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Abstract  

This paper investigates flame ejected from opening at different elevations on the facade wall of a 

fire compartment. Two reduced-scale experimental models are employed consisting of a cubic fire 

compartment with one opening and a vertical facade wall. Experiments are conducted by varying the 

height of the opening and at different heat release rates (HRRs). Results show that the distance of the 

flame base from the bottom of the opening gradually decreases with increasing opening elevation. The 

external flame height measured from its base increases firstly, reaches the maximum when the opening 

is located at approximately half height of the fire compartment and subsequently decreases as the 

opening moves up. Moreover, the increasing elevation of the opening contributes to decreasing mean 

critical HRR for flame ejection. The above observations are found to be due to the increased deep 

sinking of the cold inflow while it is mixing and reacting with hot gases, as the vertical elevation of 

the opening increases, as supported by the additional computational fluid dynamics (CFD) simulation 

results. This is an important new observation, because whilst having an opening at elevated locations 

is common in a compartment fire, it has not been accounted for in previous classic models on ejected 

flame behavior from opening of a fire compartment. By identifying the similarities and differences of 

facade flame dynamics as the vertical elevation of the opening varies, a new model is proposed and 

validated for flame height with characteristic length scales to account for the changes in air inflow and 

critical heat release rate for flame ejection with opening elevations. 

Keywords: Compartment fire; opening elevation; temperature; flame base; facade flame height. 
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1. Introduction 

Following research by Yokoi [1] in 1960, numerous studies have addressed the issue of facade 

flames ejected from an opening (such as a window or a door) from room fires in buildings. Much 

attention has been drawn over last ten years [2-10] on several key parameters including gas temperature 

profiles [11-13], facade flame heights [14, 15] as well as heat flux/radiation intensity [11-13, 16, 17]. 

Recently, a non-dimensional model on facade flame height has been established by Lee et al. 

[18], which is based on the physics that the facade flame develops as the result of the unburned (excess) 

fuel ejected through the opening, then further burned outside the opening. Based on the assumption 

that the flow condition inside the compartment is well-mixed and uniform, similarity analysis is 

performed and a classic relation was proposed for the ejected flame height (Zf) [18-20]:  

( )*

5/2 5/2
1 1 1

1500f ex
ex

p p

Z Q Q A H
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= = =   

   
   

            (1) 

( )
2 5

1 A H=                                  (2) 

where the dimensionless excess heat release rate (HRR) 
*

exQ  is defined in terms of the excess HRR 

exQ  (the difference between the total HRR Q  and HRR inside the compartment for under-ventilated 

fires 1500insideQ A H=  kW) and the characteristic length scale representing the opening dimensions 

1  (A and H are the area (m2) and height (m), respectively). In addition, Lee [20] depicts the facade 

flame as a fire standing at the neutral plane of the opening with HRR of exQ  generated by a 

rectangular source having two characteristic length scales 1  (representing the window dimension, 

parallel to facade wall, reflecting physically the opening condition affecting the convection of outflow 

[18, 20]) and 2  (representing the flame horizontal extension outside the opening, normal to facade 

wall, reflecting physically the competition of outflow horizontal momentum to buoyance flux [9, 18, 

20]). 2  is a function as: 
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( ) ( )
1 43 4

1
2

2 1 h H AH= −                            (3), 

in which h1 is the neutral plane level above opening bottom, usually regarded as 0.4 H [e.g., 18-21]. It 

was also verified that the temperature inside the compartment is spatially uniform, determined by the 

HRR inside the compartment and the heat losses to the wall [21]:  

1500 /

0.5 /

T
g

c p T

A H A
T

h C A H A
 =

+
                            (4) 

where gT  is the temperature rise, ch  is convection coefficient (around 0.0183 W/(m2K)), and the 

parameter / TA H A  is the opening factor defined as the ratio of the ventilation factor A H  

(reflecting the maximum heat release rate 1500A H  inside the compartment) to the total exposure 

surface area of fire compartment (exclude the area of the opening) TA  (
26TA L HW= − , reflecting the 

total heat loss through wall c Th A T ). In addition, other studies [22-26] focused on different 

situations and boundary conditions (such as a facing wall [22], eaves [23], side walls [24], ambient 

pressure [25] and merging behavior for double openings [14, 26]). However, in all previous studies, 

the elevation of the opening mainly remained at the center of the fire compartment. In many practical 

situations, the elevation of the opening can vary but this effect has not been well quantified yet. In this 

work, we will investigate systemically the effects of the vertical elevation of the opening on the 

resulting facade flame behavior.  

Experiments are performed and analyzed using two sets of reduced-scale cubic compartments and 

varying opening elevations on the facade wall. The temperature inside the fire compartment, the 

position of the flame base and the external flame height on the facade are measured. The details of the 

experiments are described in the second section, followed by the experimental results, discussions and 

non-dimensional analysis. Finally, the major findings of this work are summarized. 
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2. Experimental setup 

Experiments were conducted in two sets of cubic compartment, Compartment A (1:4) and 

Compartment B (1:2), respectively. Figure 1 illustrates the setup of Compartment A, with a vertical 

facade wall of 5 m (H) × 3 m (W). Compartment A was inner-lined with 5 cm thick ceramic fiberboards 

(mainly consist of SiO2 and Al2O3), with the density, thermal conductivity and specific heat about 280 

kg/m3, 0.13 W/mK and 0.9 kJ/kgK respectively. A square opening (0.25 m × 0.25 m; 0.30 m× 0.30 m) 

was set on the centerline of the facade. A similar configuration was applied for Compartment B, except 

for that the inner-lining material was 7.5 cm thick while the opening of 0.50 m × 0.50 m and 0.60 m× 

0.60 m was employed. These opening sizes are representative of a window of size 1-1.2 m practically 

based on the scaling law. Note that the ventilation factor A H  differs significantly for these opening 

sizes. Different opening elevations were examined: (a) bottom group; (b) lower group; (c) center 

group; (d) upper group and (e) top group as listed in Table 1. Practically, when the opening is located 

at the bottom, it can be regarded as a door, whereas at different elevations it simulates a window or 

vent.  

To eliminating the complex effect of heat feedback from the flame to the condensed fuel burning 

[27, 28], gaseous fuel, LPG (Liquefied Petroleum Gas, heat of combustion = 50400 kJ/kg), is supplied 

with a constant low rate (controlled by a flow meter) into a square porous gas burner flush on the floor 

at the center of the compartment. The total HRR is estimated with a combustion efficiency of 0.9 [18]. 

Four K-type thermocouples of 0.5 mm (uncertainty ±1℃) are installed inside Compartment A at the 

inner- and outer corners (5 cm to side walls, and 0.2 m, 0.4 m below ceiling). The experiments are 

ensured to reach steady state (although with small time-fluctuation) as indicated by temperature 

history (Fig.1). The flame base position at the opening and the flame height are recorded by a CCD 
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camera (25 fps) at the steady state and acquired through OTSU method [29] (uncertainty ±1 pixel ≈ ± 

0.5% of flame height). The experiments are carried out 3 times to ensure the repeatability.  

 

Fig. 1 Experimental setup  

 

Table1. Summary of experimental scenarios 

A 
Opening size  Opening center 

elevation Hoc/m 
Total heat release rate/kW 

H/m W/m 

Top 
0.25 0.25 0.575 129 137 146 155 164 

0.3 0.3 0.55 146 155 164 173 182 

Upper 
0.25 0.25 0.465 129 137 146 155 164 

0.3 0.3 0.46 146 155 164 173 182 

Center 
0.25 0.25 0.35 129 137 146 155 164 

0.3 0.3 0.35 146 155 164 173 182 

Lower 
0.25 0.25 0.245 129 137 146 155 164 

0.3 0.3 0.23 146 155 164 173 182 

Bottom 
0.25 0.25 0.125 129 137 146 155 164 

0.3 0.3 0.15 146 155 164 173 182 

B 
Opening size  Opening center 

elevation Hoc/m 
Total heat release rate/kW 

H/m W/m 

Top 
0.5 0.5 1.10 332 384 409 435 460 476 491 506 522 555 

0.6 0.6 1.05 432 458 488 514 529 547 563 / / / 

Upper 
0.5 0.5 0.89 384 409 435 460 476 491 506 522 563 / 

0.6 0.6 0.86 432 460 476 499 511 527 565 / / / 

Center 
0.5 0.5 0.675 384 409 435 460 476 491 506 522 / / 

0.6 0.6 0.675 450 476 491 509 524 540 557 / / / 

Lower 
0.5 0.5 0.46 384 409 435 450 465 481 496 617 / / 

0.6 0.6 0.49 532 547 568 580 596 660 / / / / 
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3. Experimental results and analysis  

3.1 . Experimental results 

Figure 2 shows that the average temperature inside the compartment for Compartment A, 

indicating a considerable increase and then decrease as the opening moves up on the compartment 

wall. The experimental values are similar to the predictions by Eq. (4) shown also for reference on the 

right-axis of this figure.  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
400

450

500

550

600

650

700

750

800
 


T

/K

Relative opening center position (H
OC

/L)

 25× 25

0.8

0.9

1.0

1.1

1.2

1.3

1.4

 

      

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
600

650

700

750

800

850

900

950

1000
 


T

/K

Relative opening center height position (H
OC

/L)

 30× 30

0.8

0.9

1.0

1.1

1.2

 

 

(a) 25 cm × 25 cm                        (b) 30 cm × 30 cm 

Fig. 2 Gas temperature rise inside the fire compartment for different opening elevations 

Figure 3 plots the facade flame height against the dimensionless height /ocH L   for both 

compartments (L: compartment internal height, i.e. 0.7 m for Compartment A and 1.35 m for 

Compartment B). The mean flame heights were obtained [29] at 50% intermittency [30-32] of the 

luminance intensity recorded by the CCD camera. The facade flame height also increases initially and 

then decreases as the opening moves up. The flame height is highest when the opening is located at 

approximately half height of the fire compartment.  
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Fig. 3 Facade flame heights from the flame base level show to first increase then decrease with 

rising of the opening elevation.  

 

Fig. 4 An illustration of the flow pattern for different elevations of opening on the facade 

simulated by FDS (Compartment A) 
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turbulence simulation, infinitely fast reaction in combustion and Gray gas radiation with finite volume 

solution in radiation models) was performed (Fig. 4) showing the complex flow field at the opening 

and that inside the compartment, which helps interpreting the physical mechanism. It is seen that the 

above change in flame height is shown to be due to the different sinking down behavior of hot gases 

or cold fresh air inside the compartment with opening of different elevations (opening at top, center 

and bottom positions for comparison). We can see that the temperature is not uniform, especially at the 

vicinity of the opening as a result of the mixing of inflow fresh air with hot gases inside the 

compartment near the opening. This attributes to a major difference observed in the flow structures. 

For the bottom group, the hot gases (a mixture of fresh air and fuel) firstly go up and then sink deeper 

to be ejected from the opening compared with that of the center group. In comparison, when the 

opening is at a higher location, the fresh air firstly sinks deeper to reach the burner surface, and then 

the hot gases exit relatively more easily at the top of the opening. Meanwhile, the horizontal 

momentum of outflow seems to be stronger, which is evidenced by relatively larger horizontal 

projection of the outflow as the opening moves up. This indicates that the characteristic length scale 

2  could change as a result of the different opening elevations and hence flow patterns. Note that 2  

is a characteristic length scale representing the competition of horizontal momentum to the upward 

buoyancy flux of the outflow at the opening. The change in the characteristic length scale 2  will be 

experimentally represented by acquiring the flame base positions in the following section.  

The height of flame base measured above the opening bottom is shown in Fig. 5. The location of 

flame base at the opening could be interpreted as the neutral plane where there is no pressure difference, 

i.e. Z0 ~ h1. It appears nearly constant for various HRRs and at a given opening elevation (i.e. bottom, 

lower, center, higher and top). The flame base location normalized by the opening height is plotted in 
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Fig. 6 against the location of the opening normalized by the internal height of the compartment, which 

shows a good linear correlation. When the opening moves up, this flame base lowers down. This is 

due to, as shown in Fig. 4, the mixing of the cold inflow air (with a downward “sinking” effect) owing 

to its relatively higher density with the hot gases near the opening after it enters the compartment.  
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Fig. 5 Flame base location above the opening bottom does not change with the HRR but it 

changes with the elevation of the opening 
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Fig. 6 Normalized flame base location for different opening elevation showing it decreases 

linearly with increasing of opening elevation 

The above variations in temperature, flow structure and the flame base (or neutral plane level) 

indicate that the critical HRR for flame ejection, which was considered to be constant as 

1500insideQ A H=  kW, may have changed with the change of opening elevation. Considering the 

intermittent flame ejection nature, a mean HRR int ,ermittent meanQ  where the flame ejection probability is 

50% was defined and for the present experiments ( ( )int , , , 2ermittent mean critical low critical highQ Q Q + , [30]). 
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Figure 7 presents int ,ermittent meanQ  normalized by 1500A H
 
against the elevation of the opening 

center (height from the bottom of the compartment) divided by the height of the compartment. The 

results show that the normalized critical HRR also decreases as the opening moves up, which should 

be attributed to the fact of less fresh air flowing in (flame base drops down) hence more unburnt fuel 

ejecting out as discussed above.  
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Fig. 7 The mean (i.e. 50% probability) HRR for flame ejection normalized by HRR inside the 

compartment at different opening elevations 

3.2  A new model for flame height with both characteristic length scales ( 1 , 2 ) to 

account for different opening elevations 

The above results suggest that the variation of the flame height for different opening elevation 

should be related to the change of physical mechanism behind the flame ejection behavior (including 

the variations of the flame base and the mean intermittent HRR, as a result of the change of the inflow 

and outflow conditions). For a lower opening elevation case, the flame base from the opening bottom 

is higher indicating more air incoming through the opening, and it is easier to reach the fire source; so 

the excess fuel would be relative less resulting in a relative lower flame height. When the opening 

moves up, the neutral plane level (distance from opening bottom to flame base) decreases which 

reduces the air incoming area; and as a result the inflow rate of the fresh air decreases resulting in a 
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decrease of the int ,ermittent meanQ , implying that the flame is ejected more frequently or “more easily”. 

The inflow fresh air has to sink down (also the interface of inflow and outflow becomes more tilted 

inside the compartment), counteracting the buoyancy inside the compartment, for a certain vertical 

distance to reach the fire source. That is, the inflow fresh air is relatively more difficult to reach the 

fire source to react with the fuel. All these will result in that more excess fuel is ejected, which could 

lead to a larger flame height. However, on the other hand, we should also notice that the characteristic 

length scale , describing the competition of horizontal momentum and vertical buoyancy flux of 

ejected flames, would be increased when the opening moves up (based on Eq. 3 as the neutral plane 

level decreases, which is also well indicated by the flow pattern shown in Fig. 4), illustrating that the 

horizontal momentum becomes stronger and as a result the flame height is reduced. It is the 

competition of above two competing mechanisms that determines that the flame height firstly increases 

and then decreases as observed in the experiments (Fig. 3).  

According to Delichatsios and Lee’s theory [18, 20], the ejected flame outside the opening can 

be regarded as a rectangular fire source with side dimensions 1  (parallel to facade) by 2  (normal 

to facade) producing a heat release rate of exQ . Therefore the flame height can be expressed as 

follows: 

( ) ( ) 2

1 22ex inside f f fQ Q Q gZ Z Z = −  + +                (5) 

The LHS of Eq. 5 represents the excess HRR, reflecting required fresh air for completing the 

combustion, which should be proportional to the air entrainment (RHS). On the RHS of Eq. 5, the 

fgZ  is the characteristic buoyancy-induced velocity at the flame tip, which represents the air 

entrainment velocity of the flame as it is usually taken as proportional to 
fgZ ; ( )1 22 fZ+  is a 

two-dimensional characteristic flame surface for air entrainment (with the perimeter of the rectangular 

2
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1 22+ ) and 
2

fZ  is a three-dimensional characteristic flame surface for air entrainment. One notes 

that when flame height is relatively small, the RHS of Eq. (5) can be simplified as ~ 
3/2

fZ ; and when 

flame height is relatively larger, the RHS of Eq. (5) can be simplified as ~ 
5/2

fZ . These simplifications 

are consistent with previous observations that 
2/3~f exZ Q  when the excess heat release rate is relatively 

small as the flame behaves similarly to a two-dimensional “wall fire”; meanwhile 
2/5~f exZ Q  when 

the excess heat release rate is relatively large as the flame behaves similarly to a three-dimensional 

“half axisymmetric fire”. As we discussed earlier, int ,ermittent meanQ  changes with opening elevation, and 

thus, the replacement of 1500insideQ A H=  with int ,ermittent meanQ  in Eq. 6 is one more step forward of 

Eq. 5 to include the effect indicated in Fig. 7. Here the length scale  is more important than 1  

because 1  is constant but  is increased when the opening moves up that the flame height 

decreases (see Figs. 5-6, when the opening moves up, the flame base or neutral plane level h1 decreases 

therefore  increases based on Eq. 3). To unify the physical dimensions of both sides, the equation 

is rewritten as: 

( ) ( ) ( ) 2

int , 1 22ermittent mean p f f fQ Q C T g Z Z Z  
 −  + +             (6) 

We note that the constant α should be well chosen to satisfy the proportional relation between both 

sides. Applying α = 2.7, all experimental data are well correlated as shown in Fig. 8 by a linear function 

with the correlation coefficient R2=0.968. Some deviation is noticed for the slopes of Compartment A 

and B. A possible explanation is that the small difference in heat loss through the wall boundary would 

result in the change of the horizontal convective buoyancy strength of the outflow through the opening, 

which in turn affects the flame height. It could be a potential future work to explore the correlation for 

more opening dimensions and compartment scales. 

Eq. (6) can be further rewritten as: 

2

2

2
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( ) ( ) ( ) ( )2

1 2 int ,2 99.31f f f ermittent mean pZ Z Z Q Q C T g  
 + + =  −  =       (7) 

The expression can be transformed into a dimensionless way, as: 

( ) ( ) ( ) ( ) ( ) ( )
2

2 2 2 int ,2 1 99.31f f f ermittent mean pZ n Z n Z Q Q C T g  
 + +  =  −  =
  

 (8) 

where 
2

1

n = .  
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Fig. 8 A new model for flame height to account for the effect of opening elevations 

4. Conclusions 

This paper presents an experimental investigation of the flame ejecting behavior for different 

opening elevations on the facade of a fire compartment. Major findings are: 

(1) Gas temperature inside the compartment show a considerable increase and then decrease as the 

opening elevation moves up (Fig. 2) indicating the heat release rate inside the compartment changes. 

The flow structure changes significantly and temperature is not uniform especially at the region close 

to the opening as the opening moves up. The flame height increases firstly, reaches the maximum when 

the opening is located at approximately half height of the fire compartment, and subsequently 

decreases as the opening moves up. (Fig. 3).  

(2) The normalized flame base height above the opening bottom decreases as the opening moves 

up (Figs. 5 and 6). The variation of the flame base location is caused by mixing of the inflow air during 

(
)

2
2
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1
2

2
f

f
f

Z
Z

Z
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

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+






15 

 

its movement downwards after it enters the compartment owing to its higher density relative to the 

gases in the compartment. The critical heat release rate for intermittent flame ejection (i.e. 50% 

probability) decreases as the opening moves up (Fig. 7). 

(3) A new model for flame height to account for the effect of opening elevation, by taking into 

account physically the changes of the critical heat release rate for flame ejection, the flame base 

location and the horizontal momentum of the out flow at the opening (hence the characteristic length 

), has been established (Fig. 8, Eq. 8). 

This work presents a fundamental observation and understanding on the opening elevation effect 

on flame ejecting behavior through the opening of fire compartment. Regarding the difference in the 

interaction of inflow-outflow through the opening of various elevations, the flow structure and pattern 

is changed. This results in essentially illustrate the variations in flame base location, flame ejection 

behavior and flame height, as a basic understanding for this topic. 
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Figure Captions 

Fig. 1 Experimental setup  

Fig. 2 Gas temperature rise inside the fire compartment for different opening elevations 

Fig. 3 Facade flame heights from the flame base level show to first increase then decrease with rising 

of the opening elevation 

Fig. 4 An illustration of the flow pattern for different elevations of opening on the facade simulated 

by FDS (Compartment A) 

Fig. 5 Flame base distance from the opening bottom does not change with the HRR but it changes with 

the elevation of the opening 

Fig. 6 Normalized flame base distance for different opening elevation showing it decreases linearly 

with increasing of opening elevation 

Fig. 7 The mean (i.e. 50% probability) HRR for flame ejection normalized by HRR inside the 

compartment at different opening elevations  

Fig. 8 A new model for flame height to account for the effect of opening elevations 


