity, co-morbidities, and health system factors such as access 

and quality of health care. Hence, while Verbal Autopsy remains the primary diagnostic 

method of confirmation, it has a specificity that is poor for malaria because malaria can 

simultaneously be both a contributory and an underlying cause of death, and confirmatory 

accuracy still depends on many other factors within (Reyburn et al., 2004; Taylor et al., 
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2004) and outside (Lynch, Korenromp, & Eisele, 2012; Mudenda et al., 2011; White, 

Dondorp, Faiz, Mishra, & Hien, 2012) the (quality) health care system. 

The use of only two age groups in this study is for two reasons. Firstly, the data was 

mostly available in three age categories from: <1, 1-4, ≥5. The study grouped the first 

two categories into 0-4 years to be consistent with the national and global malaria 

priorities and reporting. Secondly, due to the high susceptibility risk, vulnerability, and 

severity of exposure to malaria infection or disease among under-five children, it has been 

a priority in the last decade to track progress in under 5 children mortality and incidence. 

This priority has since defined the international focus on under-fives reporting in all 

Malaria Indicator Surveys (MIS), Demographic Health Surveys (DHS), and World 

Malaria Reports (WMR) (Murray et al., 2012; World Health Organization, 2008). 

From 2001, all patients in Zambia who seek care in the public sector due to fever could 

receive a malaria diagnostic test free of charge, as per health policy guidelines. A 

microscopy blood slide was the main malaria test available in most health facilities 

between 2000 and 2008. However, as per WHO guidelines, children from most of sub-

Saharan Africa aged below five years received treatment for all fever cases without 

parasite confirmation (World Health Organization, 2008). Thus, due to the shortage of 

medical personnel and the high volume of suspected malaria cases in most public 

facilities, diagnosis by clinical symptoms remained a substantial part of the malaria 

diagnosis process. 

Routine surveillance records were and remain the most abundant source of information 

on the effects of malaria control in endemic countries worldwide. The records of malaria 

cases and deaths as submitted to national programs and the WHO vary in quality and most 

are lacking in their completeness. Hence, using the data as received is always deemed to 

have some bias, and underreporting issues (due to record incompleteness) or over-

reporting due to the combined presumed malaria cases treated without undertaking 

confirmatory testing. Although routinely collected records have significantly improved 

in their data quality in recent years, these data still need to be adjusted to reflect a more 

accurate picture of the malaria epidemiology (Ashton et al., 2017; World Health 

Organization, 2008). 

In order to achieve a more accurate picture of malaria cases or deaths, adjustments should 

be made on the reported total national cases. The WHO’s methods of working routinely 

collected data include adjusting reported malaria cases for reporting completeness, care-



 

199 

 

seeking rates, and parasite positivity rates (in the likelihood that cases were parasite-

positive). Historically, while this was the most accurate and objective method, it was 

applied only in a few African countries that had enough quality in their data (World 

Health Organization, 2008) making direct comparisons difficult.  

In the dataset, however, not all three-adjustment parameters were available for the dataset 

between 2000 and 2008. The study obtained annual mean national reporting completeness 

from the WHO’s World Malaria Reports of 2008 and 2016 (World Health Organization, 

2008, 2016b); extracted and estimated the mean health-seeking rates from three 

Demographic Health Surveys (DHSs) of 2001-2, 2007, and 2013-14 (Central Statistical 

Office (CSO), Ministry of Health (MOH) & University of Zambia, 2009; Central 

Statistical Office (CSO) [Zambia], Ministry of Health (MOH) [Zambia], 2014; Central 

Statistical Office [Zambia], Central Board of Health [Zambia], 2002) (see subsection on 

Treatment seeking studies in Zambia).  

Data on the slide or malaria-test positivity rates were not available, and all malaria records 

were reported as a figure comprising presumed and confirmed cases and as such cannot 

be disaggregated. This was the type of reporting from the year 2000 until 2008 after which 

the nation-wide scale-up of RDTs became the primary diagnostic test. Therefore, 

although the study did not incorporate test positivity and cannot confirm the exact number 

of expected health facility reports that contributed towards the records received, this study 

did use the reporting completeness to make adjustments. 

Consequently, it is possible that treatment-seeking rates may vary at the health facility 

level, but due to the lack of such fine-scale data, it could not be quantifiable and accounted 

for in the models. This is partly reflected in how adjusting for treatment-seeking rates was 

mostly mirrored in temporal trends but not in spatial patterns. This has been addressed in 

the main text. 

Nevertheless, it can be noted that, while these adjustments may be essential to show a 

more accurate picture of malaria infections in the country, and could affect the observed 

temporal trends, they will not affect any underlying spatial patterns that would otherwise 

be observed using raw reported malaria data. Furthermore, it can also be suggested that 

adjusted rates are only useful when comparing with other countries; otherwise, they are 

of limited everyday local use by policy makers because all decisions are based on actual 

records of reported malaria cases or deaths. Hence, adjusted figures often pose a challenge 

for reasonable comparisons. In comparison, while the results from adjusted studies may 
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reflect a more accurate general picture, they may not present a similar picture observed 

on the ground by the malaria programs. This is especially true when applied to subnational 

level analyses without evidence from specific similar scaled subnational studies. 

As the data was available only at the district level, the study first examined individual 

district counts, before testing for the presence of outliers or the presence of spurious 

values using Cooks distance test. Two-outliers were found and corrected for, using the 

district averages from the mean value before and after the outlier. Then, the study 

examined the dispersion from the median using simple outlier statistics such as the 

absolute deviation from the median using DHARMa’s R package - nonparametric 

dispersion test via standard deviation of residuals fitted vs simulated data. 

Before re-analysing the data, adjusted were made using the equation: 

 

=  
𝐶𝑎𝑠𝑒𝑠௣௥௘௦௨௠௘ௗ + 𝐶𝑎𝑠𝑒𝑠௖௢௡௙௜௥௠௘ௗ

𝑅𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠
(1 + 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑠𝑒𝑒𝑘𝑖𝑛𝑔 𝑟𝑎𝑡𝑒) 

8.1.1.2.2 Data Missingness 

Margin plots were utilised, missing data patterns and density plots to test for data 

missingness patterns in the data. There were 3.4%, 2.7%, 1.4% missing for under-five 

deaths, over five deaths, and across both age groups respectively. Only 0.1% of missing 

values were in malaria case reports making up 5% of the combined total for missing data 

in the whole dataset. 

The study used multiple imputations to create several complete versions of the dataset by 

replacing missing values with plausible data values (Stef Van Buuren, 2018). Before 

settling on a final imputation method, multiple methods were tested for efficiency and 

error of the imputation algorithms such as Multivariate Imputation by Chained Equations 

implemented in MICE R package (S van Buuren & Groothuis-Oudshoorn, 2010), the 

bootstrapping and predictive mean matching (PPM) from Hmisc R package (Harrell Jr & 

Harrell Jr, 2019), and the MissForest R package (Stekhoven & Bühlmann, 2011) which 

is random forest-based. In each case, the results were pooled into a single point estimate 

with an associated standard error (Rubin's rules"). Random Forest method was finally 

chosen. This method is trained on the observed values from a matrix to estimate the 

missing values and impute the 5% of missing values in the data. This method yields an 

out-of-bag (OOB) imputation error estimate removing the need to test for or conduct 

elaborate cross-validation from the missing values among malaria deaths alone. The 

[1] 
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normalised mean squared errors (NMSE) of imputed missing values were 0.22 (22%), 

and 0.072 (7.2%) for missing case values and 0.094 (9.4%) for the whole dataset. The 

Figure 3.S4 below shows the density plots show the level of accuracy in missing values 

of mortality (4.9%) and incidence (0.1%) of imputations. 

Figure 3.S4: density plots of imputations 

 

8.1.1.2.3 Treatment seeking studies in Zambia 

While treatment-seeking behaviour plays a role in how much of malaria/non-malaria 

fevers are captured at health facilities, available studies (conducted between 2007 and 

2017) have shown a geographical bias with up to 80% of studies being undertaken wholly 

or partly in only one of Zambia’s ten Provinces, Southern Province. These studies are 

geographically biased and therefore not generalisable beyond their respective study areas 

or sub-regions. For instance, a recent study by Edward et al. (Edward et al., 2018) 

conducted between 2013-2014 and 2016-2017 on care-seeking practices following the 

behaviour change intervention in Zambia indicated about 72.3% (N = 173) and 81.8% (N 

= 209) of the respective intervention and comparison cohort populations sought care. 

These results were, however, pooled (despite having been across four districts), and 

reported only as control and intervention districts, making them non-inferable elsewhere.  

Other studies also conducted in southern province mostly captured high health-seeking 

behaviour among community-based malaria management and non-severe pneumonia in 

children. Over 80% (N range =174 - 362) of the cases were treated at health centres, and 
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through CHWs (Hamooya, Chongwe, Dambe, & Halwiindi, 2016; Seidenberg et al., 

2012; Yeboah-Antwi et al., 2010) whether intervention or at control arms.  

In peri-urban settings, a case study of Lusaka showed about 56% (106/189) of caregivers 

sought care from health professionals (Sasaki et al., 2010). However, it is worth noting 

that all these studies targeted health-seeking among young children with the help of their 

caretakers. Information on the utilisation of health services due to fever-related illnesses 

by people aged 5 years and over remains scanty. It is mostly extrapolated from these 

studies to all age groups with the assumption of homogeneity across all ages. Given this 

assumption and as traditionally applied by the WHO, treatment-seeking information was 

extracted from DHS reports and used those as explained above in earlier sections. 

8.1.1.2.4 Underestimations due to unknown subclinical malaria 

Asymptomatic individuals constitute a significant malaria reservoir of infections leading 

to sustained transmissions. Many studies show that subclinical or asymptomatic malaria 

increases as the proportion of malaria cases among febrile illness declines, and 

transmission continues among people with higher subclinical infections (Björkman, 2018; 

Harris et al., 2010; Mangeni et al., 2016; Okell et al., 2012). Subclinical is higher in low 

transmission areas than in high transmission areas (Mangeni et al., 2016; Okell et al., 

2012).  

The study did not have information on the rates of subclinical malaria, which translates 

in an absolute systematic underestimation of malaria. The study approach can inform 

focused investigations of low-transmission settings as part of active case detection to test 

defined populations without prior screening for symptoms and identify or treat 

asymptomatic infections. The presence of unaccounted for and uncaptured asymptomatic 

malaria cases, as shown above, may contribute to underestimations of the actual malaria 

burden identified in this study.  

8.1.1.3 Section 2: Structure of the Bayesian Hierarchical models used 

The study area has 72 districts denoted by k = 1, . . . ,K, non-overlapping districts are 

denoted by S = {S1, . . . , SK}. The available data aggregated at quarterly time periods are 

subscripted with t = 1, . . . , N. Thus, the data are available for K rows (Districts) and N 

columns (Quarters). Response variables are denoted by Y = (Y1, . . . ,YN) K×N, where Yt 

= (Y1t, . . . , YKt) represents the K × 1 observed vector for K district units at period t. The 

vector of selected offsets are indicated by O = (O1, . . . ,ON) K×N, where likewise Ot = (O1t, 

. . . , OKt) denotes K × 1 column vector of offsets for the period t. A vector of known 
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covariates is denoted through, xkt = (xkt1, . . . , xktp) for district k and period t. The model 

takes the following structure: 

 

Ykt|μkt ~ f(𝓎kt | μkt,v2) where k = 1, . . . ,K, t = 1, . . . ,N, 

g(μkt) = xT
ktβ + Okt + ѱkt, 

β~N(μᵦ,∑ᵦ) 

 

The specific model used implements an exact Poisson specification: 

Ykt ~ Poisson (μkt) and ln(μkt) = xT
ktβ + Okt + ѱkt. 

8.1.1.3.1 Model Specification and Structure 

The study used a specialised Gaussian Markov random field (GMRF) of conditional 

autoregressive (CAR) structure. These spatiotemporal models represent the neighbourhood of the 

districts through an adjacency matrix W so that wjr expresses whether districts (j, r) are spatially 

contiguous to produce a binary value interpreted as spatial closeness when (wjr = 1), which means 

that districts share boundaries. In contrast, the opposite is true when (wjr = 0) representing the 

nonexistence of a shared boundary. This study used the CARBayesST R package [2] to fit 

multiple models using the data likelihood for district j and time point i as Yji ~Poisson (ejiθji) and 

where (Yji, eji) are the observed and expected values respectively. 

8.1.1.3.2 Capturing spatio-temporal random effects 

The model incorporates a spatio-temporal autocorrelation into the response variable Y 

through latent random effects, using CAR-type prior distributions and spatio-temporal 

extensions. The symmetric nonnegative K × K neighbourhood controls the spatial 

relationship through the adjacency matrix W= (wkj). Wkj characterises the closeness 

between spatial units (Sk, Sj). The weighted matrix creates higher values for area units 

with spatial adjacency, but lower or 0 values for areas spatially distant. The matrix W 

creates a binary, (wkj = 1 if spatial units (Sk, Sj) share a common boundary/edge and wkj = 

0 if not. This binary specification of W has to fulfil three conditions, namely; symmetry, 

non-negativity, and row sum greater than zero. This model treats spatially proximate areal 

units as spatially autocorrelated while those more distant as conditionally independent. 

In order to estimate the evolution of the spatial response surface over time without forcing 

it to be the same for each time period, the mean response with a single set of spatially and 

temporally autocorrelated random effects (as seen in Figure 3.2b and 2d) was used. 

Temporal autocorrelation is in turn induced through mean ρT𝜙t−1, while variance 

[2] 

 [3] 
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𝑸(𝑾, 𝜌𝑠)ିଵ) induces the spatial autocorrelation according to the CAR equations used in 

the models explained earlier. Equation 4 gives the matrix: 

(𝑾, 𝜌𝑠) =  𝜌𝑠[diag(𝑾𝟏) −  𝑾] + (𝟏 −  𝜌𝑠)𝐈   [4] 

In equation 5, 1 represents the K × 1 vector of 1’s from the binary and the K × K identity 

matrix is denoted by I. While random effects are zero-mean centred, specific flat 

priors (𝜌𝑠, 𝜌𝒯) and conjugate priors (𝒯ଶ) are given and default values (a = 1, b = 0.01) 

for the latter. The study also tested for the collective temporal autocorrelation across all 

time points in the data using the Dubin-Watson test. The Cochrane-Orcutt estimation 

method was implemented to solve the first-order autocorrelation problem. Each of the 

models implemented deals with autocorrelation in specific terms, but all outputs were 

also subjected to the two independent autocorrelation tests to confirm the models dealt 

with it. 

The Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002), Watanabe Akaike 

Information Criterion (WAIC), and its associated log pseudo-marginal likelihood (PML) 

was applied to initially select the best models to use with the data from among the list of 

conditional autoregressive models available  (Lee et al., 2018). Models with similar 

structures were prioritised with a final choice made by the DIC and suitability to the 

objectives of the study.  

8.1.1.3.3 Cluster Trends model 

Figure 3.S5: Diagnostic Confirmation Trend Total Malaria Cases in Zambia, 2011 -2017 

 

Source: Zambia Malaria Operational Plan 2018 
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Figure 3.S5 shows the general reduction in clinical malaria captured in the HMIS. It could 

be argued that the combination of un-adjusted clinical cases with confirmed malaria cases, 

and the continuous reduction in clinical malaria (adding about 10% - 50% more cases 

from 2011 [and more in previous years] due to other malaria-like fevers) should have 

been captured as a reduction in malaria incidence. However, the study reports an almost 

counter-intuitive increasing trend with a potential bias for underestimation, which 

eliminates the probability of these trends being spurious. 

With the objective being to show malaria clusters among districts that shared common 

malaria risk trends, the models used did not include any covariates. This study assessed 

clustering of malaria risk based on districts shared shape-constrained temporal trends, 

which allowed the study to test for heterogeneity vs homogeneity in temporal and spatial 

trends of malaria between two age groups in Zambia over the 16 years' study period.  

The model has the capability of identifying clusters of contiguous areal units that exhibit 

either an elevated or reduced risk of disease compared with neighbouring areas 

(Anderson, Lee, & Dean, 2014; Charras-Garrido et al., 2012). 

In addition to the model structure described above, general model cluster trends are given 

by: 

𝑌௞௧~ 𝑝(𝑌௞௧|𝜇௞௧), where 𝐾 = 1, … , 𝐾, 𝑡 = 1, … , 𝑁, 

𝑔(𝜇௞௧) = 𝑂௞௧ + 𝑋்
௞௧𝛽 + 𝜙 ෍ 𝜔௞௦

௦

௦ୀଵ

𝑓௦(𝑡|𝛾) 

Figure 3.S1 shows the estimated temporal trends and 95% intervals on the risk scale, 

namely: 

𝜃௧ = exp൫𝛽ଵ + 𝑓௦(𝑡|𝛾௦)൯ 

Equation 7 indicates the constituents of estimates for i) under five ii) over five, and iii) 

population-wide trend models in Figure 3.S1. Model outputs in Figure 3.S1a (i, ii, iii) 

show the lines fitting well at the 95% credible interval, with just under half (44%) of the 

districts (Table 3.1) allocated to a constant trend signifying no change in the risk of under-

fives malaria mortality over time. The remainder is shared (29%, 26% - under five and 

31%, 23% - over five) between the increasing and decreasing risk trends, respectively. 

Surprising, the number of no change districts increases to 50% when the two age groups 

are combined, signifying that not all districts exhibited the same trend between both age 

[5] 

 

 [6] 
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groups as confirmed by the trend maps (Figures 5 A(i), A(ii), B(i) and B(ii)), which 

exhibit similar levels of spatial variation. 

The trend equation formula is: 

 𝜓 =  𝜙௞௧ +  ∑ 𝜔఑௦
ௌ
ୱୀଵ  𝑓௦(𝑡|𝛾௦), 

 𝜙௧|𝜙௧ିଵ ∼ 𝑁 ൬
ఘ ∑ ఠ௞௝థ಼

ೕసభ

ఘ ∑ ఠ௞௝಼
ೕసభ ାଵିఘ 

 ,
𝒯మ

ఘ ∑ ఠ௞௝಼
ೕసభ ାଵିఘ 

൰, 

 𝒯ଶ  ∼ Inverse − Gamma(𝑎, 𝑏), 

𝜌𝑠, 𝜌𝒯 ∼ Uniform(0,1). 

 𝜔𝑘 = (𝜔𝑘1, … , 𝜔𝑘𝑆)  ∼ Multinomial(1; 𝝀), 

 𝝀 = (𝜆ଵ, … , 𝜆ௌ)  ∼ Dirichlet൫𝛂 = (αଵ, … , αௌ)൯, 

where ϕ−k = (ϕ1, . . . , ϕk−1, ϕk+1, . . . , ϕK ).  

Areas are first clustered according to their temporal trends; then used global 

probabilities to associate candidate trends in the output and trend interpretation. The 

model also visualised the classifications assigned to trends using maximum posterior 

probabilities of certainty thresholds (0.33 – 0.5, 0.5 -0.75, 0.75 - 1). Table 3.S1 shows 

the trend function interpretation used for the model (Napier et al., 2018). 

Table 3.S1 Trends interpretation of results: 

Source: Napier 2018 

The study also tested monotonic trend alternatives before selecting the one used. The 

original choice and rationale as the study tested the monotonic alternatives (not included 

or discussed here) was guided by the understanding that the number of knots controls the 

wiggliness of the estimated trend (Napier et al., 2018). Ruppert et al. (Ruppert, Wand, & 

Carroll, 2003) argue that if one is using a linear spline with enough knots, increasing the 

number of knots has no appreciable effect on a penalised fit, then increasing the degree 

of the spline is also unlikely to have a noticeable effect. Claeskens et al. (Claeskens, 

Krivobokova, & Opsomer, 2009) further refined the justification that to prove that a 

smaller number of knots lead to a smaller averaged mean squared error. Hence, given the 

small number of time points, Q = 2 was enough, and any more would not have much 

Trend  Function Identifier 

(i) Constant 𝑓(𝑡) =  0 Constant 

(ii) Linear 
Decreasing  

Increasing 

𝑓(𝑡|𝛾) =  𝛾𝑡 

𝑓(𝑡|𝛾) =  𝛾𝑡 

LD 

LI 

[7] 
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effect, although it is believed fewer would lead to larger MSE. However, the final choice 

of model was not monotonic and therefore did not need knots. 

8.1.1.4 Section 3: Generating malaria risk and rates 

8.1.1.4.1 Relative Risk 

An indirect calculation of the Standardised Mortality Ratio (SMR) and Standardised 

Incidence Ratios (SIR). The SIR/SMR are ratios between observed counts of 

deaths/incidence in a study population and the expected counts of deaths/incidence, 

depending on the age-specific rates in a standard population. These ratios are dependent 

on the demographic size and profile of the study population. High risk is determined when 

the ratio of observed/expected counts is greater than 1.0 in the study population, while 

low risk is when the ratio is less than 1.0. In order to make three classes low, medium, and 

high that would conform to the model classification for risk trends, the study classified 

all below 1.0 as low, those between 1.0 – 1.5 as medium (equivalent to 50% increase 

above national population) and all over 1.5 as high. 

8.1.1.4.2 Malaria Rates 

Malaria mortality rates were calculated as death counts per 10,000 population of the specific age 

group, while incidence rates were calculated per 1,000 population. For comparability between 

risks and trends, the study scaled all rates to a range of between 0 and 1. It then classified the 

values into three groupings of 0 - 0.33 = low, 0.34 - 0.67 = medium, and 0.68 – 1 = high. 

8.1.1.5 Section 4: Working the composite Matrix for visualising High/Low burden areas 

The study created a matrix composed of the district results from the models for trend 

clusters, rates, and risk. Incidence and mortality rate: in the output table (see Table 3.S1) 

and as earlier described, it classified mortality and incidence in the range of 1 - 3 where 

high = 3, medium = 2, and low = 1.  

For relative risk (RR), <1 =“low risk”, 2 = “medium risk” with RR between 1-1.5 

(denoting 0.1-50% risk higher risk), while 3 = “high risk” with RR more than 50% - 

200% higher than the national average. For the trend classification by the model, it 

denotes decreasing trend = 1, no-change (constant) = 2 and Increasing trend = 3 which 

inherently meant the equivalents of low, medium and high, respectively. Precisely, a 

rating scale of high = 3, medium = 2, and low = 1 in all three criteria was chosen.  

In the final mapping of high/low burden areas, a similar method was implemented 

resulting in a logical classification approach recognising a high combined matrix score to 
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represent an area of high malaria burden and consequently an area of high potential 

impact to effective interventions. The opposite was also true denoting low matrix scores 

as areas suitable for malaria elimination.  

The study then imported this dataset into ArcGIS 10.5, where each combined district 

score was derived from a product of score across risk, rates, and trend from the matrix. 

For example, a district with “high RR” (weight 3), “Increasing trend” (weight 3), and a 

high rate (weight 3) would give a product score of 27 (3 x 3 x 3), while having one of the 

scores as 2 would make the final score =18 (3 x 2 x 3). It then used manually defined 

classes to make the class cut-offs, as shown in the matrix Table 3.S1 to visualise the 

results. As such, any alternative weighting approach could easily be applied to denote the 

subjective or objective relative importance of the three components (rates, risk, and trend) 

for a specific country or region being studied. 

Although scores were multiplied across the confusion matrix columns to obtain a total 

score for each district out of preference for easy mapping of classes, and explored other 

ways such as addition, averaging, and rescaling to aggregate the matrix scores most 

logically and understandably. The latter methods did not change the results but made class 

exclusivity more challenging to achieve, as the range of values was smaller and generated 

very close scores between categories. Product scores, however, gave the best set of 

distinctive classes. This study applied the matrix for under-five, over-five age group 

incidence, and mortality separately to test for age-specific differences.  

8.1.1.6 Section 5: The definition of terms used in the paper 

WHO: World Health Organization 

GTS: Global Technical Strategy 

IRS: Indoor Residual Spraying 

GIS: Geographic Information System 

MIS: Malaria Information System 

ACT: Artemisinin-based Combination Therapy 

RDT: Rapid Diagnostic Test 

E8: Elimination 8 Malaria Initiative 

Under-fives: Children aged under five years old 

WMR: World Malaria Report  
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Figure 3.S1: Average temporal trends at 95% credible intervals 
(a) Mortality  (b) Incidence 

Estimated temporal trends and 95% credible intervals in dotted lines, arranged starting with under-five (i), over-five (ii) and population-wide (iii), for malaria 
mortality (a), and malaria infections (b),  
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  Figure 3.S2: Districts with the highest and lowest malaria based on all matrix scores [Trend u5, Risk u5, Rate u5, Trend 
o5, Risk o5, & Rate o5] 

Green = Low Rate, Low 
Risk & Declining Trend 

Red = High Rate [RI], High Risk [RA], 
& Increasing Trend [T] 

Scores derived using the Mortality Rate, Mortality Risk, and Trend 
[RIRAT] matrix where the green districts had the lowest scores while the 
red had the highest scores in the matrix. Here, six variables used in the 
matrix are <5 Rate, Risk, & Trend, and ≥ 5], Rate, Risk & Trend. 

Malaria Incidence 

Green = Low Rate, Low Risk & 
Declining Trend 

Red = High Rate [RI], High Risk 
[RA] & Increasing Trend [T] 

Scores derived using the Mortality Rate, Mortality Risk, and Trend 
[RIRAT] matrix where the green districts had the lowest scores while the 
red had the highest scores in the matrix. Here, six variables used in the 
matrix are <5 Rate, Risk, & Trend, and ≥ 5], Rate, Risk & Trend. 

Malaria mortality 
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Figure 3.S3: HMIS data Quality improvements from 2010-2016 

 
  

Table 3.S2: interpretations of map legend and colours showing arbitrary combinations of scores 
and their resultant score and colour 

Example of map legend colours from variations of matrix scores leading to the high-burden and low-burden maps. Adaptable 
scaling can be used depending on the amount of detail required. 

District Trend Risk Rate Score Three Classes Two Classes
1 1 1 1 1
2 2 1 1 2 Low
3 3 1 1 3
4 2 1 2 4
5 1 3 2 6
6 2 2 2 8
7 3 3 1 9
8 3 2 2 12
9 2 3 3 18

10 3 3 3 27

Medium

High

District: district code 
Trend: 1=decrease 2=no change 3=increase 
Risk:   1=low     2=medium 3=high 
Rate:  1=low     2=medium 3=high 

Score: Product of scores expressed by each variable 
Classes: The number of map adaptable scaling according to 
the amount of detail required. i.e. two classes or three class or 
five classes based on scores 

M
alaria cases 
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APPENDIX B: APPENDICES FOR CHAPTER FOUR 

8.2.1 Supplementary Figures for chapter 4  

 

Figure 4.S1: visualizations of correlation 
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Figure 4.S2: Regression results in areas of declining malaria 
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Figure 4.S3: Regression results in areas of increasing malaria 
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 Season Slope Intercept R² F P  

Temperature 
(DTR) – Areas of 
malaria decline 

Q1 -0.10892 235.7 0.13 2.33 0.15  

Q2 -0.04198 105.7 0.02 0.33 0.57  

Q3 0.117428 -210.4 0.30 6.52 0.02 * 

Q4 0.1897 -358.7 0.37 8.96 0.009 ** 

Seasonal malaria 
trend – Areas of 
malaria decline 

Q1 -83.7099 168746.7 0.79 57.97 1.58E-06 **** 

Q2 -99.2363 199932.3 0.70 34.78 2.93E-05 **** 

Q3 -64.8745 130681.8 0.80 58.90 1.43E-06 **** 

Q4 -66.9569 134865.9 0.86 95.30 6.85E-08 **** 

Temperature 
(DTR) – Areas of 
malaria increase 

Q1 -0.23652 491.3 0.67 30.63 5.72E-05 **** 

Q2 -0.16497 351.5 0.43 11.23 0.004381 ** 

Q3 -0.00911 42.9 0.002 0.03 0.865916  

Q4 -0.03933 100.1 0.035 0.54 0.475054  

Seasonal malaria 
trend – Areas of 
malaria increase 

Q1 99.36241 -197667 0.75 43.96 8.01E-06 **** 

Q2 69.81311 -138490 0.41 10.64 0.005 ** 

Q3 8.418798 -15953.9 0.096 1.60 0.23  

Q4 22.35414 -43681.6 0.23 4.37 0.054  

Table 4.S1: Summary of DTR seasonality trends vs malaria seasonality 

 

 

 

  Figure 4.S4: Overall mean DTR trend between 2010-2016 
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Figure 4.S5: Random effect quantiles in areas of declining malaria 
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Figure 4.S6: Random effect quantile in areas of increasing malaria 
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APPENDIX C: APPENDICES FOR CHAPTER FIVE 

8.2 Supplementary tables and figures for chapter 5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.S4: Summary of pre-analysis formal goodness-of-fit tests on the simulated residuals in GLMM 

Data structure Test used Result with  

1. Outliers/Influential observations Cook’s distance 149 observations 

2. Multicollinearity Variance Inflation Factor (VIF) Temperature (min, max, mean) 
3. Zero-inflation DHARMa (test for zero-inflation) None 
4. Linear/non-linear structures  Residual plots from linear models Inconclusive presence of non-linear 
5. Non-normality  DHARMa (test for Uniformity)   
6. Dispersion/ Heteroscedasticity DHARMa (test for dispersion) Strong presence of OD 
7. Temporal Autocorrelation Dubin Watson’s Test Strong presence 
8. Spatial Autocorrelation Moran’s I Very weak presence 

Note: DHARMa R package was mainly used in testing from GLMM while the rest were mainly done for GLM or LM 
pre-analyses.  
 (1). For Uniformity test, results had too many residuals around 0 and 1 which means that too many residuals were at 
the tails of the distribution than expected from the fitted models. 
(2). Cook’s distance calculates observations with large values. In the data, 149 observations were deemed influential 
but these were too many to exclude. 
(3). VIF was used to determine collinearity among explanatory variables denoted by very high VIF and correlation 
coefficients. Temperature variables (min, max, mean) values (≈200 000) and confirmed by high correlations (0.83 and 
0.76) as well. The study dropped the mean Temp variable based on biological sense and kept min and max. 
(4). Although it seemed there was a weak presence of overdispersion at first, that disappeared once correction for 
dispersion was done 
(6). Large overdispersion was found in lm, glm, and normal Poisson glmm models, hence the choice for negative 
binormial 
(7). Spatial autocorrelation was not significant while temporal autocorrelation was present and significant. 

Note: Other additional supporting variables like (date, quarter, or year) were 
used as covariates while district names and IDs were considered as random 
intercept. 

Table 5.S3: Summary of relevant variables explored in the study. 
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testSpatialAutocorrelation(simulation
Output) DHARMa Moran's I test for 
spatial autocorrelation data: 
simulationOutput observed = -
0.00044970, expected = -0.00020433, 
sd = 0.00058953, p-value = 0.6773 
alternative hypothesis: Spatial 
autocorrelation 

testTemporalAutocorrelation(simulationO
utput) Durbin-Watson test data: 
simulationOutput$scaledResiduals ~ 1 DW 
= 2.0259, p-value = 0.3648 alternative 
hypothesis: true autocorrelation is not 
0 

testZeroInflation(simulationOutput) 
DHARMa zero-inflation test via 
comparison to expected zeros with 
simulation under H0 = fitted model 
data: simulationOutput ratioObsSim = 
500, p-value < 2.2e-16 alternative 
hypothesis: two.sided 

testDispersion(simulationOutput) 
DHARMa nonparametric dispersion test 
via sd of residuals fitted vs. 
simulated data: simulationOutput 
ratioObsSim = 0.47051, p-value < 2.2e-
16 alternative hypothesis: two.sided 

testOutliers(simulationOutput) DHARMa 
outlier test based on exact binomial 
test data: simulationOutput outLow = 
1.5400e+02, outHigh = 2.7000e+01, nobs = 
4.8950e+03, freqH0 = 3.9841e-03, p-value 
= 0.1234 alternative hypothesis: 
two.sided 

testUniformity(simulationOutput) One-
sample Kolmogorov-Smirnov test data: 
simulationOutput$scaledResiduals D = 
0.12669, p-value < 2.2e-16 alternative 
hypothesis: two-sided 

i

i

ii

i

v

v

Figure 5.S1: A summary of diagnostic plots used in the data analysis.  
The Figure Negative binomial glmmtmb: diagnostic plots showing corrected over dispersion and significant presence of spatial and temporal autocorrelation. 
These results help to determine and confirm the right model for the data. 
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Figure 5.S2 Proportion of cases reported by age-group 
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Figure 5.S3: Model performance comparisons using climate and intervention variables.  
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Figure 5.S4: Location of district population weighted centres in Zambia 
Population weighted centroids obtained from districts polygons of visually 
verifiable populated (mostly urban) settlement hubs in Zambia’s districts 
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C Fig. S5: Variable observation distribution and regression slopes  
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Figure 5.S6: Predicted vs observed malaria case scenarios in under and over five year olds 
Predicted under five malaria cases using interventions (IRS and LLIN) only vs Climate 
variables (Tmax, Tmin, Rmax, Rmean, NDVI) only. Green/solid line indicates intervention 
model while brown/dashed line indicates environmental model.  
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Figure 5.S7: LLIN percentage coverage between the period 2000 and 2016 
Bed net coverage with two years accumulated distribution. The Figures are derived using 
accumulated distribution of LLINs as applied by Tan et. al. (2016) reported 30% attrition 
rates. 
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 Supplementary methods for Chapter Five 

8.2.1.1 Demographic, epidemiological and intervention data 

Census and post-census populations and age-group (<5 and ≥5 years) estimates were 

obtained from the central statistics office (CSO) report (Central Statistical Office, 2013) 

and used to calculate district age-specific malaria morbidity and mortality rates. Routinely 

collected malaria epidemiological data were obtained from Zambia’s Ministry of Health 

(MoH) through the National Malaria Elimination Centre (NMEC). Malaria data for <5 

and ≥5 years were reported collectively as clinical and microscopy or rapid diagnostic 

test (RDT) confirmed cases up until 2009. Since the countrywide introduction of RDTs 

(National Malaria Control Programme, 2012; World Health Organization, 2011; Yukich 

et al., 2012), clinical and confirmed cases have been reported separately (Mukonka et al., 

2015).  

The study used continuous temporal (quarterly) environmental data, and district level 

routinely collected malaria data aggregated into a long-term series, disaggregated into 

<5s and ≥5 year old age-groups, across 17 years from 2000 to 2016. The use of two age 

groupings of malaria data have for the last decades been endorsed because children <5 

years of age were and continue to be the most vulnerable group to malaria, accounting 

for over 60% of deaths worldwide (Murray et al., 2012; World Health Organization, 

2018f, 2019c). The specific focus on young children has also influenced the way malaria 

data is collected and officially reported. Typically, data is collated, analysed and 

presented either as <5s or ≥5s. 

8.2.1.2 Intervention control data 

Vector control data in the form of LLIN and IRS, which have been widely applied in 

recent years, were obtained from the national malaria elimination programme of Zambia 

(Chizema-Kawesha et al., 2010; Yukich et al., 2012). An operational coverage rate of two 

household residents per net was used (Masaninga et al., 2013; World Health 

Organization, 2008, 2015d). The LLIN records were available from all distribution 

channels, such as antenatal and <5 clinics, the expanded program on immunisations, and 

from community-based and nation-wide mass distribution campaigns. This study 

aggregated all data into 72 original districts to facilitate analysis of the full dataset over 

the whole 16-year study period. 
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8.2.1.3 Climate and ecological Data  

Daily precipitation data (from Climate Hazards Group) with a spatial resolution of 5x5km 

(Funk et al., 2015); temperature data (from NCEP Climate Forecast System Reanalysis) 

(Saha et al., 2012) with a 20 x 20 km of spatial resolution; and the 10 daily Normalised 

Vegetation Index (NDVI) (from Copernicus Global Land Service) with 1x1km 

spatiotemporal resolutions (Smets et al., 2018, 2013) were collected (see Table 5.S1).  

The primary climate variable choices (temperature and rainfall) were based on literature 

evidence of how temperature and rainfall influence both short and long term changes in 

malaria transmission (Abiodun et al., 2016; Blanford et al., 2013; Colón-González et al., 

2016; Krefis et al., 2011; Mohammadkhani et al., 2016; Odongo-Aginya et al., 2005; 

Okuneye & Gumel, 2017; Suk, 2016). Quarterly mean, maximum and minimum 

temperatures (Tmean, Tmax, Tmin, DTR) in OC, mean rainfall and max rainfall (mm) for 

the period from January 2000 to December 2016 were extracted using the R Program 

raster package (Hijmans, 2019) for all 72 districts. Diurnal temperature range (DTR) was 

computed from daily temperature data. 

8.2.1.4 Adjusting reported data for quality 

Zambia health information records have more or less been comprehensive for the whole 

country since 2000 (World Health Organization, 2008), and the quality of data has 

improved even more since 2010 (Presidential Malaria Initiative, 2018). Nonetheless, the 

study adjusted the data for varying quality using reporting rates, health-seeking, and data 

missingness. Reports were aggregated quarterly. In the absence of specific information 

on district reporting completeness, this was estimated using information from malaria 

indicator surveys and/or demographic health surveys.  

Missing data values were imputed using multiple imputation methods via a trained 

Random Forest of observed values (missForest R package) (Stekhoven & Bühlmann, 

2011), to replace missing values with plausible data values (Stef Van Buuren, 2018). An 

estimate of 5% missing values was detected in the dataset. Treatment seeking 

information was extracted from demographic health surveys of 2001-2, 2007, and 2013-

14 (Central Statistical Office (CSO), Ministry of Health (MOH) & University of Zambia, 

2009; Central Statistical Office (CSO) [Zambia], Ministry of Health (MOH) [Zambia], 

2014; Central Statistical Office [Zambia], Central Board of Health [Zambia], 2002), then 

used to adjust for cases not seeking care or not captured by the HMIS. The final 
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calculation is summarised in Equation 1 (WHO Malaria Policy Advisory Committee, 

2018): 

=  
𝐶𝑎𝑠𝑒𝑠௣௥௘௦௨௠௘ௗ + 𝐶𝑎𝑠𝑒𝑠௖௢௡௙௜௥௠௘ௗ

𝑅𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠
(1 + 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑠𝑒𝑒𝑘𝑖𝑛𝑔 𝑟𝑎𝑡𝑒) 

The study did not have information on positivity rates; hence, and did not adjust for 

clinical malaria in the dataset. This means that the conclusions may also capture non-

malaria fever, especially between 2000 and 2008, potentially resulting in some malaria 

over-estimation. 

8.2.1.5 Generating Longitude and Latitude representing population centres 

Latitude and longitude coordinates were extracted to represent population-weighted 

centroids, with accuracy being validated in ArcGIS version 10. These locations were used 

to test for spatial autocorrelation and as spatial variables against malaria (Figure S5). 

8.2.1.6 Modelling and Statistics 

The dependent variable used in the model is the Poisson data likelihood given that a 

Poisson family was chosen over "binomial" or "Gaussian" options. This model also suits 

the need to estimate the evolution of the spatial response surface of malaria over the 

considered time without coercing it to be the same for each period (Figure 2). This model 

has the capability of estimating the effect of risk factors such as temperature, rainfall, and 

NDVI on the response variables of malaria incidence or mortality (Lee, Ferguson, & 

Mitchell, 2009; Wakefield, 2006).  

The model allows for spatio-temporal autocorrelation via random effects, which capture 

the remaining autocorrelation in the disease data after the effects of the known covariates 

have been accounted for. Therefore, the study tested for the presence of spatial 

autocorrelation in the data set by first computing the residuals from a simple over-

dispersed Poisson log-linear model that incorporates the covariate effects. These results 

showed that the assumption of independence is not valid for these data and that spatio-

temporal autocorrelation should be allowed for when estimating the covariate effects. 

8.2.1.7 Moran’s I statistic for under-five malaria mortality 

Moran’s I permutation test was applied, given the null hypothesis of no spatial 

autocorrelation and an alternative hypothesis of positive spatial autocorrelation. The 

Moran’s I statistic gave -0·09 (p.value = 0·86), indicating the lack of evidence of 

unexplained negative autocorrelation in the residuals of the <5 age-group malaria 

(1) 
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mortality data. We, therefore, fail to reject the null hypothesis that there is no spatial 

autocorrelation in the values of death among <5 between January and March (first 

quarter) for this sample. Uncertainty could, therefore, be assumed in this data having 

spatio-temporal autocorrelation or independence and thence should allow for it during 

estimations in covariate effects. The results show varying levels of effect on <5 mortality 

risk by all covariates. However, none of these effects was significant at 95% CI.  

8.2.1.8 The capture of spatio-temporal random effects 

The model accommodates spatio-temporal autocorrelation into the response variable Y 

through latent random effects, through CAR-type prior distributions and spatio-temporal 

extensions. The symmetric nonnegative K × K neighbourhood controls the spatial units 

through the adjacency matrix W= (wkj), where Wkj characterises the closeness between a 

pair of spatial units (Sk, Sj). The weighted matrix creates higher values for area units with 

spatial adjacency, but low or 0 values for areas spatially apart.  

The matrix W creates a binary, (wkj = 1 if spatial units (Sk, Sj) share a common 

boundary/edge and wkj = 0 if not. However, this binary specification of W has to fulfil 

three conditions, namely; symmetry, non-negativity, and row sums greater than zero. This 

model treats spatially proximate areal units as spatially autocorrelated while those 

spatially apart (not sharing a boundary [wkj=0]) as conditionally independent (see (Lee et 

al., 2018) for more details). This model also captures the remaining autocorrelation in the 

data after accounting for the effects of known covariates. Spatial autocorrelation tests 

involved computing the residuals from simple over-dispersed Poisson log-linear models 

first. This model also incorporated covariate effects. 

8.2.1.9 Scenario modelling of interventions vs Climate Change 

The predicted infection values against observed malaria due to effects from intervention 

shows that the effect on malaria was not consistent over the study period. The study did 

not examine model performance on individual districts to highlight which districts had 

better intervention or climatic models. However, results from the reported effects of 

diurnal temperature range could be extrapolated through groups of districts with 

increasing malaria vs those with declining malaria trends.  

The conditional multivariate model has a first-order spatially correlated precision matrix. 

This model was utilised to estimate the evolution of the spatial response surface of malaria 

from 2000 to 2015. The model specification is given below: 

(1) 
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𝜓 =  𝜙௞௧, 

𝜙௧|𝜙௧ିଵ ∼ 𝑁(𝜌𝑇𝜙௧ିଵ, 𝒯
ଶ𝑸(𝑾, 𝜌𝑠)ିଵ)  t = 2,…,N, 

𝜙ଵ  ∼ N(𝐎, 𝒯ଶ𝑸(𝑾, 𝜌𝑠)ିଵ) 

𝒯ଶ  ∼ Inverse − Gamma(𝑎, 𝑏), 

𝜌𝑠, 𝜌𝒯 ∼ Uniform(0,1). 

The model 𝜙t = (𝜙1t,…, 𝜙𝛫t) represents a vector of random effects for period t, which 

progresses over time through an autoregressive multivariate process alongside the 

temporal autoregressive parameter 𝜌𝑇 . The temporal autocorrelation, therefore, is 

induced through the mean ρT𝜙t−1, and the spatial autocorrelation by the 

variance𝑸(𝑾, 𝜌𝑠)ିଵ) respectively. Equation 2 gives the statistical form of this matrix: 

(𝑾, 𝜌𝑠) =  𝜌𝑠[diag(𝑾𝟏) −  𝑾] + (𝟏 −  𝜌𝑠)𝐈     (2) 

In equation Two, 1 represents the K × 1 vector of 1’s from the binary and the K × K 

identity matrix is denoted by I. While random effects are zero-mean centred, specific flat 

priors (ρs,ρT) and conjugate priors (𝒯ଶ)  are given and default values (a = 1, b = 0·01) 

for the latter (Lee et al., 2018). 

Given that the dataset malaria counts Y(t) were collected at discrete 

times t∈{1,...,n}t∈{1,...,n} by Equation 3: 

Y(t)=μ+X(t)+ε(t)      (3) 

Where μ  = mean value parameter, X(t)X(t) = stationary AR(1) process, with 

covariance cov(X(s),X(t))=σ2exp(−θ|t−s|)cov(X(s),X(t))=σ2exp(−θ|t−s|), and ε(t) is the 

iid. N(0,𝜎଴
ଶ) measurement error. 

Model results were compared using the Watanabe–Akaike information criterion (WAIC) 

(Watanabe, 2013), the  Deviance information criterion (DIC) and the log-likelihood 

(Gelman, Hwang, & Vehtari, 2014) for evaluating the predictive accuracy of the fitted 

models. Based on the DIC and log-likelihood, it was observed that the model fitted using 

climatic/environmental variables alone provided better fit models in both <5 and ≥5 age 

groups as confirmed by Figure S5 showing higher model prediction error in later years. 

Concisely, environmental variables were better predictors of malaria infections than 

interventions variables. The figures also showed that there was better prediction accuracy 

of the fitted models in the early years than in the later period, especially in the 

interventions models. In all three sets of models by age group (<5, ≥5 and all ages), 



 

234 

 

 

environmental variables proved to have a more substantial influence. They provided 

better model fitting estimations, as shown in the Tables S3 and Figure S5.  

Below are summaries of the results of six models (three for <5 and ≥5 age groups) using 

interventions variables, climatic variables and all variables combined. 

 
< 5 age group with interventions only 
             Median    2·5%   97·5% n.sample % accept n.effective Geweke.diag 
(Intercept) -1·4111 -1·4116 -1·4104    1e+05     45·1       224·1        14·7 
Pop_density -0·0003 -0·0003 -0·0003    1e+05     45·1      2836·1        -0·2 
IRS          0·0000  0·0000  0·0000    1e+05     45·1         0·0        -Inf 
LLIN         0·0000  0·0000  0·0000    1e+05     45·1         0·0         Inf 
tau2         0·3365  0·3138  0·3614    1e+05    100·0     39503·1       -20·8 
rho.S        0·1176  0·0924  0·1454    1e+05     43·9     55120·1        -4·8 
rho.T        0·3108  0·2832  0·3381    1e+05    100·0     90238·2        10·5 
 

< 5 age group with climatic variables only 
             Median    2·5%   97·5% n.sample % accept n.effective Geweke.diag 
(Intercept) -1·7652 -1·7821 -1·7509    1e+05     45·2        49·7        -0·7 
Elevation   -0·0014 -0·0014 -0·0014    1e+05     45·2        40·3        15·0 
meanrain     0·4966  0·4956  0·4978    1e+05     45·2       112·4        16·2 
maxrain     -0·0009 -0·0009 -0·0008    1e+05     45·2        33·7        -2·2 
mintemp      0·0179  0·0177  0·0184    1e+05     45.2        39.8        18.2 
maxtemp     -0.0273 -0.0276 -0.0269    1e+05     45.2        40.8        -6.0 
NDVI         1.9156  1.9087  1.9237    1e+05     45.2        82.4        -1.6 
tau2         0.5020  0.4686  0.5388    1e+05    100.0     45240.3         8.1 
rho.S        0.0738  0.0525  0.0973    1e+05     43.8     36885.9         8·8 
rho.T        0·5449  0·5207  0·5692    1e+05    100·0     89720·3        -5·2 

 
< 5 age group with all variables combined 
             Median    2·5%   97·5% n.sample % accept n.effective Geweke.diag 
(Intercept) -2·2169 -2·2261 -2·1995    1e+05     45·2       182·9        17·4 
Elevation   -0·0007 -0·0008 -0·0007    1e+05     45·2       238·0        20·6 
Pop_density -0·0001 -0·0001 -0·0001    1e+05     45·2       387·3       -32·7 
IRS          0·0000  0·0000  0·0000    1e+05     45·2         0·0         Inf 
LLIN         0·0000  0·0000  0·0000    1e+05     45·2         0·0         Inf 
meanrain     0·3383  0·3375  0·3392    1e+05     45·2      4542·5        -5·7 
maxrain     -0·0015 -0·0015 -0·0015    1e+05     45·2       324·7       -29·0 
mintemp      0·0152  0·0150  0·0155    1e+05     45·2       251·2        67·5 
maxtemp     -0·0133 -0·0138 -0·0131    1e+05     45·2       112·0       -28·5 
NDVI         1·7100  1·6984  1·7156    1e+05     45·2       122·9       -57·5 
tau2         0·3690  0·3439  0·3962    1e+05    100·0     53471·3        -8·2 
rho.S        0·1036  0·0794  0·1303    1e+05     43·8     36404·1         6·8 
rho.T        0·4184  0·3920  0·4450    1e+05    100·0     53319·4         5·3 
 

≥5 age group with interventions only 
             Median    2·5%   97·5% n.sample % accept n.effective Geweke·diag 
(Intercept) -2·8864 -2·8871 -2·8841    1e+05     45·2        24·1         3·4 
Pop_density -0·0004 -0·0004 -0·0004    1e+05     45·2       102·2        -8·2 
IRS          0·0000  0·0000  0·0000    1e+05     45·2         0·0        -Inf 
LLIN         0·0000  0·0000  0·0000    1e+05     45·2         0·0        -Inf 
tau2         0·3135  0·2925  0·3365    1e+05    100·0     62793·9        -4·0 
rho.S        0·1184  0·0933  0·1462    1e+05     43·8     56038·1         2·2 
rho.T        0·3831  0·3548  0·4098    1e+05    100·0      3347·3        -4·2 
 

≥5 age group with climatic variables only 
             Median    2·5%   97·5% n.sample % accept n·effective Geweke.diag 
(Intercept) -4·0102 -4·0232 -3·9813    1e+05     45·2        11·7         0·9 
Elevation   -0·0009 -0·0009 -0·0009    1e+05     45·2        13·7        -3·4 
meanrain     0·1904  0·1878  0·1921    1e+05     45·2        10·5         4·4 
maxrain      0·0063  0·0062  0·0063    1e+05     45·2        23·4        12·2 
mintemp     -0·0146 -0·0152 -0·0144    1e+05     45·2        23·3       -21·9 
maxtemp     -0·0090 -0·0095 -0·0086    1e+05     45·2        21·5         4·1 
NDVI         2·8545  2·8410  2·8677    1e+05     45·2        11·9        -3·7 
tau2         0·3970  0·3716  0·4252    1e+05    100·0     56828·2         1·3 
rho.S        0·0356  0·0185  0·0549    1e+05     43·8     50427·5         2·0 
rho.T        0·4627  0·4374  0·4880    1e+05    100·0     56501·8       -11·3 
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≥5 age group with all variables combined 
             Median    2·5%   97·5% n.sample % accept n.effective Geweke.diag 
(Intercept) -3·4558 -3·4645 -3·4460    1e+05     45·1      1253·9         1·3 
Elevation   -0·0003 -0·0003 -0·0003    1e+05     45·1       719·7       -39·2 
Pop_density -0·0003 -0·0003 -0·0003    1e+05     45·1      4416·8        18·9 
IRS          0·0000  0·0000  0·0000    1e+05     45·1         0·0        -Inf 
LLIN         0·0000  0·0000  0·0000    1e+05     45·1         0·0         Inf 
meanrain     0·0729  0·0720  0·0738    1e+05     45·1       981·5        -4·4 
maxrain      0·0020  0·0020  0·0020    1e+05     45·1       164·6       -27·1 
mintemp      0·0009  0·0006  0·0011    1e+05     45·1       296·3       -11·6 
maxtemp     -0·0201 -0·0203 -0·0199    1e+05     45·1       679·4         6·2 
NDVI         2·1567  2·1506  2·1637    1e+05     45·1       478·5        11·6 
tau2         0·3324  0·3108  0·3561    1e+05    100·0     58260·2       -11·9 
rho.S        0·0442  0·0262  0·0644    1e+05     43·8     54931·1         0·6 
rho.T        0·4095  0·3833  0·4356    1e+05    100·0     83463·1         8·2 
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APPENDIX D: APPENDICES FOR CHAPTER SIX 

8.3 Supplementary figures for chapter six 

Figure 8.S1: Mean temporal incidence rates 

Figure 8.S2: Outliers within both hotspots and cold spot areas 
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The table also shows estimates within 95% credible intervals of significance. The tau2 
and rho are estimators of variance parameters and spatio-temporal dependence or 
autocorrelation in the model, and all results here are significant statistically significant. 
The Table trend results are expressed as lambda.LD for [(λ) Linear decline (LD)], 
lambda.Constant and lambda.LI for [(λ) Linear Increase (LI)], respectively 

 

  

Table 8.S3: A summary of the estimated trends of malaria 

Figure S 8.3: District-level malaria trends between 2000 and 2015 
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   Supplementary Methods for Chapter Six 

8.3.1.1 Health facility spatio-temporal models 

In this study, 76 health facilities from a total of 1819 were excluded due to the lack of 

population data. Of the Health Facilities excluded eight only had malaria data for 2009-

2015, while an additional 10 had data for 2014 and 2015, while the remaining 58 had data 

for 2015 only. Malaria cases reported at these 76 health facilities accounted for 0.8% of 

the total reported malaria cases available for analysis between 2009 and 2015.  

The data was then divided into two sets, with a separation between 1743 low-level health 

facilities and 100 higher-level hospitals. The study grouped health posts, health centres, 

and clinics, together with all private health facilities into the first group for analysis as 

these are the sites where most of the malaria outpatient department (OPD) screening and 

treatment happens. The other set was comprised of only public level 3 and referral 

hospitals where the most severe cases are treated, often as in-patient admissions. This 

separation helped the study avoid double counts of malaria cases referred to hospitals 

from lower-level health facilities. All private hospitals were included in the first group 

because they also provide the services offered by lower-level public health facilities. 

8.3.1.2 The implication of the changing number of health facilities 

Due to the periodic construction of new health facilities and upgrading some lower 

facilities to higher-level functions, the number of health facilities with at least one case 

reported in the HMIS increased by about 600 between 2012 and 2016 (Presidential 

Malaria Initiative, 2019). While the increase in newly constructed health facilities 

captured in the reporting system could be misinterpreted as the natural explanation for 

why there may be increases in recorded malaria cases, in reality, it has little to do with 

increasing malaria as these new facilities simply enhance access to and improve the 

quality of health services. This is especially true for urban areas where more people seek 

health facility services than the initial planned facility capacity or in some rural areas 

where some villages are far away from the available rural health facilities. Hence, the new 

health facilities may have affected the specific periodic number of cases usually reported 

at health facilities around it by sharing both the catchment area, the population, and the 

disease burden. Consequently, this would not automatically increase malaria cases 

reported by significant numbers. 
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Nonetheless, most of these new centres still take a long time to gain the trust of people 

around them and initially most still opt for the facilities they have experience of even if it 

is further away (Nguyen et al., 2020). This is often observed in people’s frequent 

preference for hospitals over health facilities even though the health centre nearer to their 

location is adequately equipped to handle the same disease. While the changing number 

of health facilities improves the quality of health services offered, it often does not affect 

the actual long-term district or health facility trend reporting. However, it may 

temporarily affect a time point-specific record(s) at the surrounding health facilities. 

8.3.1.3 Model description of spatiotemporal models using Integrated Nested Laplace 

Approximations  

The study area (Zambia) was divided into Health Facility (HF) catchment areas labelled 

𝑖 =  1, … , 𝑛. 𝑂௜ denotes the observed number of cases, while the total population at risk 

of malaria is Ni. The number of malaria cases per 1000 population (inhabitants) is then 

defined as malaria incidence, i.e. 

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒௜ =
ை೔

ே೔
 𝑋 1000 for 𝑖 = 1, … , 𝑛  

Meanwhile, malaria risk estimation used indirect standardisation of the number of 

expected cases per HF catchment area 𝑖 and time 𝑡. The equation representing this is as 

follows: 

𝑒௜௧ = ∑ 𝑁௜௧ 
௃
௜ୀଵ

ை೔

ே೔
 for 𝑖 =  1, … , 𝑛;   𝑡 = 1, … , 𝑇,  

where 𝑂௜ =  ∑  ௡
௜ୀଵ ∑ ,்

௧ୀଵ 𝑂௜௧௝  and 𝑁௝ =  ∑  ௡
௜ୀଵ  ∑  𝑁௜௧௝  ்

௧ୀଵ are the number of cases and 

population at risk in the group 𝑗, respectively. The relative incidence rate estimation for 

each HF catchment area 𝑖 was modelled by the equation: 

𝑂௜|𝑟௜ ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇௜ = 𝑁௜𝑟௜)    for   𝑖 = 1, … , 𝑛, 

log 𝜇௜ = log  N௜ + log 𝑟௜, 

The prior spatial distribution implemented through the BYM2 model to fit the spatio-

temporal model, with a random temporal effect ∅ = (  ∅ଵ,…,∅்)  denotes 

 ∅ ~ 𝑁(  𝑂,   𝑇∅
ିଵI்)  
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where 𝑇∅ is the precision parameter, I் is the identity matrix with a dimension 𝑇 𝑥 𝑇, and 

the model is implemented with a temporal structured random walk of 2nd order (RW2) 

while assuming the prior distribution to be: 

 𝜸 ~ 𝑁(  𝑂,[  𝑇𝜸 𝑅௧]  ି) 

where, Tஓ  is the precision parameter, R௧ is the structure matrix of RW2 (  𝑇 𝑥 𝑇), and 

 𝜸 ~ 𝑁(  𝑂,[  𝑇𝜹 𝑅ஔ]  ି) 

where, 𝑇𝜹  is the precision parameter, while Rஔ represents the corresponding spatial and 

temporal structure matrix of 𝑛𝑇 x 𝑛𝑇 for the full interaction.  

Finally, the model was fitted with an intercept (𝜂∗), temporal(γ௧
∗), spatial (𝜉௜

∗) and spatio-

temporal patterns (δ௜௧
∗ ) to represent the posterior patterns where: 

𝜂∗ =
ଵ

௡்
 ∑   ௡

௜ୀଵ ෌ log 𝑟௜௧,
்

௧ୀଵ
  

γ௧
∗ =  

ଵ

௡
 ∑ log 𝑟௜௧ − 𝜂∗,௡

௜ୀଵ   Temporal model             

𝜉௜
∗ =  

ଵ

்
 ∑ log 𝑟௜௧ − 𝜂∗,்

௧ୀଵ   Spatial model 

δ௜௧
∗ =  log 𝑟௜௧ − 𝜉௜

∗ − γ௧
∗ −   𝜂∗. Space-time model 

The posterior exceedance probability distribution 𝑃(𝑟௜௧  >  𝑟଴|𝑂) , where 𝑟଴  is the 

threshold mean rate value for the whole study area (𝑒𝑥𝑝 (  𝜂))  is considered when 

smoothing rates. 

To validate these, the decomposition of estimated log risks is equal to the sum of the 

patterns log 𝑟௜௧ = 𝜂∗ + 𝜉௜
∗ + γ௧

∗ + δ௜௧
∗ , and is decomposable to the total variability of 

complete log risks accounting for the sum total of the spatial, temporal, and spatio-

temporal variation. These are denoted by: 

∑  ௡
௜ୀଵ ෌ (

்

௧ୀଵ
 log 𝑟௜௧ −  log 𝑟௜௧)ଶ  =

ଵ

௡
 ෌ (𝜉௜

∗)ଶ + 
௡

௜ୀଵ

ଵ

்
 ෌ (γ௧

∗)ଶ +
்

௧ୀଵ

 
ଵ

௡்
 ∑   ௡

௜ୀଵ ෌ (δ௜௧
∗ )ଶ்

௧ୀଵ
  

The BYM2 model implemented here in the analysis has its spatial random effect 

parameter presented as  𝝃 =
ଵ

ඥ்഍
 (  ඥ𝜆క𝑢∗ + ඥ1 − 𝜆𝝃 ௏ ) 

Here, 𝑢∗  is the scaled intrinsic Conditional Autoregressive (CAR) model where the 

generalised variance is equal to 1. At the same time, v is the unstructured random effect. 
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The expression of a weighted average covariance of matrices to the structured and 

unstructured spatial components comprises the variance of the overall random effect. A 

uniform distribution is supplied to the smoothing parameter 𝜆క (spatial) as the model was 

fitted to the BYM2 model for a spatial random effect, and the values ( 𝑈, α) = (  0.5, 0.5)  

are assigned to the probability 𝑃൫𝜆క  >  𝑈)   =  α൯  (Adin, Martínez-Beneito, Botella-

Rocamora, Goicoa, & Ugarte, 2017). 

8.3.1.4 Bayesian Trends Model in Markov Chain Monte Carlo 

The study also implemented a Bayesian trends Poisson mixed model in a Markov Chain 

Monte Carlo (MCMC) environment. The burnin was 10 000; a sample was 110000, and 

4 parallel chains, with a thinning of the degree of 10. Gelman’s trace plots and visual 

diagnostics were applied to determine the convergence of the models (Gelman et al., 

2004; Hamra et al., 2013). The model structure and equation of the temporal model is 

denoted by: 

𝑌௞௧~ 𝑝(𝑌௞௧|𝜇௞௧), where 𝐾 = 1, … , 𝐾, 𝑡 = 1, … , 𝑁,  

𝑔(𝜇௞௧) = 𝑂௞௧ + 𝑋்
௞௧𝛽 + 𝜙 ෍ 𝜔௞௦

௦

௦ୀଵ

𝑓௦(𝑡|𝛾) 

Where malaria trends fs(t|γS) estimated in the study were represented by (a) Constant 

trend - β1; (b) Linear increasing trend - β1 + γ1t, with γ1 > 0; and (c) Linear decreasing 

trend - β1 + γ2t, with γ2 < 0. A more detailed description of this model is given elsewhere 

in (Lee et al., 2018; Napier et al., 2018). 

Finally, Bayesian Empirical Kriging in order to create a smoothed malaria risk surface 

was also applied using ArcGIS 10.6. 

8.3.1.5 Supplementary Results 

8.3.1.5.1 Low Spatial (intra-district) district –level and temporal (annual) trend 

variation 

Figure 6.S4 shows the mean spatial variation at the Heath facility level, while Figure 6.S3 

shows the variation at the district level. When the study considers increasing trend =3, no 

change = 2, and decreasing trend  = 1, it was observed that 18% (13/72) of the districts 

had at least one health facility catchment with a higher trend in malaria incident rates such 

as increase instead of no change or no change instead of decline. Similarly, 37.5% (27/72) 
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of the districts had at least one health facility with a malaria incident rate lower than that 

of the district, such as decline instead of no change or no change instead of increase. Only 

a few districts had a substantial mix of health facility level poll opposite trends to the 

overall district trend or specific difference between the two absolute trends (decrease as 

opposed increase, or vice versa) high but the vice versa was slightly higher (See Figure 

S5). A positive difference of significant trend variation (e.g. 0.71 – 1 [red]) means that 

the trend variation was from a lower trend to a higher one (e.g. decreasing to no-change 

or no change to increasing or decreasing to increasing.), while a negative (blue) represent 

the opposite. 

Further confirmation of the similarity between results from district level vs facility-level 

scales was done across several other tests of association. All of which had similarly high 

association scores. The range of coefficients of association across several tests was from 

0.51 (Cohen’s kappa) to 0.86 (Goodman and Kruskal Gamma) (see Table 6.S2 for a 

summary). The Bartlett test comparing variances, gave an observed χ2 =1.292,  critical 

value = 3.84, and a computed p-value =0.256, showing no significant difference. This 

further indicated that there is inadequate evidence to suggest that the variances between 

the two trends were significantly different (see Figure 6.S6). 

The mean posterior exceedance probabilities of health facilities in northern areas are 

higher (Figure 6.S6) than those in the southern region. The same is true with posterior 

median estimates (Figure 6.S7) which show a similar spatial transitional pattern generally 

higher in the northern compared to the southern areas. The overall model in INLA, with 

type II interaction, had a marginal log-Likelihood of -103348.76. The linear predictor and 

fitted posterior marginal decomposition of the total amount of variability from log rates 

was 68.05% 3.32%, and 28.63% for Spatial, Temporal, and Space-time, respectively. 

This model confirms that there is little temporal variance, while the bulk of the variance 

could be explained by the spatial and the spatio-temporal components. The details of the 

posterior marginal distributions using precision and variance scales are given in Tables 

6.S5 and 6.S6. As discussed in the main paper, the temporal trends presented through 

posterior median estimates of malaria incidence show a shift southwards, evidently 

shrinking the areas of generally low malaria (see Figure 6.S8). 

Figures 6.S9 shows the Empirical Bayesian smoothed spatial prediction hotspots of 

malaria incidence risk and the location of border control points and border posts. With 

the exception of two border posts around eastern Zambia and Mozambique, where 
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potential cross border malaria risk may be sustained by cross-border human movement, 

malaria risk between countries can be linked to cross-border environmental conditions. 

However, further investigation of cross border malaria around Zambia’s borders may 

need to be conducted in order to ascertain and characterise the true malaria dynamics 

around these areas. Finally, Figure S8 shows the model associated prediction error, 

generally higher around the central to south where borders are mostly shared with 

Zimbabwe, and there is a lack of available data. Generally, most areas predicted with 

significantly low or high malaria risk had low prediction error. Areas showing higher 

prediction errors might be due to the sparsity of health facilities, which made it harder to 

predict in these areas. 
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8.3.1.5.2 Figures and Tables only referred in supplementary methods and results 

(These partly helped in the overall analysis and interpretation of results) 

Figure 6.S4: Health Facility malaria trends  

Figure 6.S3: District-level malaria trends 
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 mean sd 2.5% 50% 97.5% 

Intercept -4.6 0.061 -4.7 -4.6 -4.5 

Spatial variance component 3.1 0.11 2.9 3.1 3.4 

Spatial smoothing parameter 0.37 0.029 0.32 0.36 0.43 

Temporal variance component 0.11 0.075 0.023 0.088 0.3 

Temporal (non-structured) variance component 0.21 0.089 0.0058 0.23 0.28 

Spatio-temporal variance component 2.1 0.021 2 2.1 2.1 

Table 6.S3: Summary statistics for the variance Scale (mean, standard deviation and quantiles) 
  

Table 6.S2: High correlation between District and Health facility trends 

Figure 6.S5: Heat map of trend differences significance between district and HF 
models 
The Fig. shows the districts that had significant differences in trends between 
district vs health facility level models. It shows which districts what proportion of 
health facilities with a different trend compared to the trend in the district model; 
whether decreasing (blue) vs increasing (red) malaria trend models at HF vs 
district trends  
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mean sd 2.5% 50% 97.5% 

Intercept -4.6 0.061 -4.7 -4.6 -4.5 

Spatial precision parameter 0.32 0.011 0.3 0.32 0.34 

Spatial smoothing parameter 0.37 0.029 0.32 0.36 0.43 

Temporal precision parameter 14 11 3.3 11 44 

Temporal (non-structured) precision parameter 5.4e+02 4.3e+03 3 76 3.6e+03 

Spatio-temporal precision parameter 0.48 0.005 0.47 0.48 0.49 

Table 6.S4: Summary statistics for the precision Scale (mean, standard deviation and quantiles) 

Figure 6.S6 shows a probability scale from 0 – 1, where 0.9 - 1 means is the highest probability of getting 
malaria and 0-0.1 means low.  
 
 

Figure 6.S7: Malaria incidence posterior median estimates/1000 
 

Figure 6.S6: Malaria incidence posterior exceedance probabilities 
 

Figure 6.S8:  Posterior median estimates of malaria incidence per 1000 population 
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Figure 6.S10: Empirical Bayesian Kriging standard prediction errors 
 

Figure 6.S9: Empirical Bayesian Kriging of malaria risk – Border effect 
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