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Title: Monitoring agricultural water budget under semi-arid conditions in southern Iran using 1 
Sentinel-2 to Landsat-8 datasets. 2 

Arnaud Caisermana*, Farshad Amiraslanib, Dominique Dumasa 3 

Highlights: 4 

• We assessed…………… 5 
• Retrieved water use by farmers from PyPySebal was accurate  6 
• Crop areas classification with Sentinel-2 images through NDVI profiles was accurate  7 
• PYSEBAL Land Surface Temperature influences ET variability more than Radiation 8 
• The water balance of Marvdasht plain was negative 9 

Abstract: This paper is a first attempt to compute the total water needs of an agricultural plain 10 
with remote sensing and ground data in Iran. First, the study mapped the cropping areas with 11 
Sentinels-2 images, based on NDVI profiles classification. Locations of 1253 crops were 12 
collected, from which NDVI profiles were extracted and used to classify the other unknown 13 
pixels. This model was validated and 85% of the areas were correctly classified. Second, the 14 
crop water needs were computed using PYSEBAL and Landsat-8 images. The crop 15 
evapotranspiration (ETseason) and net irrigation requirements (NIRseason) were calculated for 16 
every crop type. The key point was to validate PYSEBAL outputs, despite the lack of lysimeter 17 
data. We compared NIRPYSEBAL with 5 NIR from the ground data collected with farmers. 18 
NIRPYSEBAL underestimated the reality with an average of 10% while the overestimation average 19 
was 17%. The comparison of Daily ET from FAO-56 method and Daily ET PYSEBAL showed 20 
a RMSE of 0.67 mm/day and MAE of 0.52 mm/day, which assesses the accuracy of PYSEBAL. 21 
This dataset also showed wide ranges of NIR per crop type, depending on climate conditions, 22 
soil types and practices. ETseason varies according to weather parameters in the plain and 23 
NIRseason, according to different irrigation practices. In PYSEBAL, the most sensitive parameter 24 
for ET variability was Land Surface Temperature. This study targets the most sensitive crops 25 
by defining the pressure of its NIR on the available water, by diving NIR total with the volume 26 
of available precipitations for groundwater recharge. The most water demanding crops were 27 
identified: rice (NIR: 1427 mm) and corn (669). The total water balance of Marvdasht was 28 
negative in 2018 with 0.2859 km3 of extracted groundwater for irrigation for only 0.098 km3 of 29 
available water for aquifers recharge.  30 

Key words: PyPySebal, Crop mapping, Iran, Agriculture, Irrigation, Water needs, Sentinel-2, 31 
Landast-8 32 

1. Introduction  33 

Countries are not equally affected by water shortage issues and they adopt different 34 
approaches for agricultural adaptation to droughts and climate change. Thereby, this study 35 
puts forward the case of Iran in the West of Asia as one of the countries severely affected by 36 
water issues (Faramarzi, 2010; Karimi et al., 2018; Keshavarz et al., 2014; Madani, 2014; Madani 37 
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et al., 2016; Zehtabian et al., 2010). The country is facing a double challenge: (1) an increasing 38 
water needs due to growing population (Motamed, 2017; Neuve-Eglise, 2007; Saatsaz, 2019) 39 
and (2) an increase of drought frequency over the last two decades and future climate change 40 
scenarios (Golian et al., 2015; Keshavarz and Karami, 2013; Tabari et al., 2012; Amiraslani and 41 
Caiserman, 2018). However, Iran has attempted to increase the agricultural productivity with 42 
greater access to water for irrigation to support food security.  43 

The objective of this paper is to identify sensitive crops which require significant amounts of 44 
irrigation in one of the most important agricultural zones of Iran (Hassanshahi et al., 2015; 45 
Moameni, 1999): the plain of Marvdasht in the Fars Province. For this purpose crop 46 
Evapotranspiration (ETseason) and Net Irrigation Requirements (NIRseason) were computed using 47 
remote sensing. In addition, such an analysis of crop water needs enabled us to assess the total 48 
use of groundwater during that year. The Marvdasht Plain is fully in the prism of climate 49 
change as it records a decrease in rainfall of 1.1 mm/decades over the period 1988-2015 (Roshan 50 
and Negahban, 2015) as well as an increase in temperature of 0.05 to 0.99C°/decades since 1975 51 
(Soltani et al., 2016). Droughts have also been frequent over the last forty years, particularly in 52 
1981, 1982, 1983, 1985, 1987, 2003, 2004 2008 and 2011, during which drought severity strongly 53 
affected agricultural production (Ahani et al., 2012; Keshavarz et al., 2014; Keshavarz and 54 
Karami, 2013). These past and future climate changes make it essential to estimate water use 55 
by agriculture, as  support to political decision-making for the decades to come. Monitoring 56 
water consumption of crops appears as a key issue to highlight the crops which might 57 
exacerbate water shortage, in the name of food security. Moreover, the assessment of water 58 
balance and NIR per crop type is the first attempt in this region. Remote sensing is a useful 59 
tool and has already proven its relevancy to monitor agriculture and water issues, especially 60 
under arid and semi-arid conditions (e.g. Caiserman et al., 2019).  61 

The application of remote sensing in agriculture are subdivided as follows (Asgarian et al., 62 
2016): (1) agricultural dynamics and the evolution of crop areas with low resolution images 63 
such as MODIS (250 m), (2) precision agriculture with high resolutions images such as 64 
Quickbird (0.65), Pleiade (0.7 m) or RapidEye images (5 m) for yields estimations, soil 65 
humidity assessment or weed prevention and (3) crop type classification with medium 66 
resolution images such as Landsat-8 (30 m) or Sentinel-2 (10 m). The present paper is 67 
considering the third approach of agriculture through crop mapping and crop water needs 68 
estimation. Numerous studies have already developed methodology to map crop areas with 69 
satelite images (Belgiu and Csillik, 2018; Hao et al., 2018; Heupel et al., 2018; Kenduiywo et al., 70 
2018; Lamb and Brown, 2001; Panigrahy and Sharma, 1997; Song et al., 2017; Waldhoff et al., 71 
2017; Xie et al., 2007; Zhong, 2012). This paper used a new process, recently developed for 72 
another case of study in Lebanon using Sentinel-2 images for its good resolution (10 m) 73 
(Caiserman et al., 2019). This method was divided in three steps: (a) a new way to extract fields 74 
boundaries by stacking monthly high NDVI pixels to highlight the cultivated areas, (b) the 75 
retrieval of crop calendars and (c) the classification of pixels. The novelty of this methodology 76 
was its simplicity and reproducibility. In addition, this crop mapping process was based on 77 
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field works, increasing the reliability of the outputs. Remote sensing has another role for water 78 
needs estimations. Numerous algorithms have already been developed such as SEBI (Menenti 79 
and Choudhury, 1993), SEBS (Su, 2002), S-SEBI (Roerink et al., 2000), METRIC (Allen et al., 80 
2007), TSM (Norman and Becker, 1995), SAMIR (Simonneaux et al., 2009) and PYSEBAL using 81 
Landsat-8 images (Bastiaanssen et al., 1998a, 1998b; Hessel, 2019; Hessel et al., 2017). This 82 
paper selected the latest version of PYSEBAL since it does not require a significant amount of 83 
data and its accuracy has been assessed in many countries between 85% and 95% on 84 
experimental fields (Liou and Kar, 2014). The validation was conducted with lysimeter 85 
measurements in several countries with Root Mean Square Error (RMSE) of 0.7 in Spain, 0,03 86 
in China, 0.14 in Nigeria or 0,6 in Italy (Water Watch, 2019).  87 

The second section of the paper introduces the chosen region in Iran and the requisite data 88 
from to ground to the satelite images to compute the agricultural water budget. In the third 89 
section, the results of crop mapping and PYSEBAL will be explained and interpreted. 90 
Eventually, the fourth section consists in the discussion of the paper, namely the validation of 91 
crop mapping and PYSEBAL through field works and global literature review, and the 92 
perspectives of these models will be shown in the same part.  93 

2. Methods and materials 94 

2.1 Study area: Marvdasht plain 95 

The study area is located in the Fars Province, southern Iran (29°52'34N - 52°48’22E, elevation: 96 
1600 m) and covers 95000 ha (figure 1). The current climate is the Mediterranean characterised 97 
by two contrasted seasons between wet winters and dry and hot summers. According to local 98 
climate stations, Marvdasht annually receives 440 mm in the northern part and 275 mm in the 99 
more arid area in the southern part and 73% of the precipitation occurs in winter (based on 100 
annual average on 1990-2017 period). Thereby, the irrigation is necessary from May until 101 
October and the annual average of potential evapotranspiration reaches 1680 mm (Attarod et 102 
al., 2016). Nevertheless, precipitations are highly variable and numerous droughts occurred in 103 
the recent decades (Ahani et al., 2012; Keshavarz et al., 2014; Keshavarz and Karami, 2013; 104 
Khosravi et al., 2017). 105 
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 106 

Figure 1. Study area: the Marvdahst Plain, Fars Province and its annual average 107 
precipitations from 1990 to 2017 (Sources: IMO, 2018) 108 

2.2 Sentinel-2 and Landsat-8 imagery 109 

This study has required a double dataset of images: monthly Sentinel-2 images for crop 110 
mapping in spring (images from January to June) and summer (July to December) 2018 and 111 
monthly Landsat-8 imagery over the same year for crop water needs according to PYSEBAL 112 
inputs requisites (Figure 2). First, 11 Sentinels-2 images were downloaded (images in February 113 
were too cloudy, therefore we computed the average between January and March NDVI) to 114 
assess the evolution of pixel’s greenness throughout the season. The images were downloaded 115 
using the USGS Data Explorer (USGS, 2019). This evolution enabled to distinguish them 116 
according to crop types collected on the ground. A field survey was conducted across the 117 
Marvdasht plain during the agricultural season (January-August) in 2018. The aim was to 118 
record GPS-based locations of each crop type in spring and summer (Table 3). The crop 119 
calendars were extracted from interviews with 60 farmers and also from NDVI temporal 120 
profiles of sampled crop types (based on Table 1). 121 

 122 

 123 

 124 

Table.1  Sampled crop types and land uses in Marvdasht plain during the field work in 125 
2018 (January-August) 126 

Farshad
Mention in full in the ref list. Correct all cases in the text if any.

Farshad
Where are tables 2 and 3 ? Table 3 and table 2 cannot be mentioned before table 1 anyway
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Spring Alfalfa Canola Orchard Wheat 
Bare 
soil 

Urban       

(534) 20 24 134 244 26 86       

Summer Alfalfa Orchard Corn Rice 
Sugar 
beet 

Tomato Fallow 
Bare 
soil 

Urban 

(719) 20 134 60 174 100 79 40 26 86 
 127 

 128 

Figure.2 Timefarme of Landsat-8 and Sentinel-2 images for assessing crop water needs 129 
and crop mapping in Marvdasht, 2018 130 

On each ‘Day Of Year’ timeframe, hourly ground data from an indicative station – Sad 131 
Doroudzan (X: 30,17, Y: 52,78, Z:1 600) (Figure 3) – were acquired to compute an instantaneous 132 
ET (ETinst), during the time of overpass (11:00 GMT): solar radiation, wind speed, temperature 133 
and relative humidity (Figure 3). Sad Doroudzan station in Marvdasht plain was chosen as the 134 
reference station due to its proximity to fields and daily data recordings. PYSEBAL computes 135 
ET with a Standardized Penman-Monteith equation (Waters et al., 2002). 136 

 137 
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138 

 139 

Figure.3 Daily ground data from Sad Doroudzan station for ETinst estimation in PYSEBAL 140 
model in 2018 141 

2.3. Crop mapping 142 

Before any classification, the cultivated areas needed to be retrieved from satelite images 143 
without manual digitizing. We employed Normalized Difference Vegetation Index on 144 
Sentinel-2 images (NDVI) to delineate fields boundaries. The cultivated areas had a high NDVI 145 
(over 0.3) from March to November. The selection of these areas with the Raster Calculator in 146 
Arcmap (version 10.5.1) on each image, the polygonisation of these green areas and the stack 147 
of the monthly boundaries gave a final map of field boundaries. 148 

From the sampled fields and crop types, the evolution of NDVI temporal profiles was 149 
extracted to differentiate crops calendar. The average of NDVI within the sampled fields were 150 
used to construct crops NDVI profiles (Figure 4). 151 

Then, the crop type of unknown pixels needed to be classified. For this purpose, the NDVI 152 
profiles of all the previously delimited fields were computed and compared to the NDVI 153 
profiles from sampled fields. To conduct this comparison, the Euclidean Distance (ED) was 154 
computed (equation 1). 155 

                                                                   𝐸𝐸𝐸𝐸 =  �∑ (𝑎𝑎 − 𝑏𝑏)2𝑛𝑛
𝑖𝑖=1                                         Equation (1) 156 

Where a is the NDVI average of sampled fields and b, the unknown NDVI profiles to classify. 157 
n, is the number of month from the begining until the end of the season, depending on crop  158 

Farshad
Correct as ‘aboveground’ in the WS figure 
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159 

    160 

         161 

     162 

Figure.4 Sentinel-2 NDVI profiles of crop types and landuses from sampled fields in 163 
Marvdasht plain in 2018 164 
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types. When the ED is close to 0, the unknow NDVI profiles is considered as the crop type 165 
from the NDVI average of sampled fields. According to the results, a value of 0.4 was used as 166 
a threshold to define how close to 0 the ED was. If the ED classification could not find any crop 167 
type, our research classified the pixel as “spring vegetables” since there were numerous fields 168 
of garlic, carrots, onions or other vegetables according to fields observations. Contaminated 169 
pixels on the limits of the fields were removed by splitting fields with roads map, digitalized 170 
from GoogleEarth images, with a broad buffer which separates every field (roads and ditches). 171 

The last step was the validation of the classification. This was computed by using the sampled 172 
and known fields. They were classed into two equal groups: known fields and false unknown 173 
fields. For instance for wheat, the 244 known fields were divided into two groups of 122. The 174 
first 122 were used to compute the NDVI profile of wheat (crop calendar) and the other 122 175 
were tested for classification according to ED to the first group. The outputs of this validation 176 
are presented in the results. 177 

2.4. PYSEBAL ETseason and NIRseason 178 

PYSEBAL estimates the transfer of energy from the solar radiation to the water transfer to the 179 
atmosphere. This transfer can be quantified with the estimation of crop evapotranspiration 180 
(ET) and PYSEBAL requires the calculation of ET reference (ET0) from ground datasets. In 181 
Marvdasht, previous studies on rice evapotranspiration suggested using the equation of 182 
Hargreaves-Samani (Fooladmand et al., 2008, 2008) for its accuracy in semi-arid climates. The 183 
equation of ET0 is written as follows (equation 2): 184 

                          ET0 = 0.00256 ∗ (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 + 17.8) ∗ (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑚𝑚𝑖𝑖𝑛𝑛)0.5Ra                           Equation (2) 185 

Where Tmean is the daily average temperature, Tmax and Tmin are the maximum and minimum 186 
temperature during the day. Ra is the daily extraterrestrial radiation (MJ/m²/day) and assesses 187 
the income radiation to the atmosphere. Ra is obtained from the original FAO equation (FAO, 188 
1986): 189 

          𝑅𝑅𝑚𝑚 = 24∗60
𝜋𝜋

 𝐺𝐺𝑠𝑠𝑠𝑠  𝑑𝑑𝑟𝑟  [ωs sin(𝜑𝜑) sin(𝛿𝛿) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) cos(𝛿𝛿) sin (ω𝑠𝑠)]               Equation (3) 190 

Where Gsc is the solar constant 0.0820 MJ/m²/min, dr the inverse relative distance Earth-Sun, 191 
ωs the solar angle and φ the radian latitude. Once the data have been compiled (ET0, Landsat-192 
8 images, Solar radiation, Wind speed, Temperature and Relative humidity), one can run the 193 
new version of PYSEBAL: PYSEBAL 3.4.0.0 (Hessel et al., 2017). ETinst is first processed from 194 
the Latent Heat Flux (λET), based on the subtraction of Net Radiation (Rn), Soil Heat Flux (G) 195 
and Sensible Heat Flux (H): λET will be later converted into an amount of evaporated water, 196 
calibrated with the ET0 from the station.  197 

                                     λET =  Rn –  G –  H                                               Equation (4) 198 

The overall steps of PYSEBAL are summed up in a flowchart (Figure 5). 199 



9 
 

 200 

Figure.5 Flowchart of PYSEBAL, modified after Waters et al., 2002 201 

Rn (W/m²) is the result of the subtraction of all of the outcoming radiation (through reflection) 202 
to all of the incoming radiations (long and shortwaves): 203 

                     𝑅𝑅𝑛𝑛 =  RS ↓  − α RS ↓  + RL ↓  − RL ↑  − (1 − εo)RL ↓                         Equation (5) 204 

Where RS↓ matches to the shortwave incoming radiation in W/m² estimated from the solar 205 
constant (the theoretical amount of solar energy on 1 m²), the relative distance Earth-Sun and 206 
the atmospheric transmissivity which describes the transparency of the atmosphere, α is the 207 
surface albedo (the reflected fraction of sunlight from the Earth surface, written by Waters 208 
(Waters et al., 2002) and εo, thermal emissivity in W/m. 209 

Second, RL↓ (the incoming longwave radiation) is estimated from Ta the near-surface air 210 
temperature at the station (in Kelvin, K), εa the atmospheric emissivity derived from the 211 
atmospheric transmissivity with a coefficient of 0.85 (Hessel et al., 2017; Waters et al., 2002), 212 
and σ, the content of Stefan-Boltzmann to describe reflected energy from a black body on the 213 
ground (5.67 × 10-8 W/m²/K): 214 

                                                              RL ↓ = εa ×  σ × Ta4                                                Equation (6) 215 

Comparably, RL↑ equation uses Ts the surface temperature instead of Ta (K). Waters et al., 216 
(2002) suggested to compute surface temperature using the first band thermal (band 10) and 217 
the K1 (774.8853) and K2 (1321.0789) constants of each image. The corrected thermal radiance 218 
from the surface is estimated with the equation of Wukelikc (Wukelic et al., 1989) using the 219 
spectral radiance of band 6 to convert Digital Numbers (DN) to Radiance.  220 

Once Rn has been computed, one can proceed with the Soil Heat Flux (G) in W/m², defined as 221 
a ratio with Rn:     222 
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                  G/𝑅𝑅𝑛𝑛  =  Ts/α (0.0038α +  0.0074α2)(1 −  0.98NDVI4)                           Equation (7) 223 

The multiplication of this ratio with Rn gives G. Second, the Sensible Heat Flux (H) in W/m² is 224 
assessed by equation 17. This step is the most complex since it uses some ground data which 225 
must be correctly recorded. In addition, one needs to select the hot and cold pixels to compute 226 
H (selection according to criteria table 2), which determines the quality of the outputs. 227 

                                                 H =  (ρ ×  𝑐𝑐𝑝𝑝  ×  dT) / 𝑟𝑟𝑚𝑚ℎ                                              Equation (8) 228 

Where ρ is the air density (1.225 kg/m3), cp the amount of heat required to change the 229 
temperature of 1C° (1004 J/kg/K), dT the temperature difference between two heights (z1 : 0.1 230 
m and z2 : 2 m above surface) and rah the aerodynamic resistance to heat transport in s/m (the 231 
heat and vapour transfer from the surface to the edge of the canopy) under the influence of 232 
wind speed (from Sad Doroudzan) and surface roughness using NDVI and albedo in 233 
PYSEBAL. The definition of temperature at 2 m of height must be computed with indicative 234 
pixels: cold and hot. 235 

Table.2 Criteria which wereused to select hot and cold pixels in PYSEBAL 236 

  Criteria Values Purpose Remarks 

C
ol

d 
pi

xe
ls

 

LAI 4 - 6 Delineate a threshold of ET 
on the most well-watered 
pixels, where ET is the 
highest. 

Cold pixels excluded water 
bodies where there was no 
transpiration. Thereby, pixels 
covered by well-irrigated 
vegetation were selected. 

NDVI NDVImax-0.1xNDVIstd 
Ts 284 - 295 K 
albedo 0.22 – 0.24 

Elevation range 1400 - 1800 
Removing the mountainous 
areas 

         

  Criteria Values Purpose Remarks 

ho
t p

ix
el

s 

LAI 0 – 0.4 Delineate a threshold of ET 
on the less well-watered 
pixels, where ET is the 
lowest 

Dry fields with a weak vegetation 
coverage were favoured. 
Transpiration and evaporation 
would be low, but not null. Hot 
pixels did no cover deserts since 
the surface temperature was too 
high 

NDVI 0.03 – 0.20 
Ts 302 - 310 K 
albedo 0.13 – 0.15 

Elevation range 1400 - 1800 
Removing the mountainous 
areas 

 237 

Once Rn, G and H were computed, thenλET (equation 8) could be calculated. The latent heat 238 
flux is converted in an amount of ET at the time of Landsat-8 overpass: 239 

                                                      ETinst = 3600 λET
λ

                                                   Equation (9) 240 

The conversion from second to the hour is necessary to compute the hourly ET when the 241 
satellite overpasses the plain. λ is the necessary latent heat to change a kilo of water from liquid 242 
to gaseous state (326.508 J/kg). The ratio between ETinst from PYSEBAL and the ET0 from the 243 
Sad Doroudzan (when Landsat-8 overpasses) is expressed as follows: 244 
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                                                         ETrF = ETinst
ET0

                                                       Equation (10) 245 

Where ETrF is named ET fraction. ETrF values are close to crop coefficients and enable to 246 
calibrate ET to different crop in the next equation (Waters et al., 2002). This ratio of ETrF is then 247 
used to calibrate the daily ET0 of Sad Doroudzan over the whole seasons (the length depends 248 
on the crop calendars of each crop). Since ET0 to the station is available every hour of the 249 
season, the ration between ETinst and ETr can be calculated on each image and converted into a 250 
seasonal ET of several months: 251 

                                           ETseason = ETrFseason  ∑ ETr24n
1                                      Equation (11) 252 

Where ETrFseason is ETrF within the season of one crop or another and ∑ 𝐸𝐸𝑇𝑇𝑟𝑟24𝑛𝑛
1 , the sum of daily 253 

ETr over the season. In order to delineate the beginning and the end of the season, PYSEBAL 254 
recommends to retain the first day of the first month of the season of wheat for instance and 255 
the last day of the last month. Ground data of Sad Doroudzan on the day pass of Landsat-8 256 
are necessary to interpolate ETinst to the all plain. The sum of ET24 gives the total 257 
evapotranspiration of crops (ETseason). For each crop areas, the average, the minimum and the 258 
maximum of ET are computed inside the fields polygons using Zonal Statistics from Qgis 259 
version 2.18.3. 260 

Afterwards, the monthly and seasonal Net Irrigation Requirements (mm or m3) can be 261 
estimated on each farm from the equation of the Food and Agriculture Organisation by the 262 
subtraction of ET and net rainfalls. Net rainfalls were computed with the CROPWAT software 263 
version 8.0 using USDA Soil Conservation Service methodology which requires precipitations 264 
as an input (Ewaid et al., 2019): 265 

𝑃𝑃𝑛𝑛𝑚𝑚𝑛𝑛 = �P∗(125−0,2∗3∗P)�
125

      for 𝑃𝑃 <= 250
3

                           Equation (12) 266 

𝑃𝑃𝑛𝑛𝑚𝑚𝑛𝑛 = 125
3

+ 0,1 ∗ 𝑃𝑃   for P > 250
3

                                     Equation (13) 267 

Were Pnet is the effective rainfalls and P, the seasonal precipitations recorded in Doroudzan 268 
station in 2018 (in mm). And NIR equation: 269 

                                         NIRseason = ETseason − Pnet_season                                         Equation (14) 270 

The calculation of NIRseason for rice is somewhat different. Indeed, in the FAO method (Brouwer 271 
et al., 2001), rice is an exception to the ET-Pnet equation. Irrigation inputs for rice are calculated 272 
with the following equation (15). The root zone of the rice is saturated during the sowing 273 
period with an initial supply of 200 mm (SAT). Then farmers apply a 100 mm water layer to 274 
keep the seedlings in water (WL). Finally, to compensate for the water lost through percolation 275 
in the soil, a daily supply of several mm of water is needed to ensure soil water saturation 276 
(PERC). This percolation has already been calculated and recorded with lysimeter data in the 277 
Marvdasht plain (Pirmoradian et al., 2002) and is measured at 3.4 mm/day for 4 months due 278 
to the fine-textured alluvial soils in the area. We, therefore, used this study as a reference to 279 
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calculate the water requirement of rice and this value to compute PERC on our same study 280 
area. 281 

2.5 Crop classification validation  282 

It was necessary to assess the accuracy of the farm boundaries delineation through the 283 
comparison of areas from 60 automatically extracted and manually digitized fields with 284 
GoogleEarth images. R and R² were calculated to assess the reliability of the fields boundaries 285 
extraction. Once the farm boundaries are validated, the classification itself should be assessed 286 
with the computation of precision, recall and overall accuracy.  287 

2.6 Crop water needs validation  288 

The key point of this research was the validation of PYSEBAL outputs through the comparison 289 
of NIRPYSEBAL and NIR from the field surveys with farmers. The surveys targeted information 290 
about the yields and whenever possible, the irrigation calendar. More importantly, the surveys 291 
aimed to target the amount of irrigated water on crops. Whenever farmers knew the amount 292 
of irrigation they applied on their farms, we took the GPS coordinates and compared the Net 293 
Irrigation Requirements (NIR) from the surveys on these fields to the NIR of PYSEBAL on the 294 
same fields. These information collected from farmers might be incorrect or incomplete. 295 
Consequently, not all of the 60 surveys were retained as accurate and relaible enough to 296 
validate the NIR. However, a group of 5 farmers wrote down and precisely knew these 297 
information (times and volume) that were used to validate NIRPYSEBAL: three fields of wheat, 298 
one of alfalfa and one of corn. On the sampled plots (where farmers knew exactly the amount 299 
of irrigation water they brought), we located and estimated the cultivated surface with 300 
GoogleEarth images (1), we multiplied the frequency of irrigation (number of irrigation session) 301 
with the amount of irrigation water per session (m3) and we obtained the NIR of these fields. 302 
Then, we compared NIRfield with NIRPYSEBAL on the same plot. PYSEBAL outputs match to the 303 
ET and then to the NIR/ha/season (after net rainfall subtraction) per pixel. Therefore, we 304 
compare NIRfields and NIRPYSEBAL per ha and per season. Consequently, despite the lack of 305 
lysimeter data, the accuracy of ETPYSEBAL could be assessed in this study through the 306 
comparison of NIRfield and NIRPYSEBAL. 307 

This lack of lysimetric data led us to consider a second process to validate ETseason of PYSEBAL. 308 
Indeed, this difficulty of the lack of data collected on the ground has already been encountered 309 
in other studies that recommend comparing Daily ET of PYSEBAL with Daily ET of the FAO-310 
56 method (Stancalie et al., 2010) using Allen's method (Allen et al., 1998). This method consists 311 
in calculating Daily ET by calibrating ET0 of the climatic station representative of the plain –  312 
here the Doroudzan station – with the crop coefficients (Kc) taken from the literature. Crop 313 
coefficients are indeed not the same from one crop to another and vary over time according to 314 
the crop phenological stage. It is important to compare the results of PYSEBAL in the 315 
Marvdasht Plain only from plots large enough to match the spatial resolution of Landsat-8 316 
images. Thus, selected plots in the Marvdasht Plain should be larger than 4 hectares (Tasumi, 317 
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2019). The accuracy of PYSEBAL was assessed by calculating Root Mean Square Error (RMSE) 318 
and Mean Average Error (MEA) between Daily ET FAO-56 and the Daily PYSEBAL average 319 
of plots larger than 4 ha. 320 

3. Results 321 

3.1 Crop classification accuracy 322 

Regarding the farm boundaries, with R: 0.95 and R²: 0.91 (Figure 6), one can consider the model 323 
as accurate enough and these automated fields limits can be further used for crop areas 324 
classification. Also, the crop classification accuracy was estimated based on data…….. (Table 325 
3). 326 

 327 

Figure.6 Comparison of automated and digitized farm boundaries in 60 random plots in 328 
Marvdasht plain 329 

 330 

Table 3. Validation of crop areas classification in Marvdahst plain, 2018 331 

(spring) Precision Recall 
Overall 
accuracy 

(summer) Precision Recall 
Overall 
accuracy 

Alfalfa 66.67 0.57 80 Corn 0.56 0.63 80 
Canola 69.23 0.6 75 Rice 0.73 0.98 73.56 

Orchard 93.75 0.94 89.55 Sugar beet 0.84 0.79 84 
Wheat 98.1 0.94 84.43 Tomato 0.86 0.97 82.05 
Urban 100 1 100 Fallow 0.9 1 90 

Bare soil 81.25 0.81 100         
 332 

From spring to summer, the minimal overall accuracy is 73.56% (rice), the minimal recall 0.57 333 
(alfalfa) and the minimal precision 0.56 (corn). In addition, rice and corn could be mixed up 334 
for their very similar crop calendars. Nonetheless, higher NDVI values of rice at mid-summer 335 
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(figure 4) enabled the distinction of these two crop types. Otherwise, the classification of crop 336 
areas appeared as accurate enough to be used to compute the crop and eventually the total 337 
water budget in Marvdasht plain. 338 

Crop mapping can be improved, as showed in the previous case of study that used this 339 
methodology with Sentinel-2 images (Caiserman et al., 2019). In this study, it was assumed 340 
that a greater number of GPS-based points per crop types (for crop calendars extraction) would 341 
enhance the accuracy of maps. Thereby, this paper showed that crops with similar agricultural 342 
calendars remain difficult to be distinguished, but the precision, recall and overall accuracy of 343 
the crop maps in Marvdasht plain were still satisfying and make these maps convenient for 344 
crop water needs estimations. 345 

3.2 PYSEBAL’s results accuracy 346 

In most of the cases, PYSEBAL  underestimates the reality with an average of 10% (table 4). 347 
The best estimation is the plot n°4 (wheat) where PYSEBAL only underestimated the reality of 348 
1.96%. The statements of the farmers and PYSEBAL outputs were highly correlated. On the 349 
other hand, the worst example was another wheat field (overestimation of 17%) where 350 
NIRPYSEBAL was 459 mm/ha/season and NIRfields, 384 mm. This might be due to errors from the 351 
farmers who probably underestimated the amount of irrigated water. The pixels of the outputs 352 
could be also overlapped with other fields and the estimation not accurate. Nonetheless, the 353 
overall estimation is satisfying and PYSEBAL is therefore considered as reliable enough to 354 
compute crop water needs. 355 

Table.4 Comparison of NIRPYSEBAL and NIRfields from the agricultural season in Marvdasht 356 
(2018)  357 

Plot 
n° 

Crop 
type  

X Y Area  Frequency 
Amount 

m3 
NIRfields 

mm/ha 
NIRPYSEBAL 

mm/ha 

Over/under-
estimation 
of NIR (%)  

1 Alfalfa 52.84 29.84 2.443 15 95 1425 1343 -5.92 
2 Corn 52.80 29.93 2.294 6 86.4 518 473 -9.08 
3 Wheat 52.79 29.93 1.418 4 86.4 346 268 -25.4 
4 Wheat 52.84 29.84 1.395 4 90 360 353 -1.96 
5 Wheat 52.84 29.84 3.513 4 96 384 459 17.70 

 358 

Moreover, the comparison between Daily ET FAO-56 and PYSEBAL confirms the 359 
underestimation of PYSEBAL in most cases (Table 5, Figure 7). Indeed, all Daily ET PYSEBAL 360 
values are lower than those of Daily ET FAO-56 except for orchards due to a wider range of 361 
ET PYSEBAL average on account on the variety of fruit trees species in that class. The number 362 
of plots compared by crop type varied according to the importance of the plants. For example, 363 
only 12 plots of canola larger than 4 ha were compared as canola is only marginally grown in 364 
the plain, compared to 917 plots of wheat, a major crop in the plain. In total, the RMSE between 365 
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ET Daily FAO-56 and PYSEBAL was 0.67 mm/day and the MAE 0.52 mm/day. One must take 366 
into account the bias of the FAO-56 method (Allen et al., 1998), which only considers well-367 
irrigated plots with no water deficit, which is not necessarily the case for all the plots compared 368 
in Table 5. However, despite the lack of expensive and scarce lysimetric data in the field, the 369 
relatively low values show the relative accuracy of PYSEBAL in its estimate of Daily ET in 2018 370 
in the Marvdasht Plain.  371 

Table.5 Crop coefficients retrived from the literature for FAO-56 method and Daily ET 372 
from FAO-56 and PYSEBAL in Marvdasht plain in 2018 373 

Crops Kcin Kcmid Kcend 
Length 
(days) 

Plots over 4 
ha 

FAO-56 
Daily ET 

PYSEBAL Daily 
ET 

Alfalfa 0.4 0.95 0.9 60 35 1.72 1.33 
Canola 0.35 1.15 0.35 175 12 3.02 2.99 

Orchard 0.4 1.1 0.45 150 57 3.43 3.61 
Wheat 0.3 1.15 0.32 240 917 1.96 1.78 
Corn 0.3 1.2 0.75 150 267 5.49 4.17 
Rice 1.05 1.2 0.75 150 60 7.13 6.17 

Sugar beet 0.35 1.2 0.7 160 122 6.10 5.74 
Tomato 0.6 1.15 0.8 140 167 4.73 3.94 

 374 

Figure.7 Comparaison of Daily ET FAO-56 and Daily ET PYSEBAL in the Marvdasht plain 375 
in 2018 376 

 377 

3.3. Water balance of Marvdasht plain 378 

The results of the crop classification provide an agricultural census of Marvdasht plain in 2018. 379 
Table 6 shows the areas per crop type and Figures 8 and 9 locate each plot per crop type. In 380 
spring, over 32250 ha was cultivated, mostly wheat (17811 ha, 50.5% of the plain, Figure 8), as 381 
one of the key crops for food security and self-sufficiency in Iran. Rice is also a key-crop for 382 
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food security and is intensively cultivated in Marvdasht. It is a traditional crop, especially in 383 
the northern part of the plain, but the construction of a dam in Doroudzan with a maximum 384 
capacity of one billion m3 (Figures 8 and 9) in the 1970s drastically increased the area of rice, 385 
as another key crop of food security in Iran (Moameni, 1999). Rice cultivation had become 386 
almost industrial and remains as one of the most profitable crops in this region. Summer 387 
vegetables are exclusively composed of tomatoes and sugar beets on mid-areas, 12.8 and 8.6%, 388 
respectively. Overall, the crop choices in Marvdasht are not too diverse and follow clear trends 389 
of food production within a legitimate food security perspective. 390 

Table.6 Spring and summer crop areas in Marvdasht plain based on crop classification 391 
with Sentinel-2 images in 2018 392 

Crops (spring) 
Area 
(ha) 

Area 
(%) 

Crops 
(summer) 

Area (ha) Area (%) 

Wheat 17811 50.5 Corn 7184 22.2 
Spring vegetable 14014 39.8 Rice 5433 16.8 

Orchard 1818 5.2 Tomato 4140 12.8 
Alfalfa 1548 4.4 Sugar beet 2768 8.6 
Canola 59 0.2 Orchard 1818 5.6 
Total 35250 100 Alfalfa 1548 4.8 

      Total 32307 100 
 393 

394 
Figure 8. Crop map in spring 2018                 Figure 9. Crop map in summer 2018  395 

The map (Figure 10) shows the seasonal spatial distribution of the PYSEBAL ETseason and Table 396 
7 shows the water balance information for the Marvdasht Plain. Firstly, it appears that the 397 
plain is more intensively cultivated in spring than in summer due to respective rainfall of 181 398 
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mm and 119 mm. The results of PYSEBAL thus make it possible to calculate the total irrigation 399 
needs of the plain in 2018 (Table 7).  400 

401 

 402 

Figure 10. Maps of annual, spring and summer ETseason based on PYSEBAL in 403 
Marvdasht plain in 2018 404 

The last column of Table 7 allows to prioritize the crops according to their pressures on the 405 
groundwater resource by dividing NIRseason of each crop with the volume precipitated and 406 
available for aquifer recharge on each surface. It is clear that rice exerts the greatest pressure 407 
because of its total irrigation needs. Indeed, the volume needed to irrigate all rice plots in 2018 408 
was 11.92 times the volume of water available for groundwater recharge. Rice NIRseason was 409 
between 770 and 907 mm depending on the plots with NIRseason ranging from 1359 to 1496 mm 410 
according to Brouwer's equation (Brouwer et al., 2001). Rice is thus a crop that consumed too 411 
much water compared to the renewable water resource and therefore does not seem to be 412 
adapted to the water resource of this semi-arid context. On the other hand, all the plants that 413 
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appear in red in Table 7 are in this same case of over-consumption of water to different 414 
degrees, from corn (pressure 5.61 times higher) to tomatoes (pressure 1.44 higher). 415 
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Table.7 Water balance from ETseason and NIRseason of the cultivated crops in the  Marvdasht plain 2018 416 

Crops 

ETseason (mm/season) 

NetRainfall 
(mm/season)

* 

NIRseason (mm/season) 

area 
(ha) 

Total 
NIR 

(km3)* 

Total available 
precipitations 

for 
groundwater 

recharge (km3) 

Pressure on 
groundwater 

resource min max average min max average 

Rice 770 907 839 119 1359 1496 1427 5433 0.0775 0.0065 11.9275 
Corn 650 925 788 119 531 806 669 7184 0.0480 0.0085 5.6176 
Sugar beet 780 841 811 164 616 677 647 2768 0.0179 0.0045 3.9421 
Canola 525 771 648 181 344 590 467 59 0.0003 0.0001 2.5801 
Alfalfa 841 1179 1010 332 509 847 678 1548 0.0105 0.0051 2.0422 
Spr. veg. 403 682 543 181 222 501 362 14014 0.0507 0.0254 1.9972 
Wheat 408 647 528 181 227 466 347 17811 0.0617 0.0322 1.9144 
Tomato 466 615 541 221 245 394 320 4140 0.0132 0.0091 1.4457 
Orchard 443 869 656 332 111 537 324 1818 0.0059 0.0060 0.9759 
Total               54775 0.2859 0.098   

 417 
*Net rainfall is the amount of net precipitation that occurred during the season of the matching crop. 418 
Total NIR is the product of multiplying the average NIRseason with the cultivated area. 419 
Total available precipitations is the volume of precipitations that occurred during the season and available for aquifer recharge  420 
Pressure on groundwater resource is the number of times the NIRseason exceeded the matching Netrainfall. This highlights the sensitive crops 421 
regarding water in this semi-arid plain. 422 
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In addition, these NIRseason values obtained with rice are lower than those obtained by 423 
lysimetric measurements in the Pirmoradian study (Pirmoradian et al., 2002): 1983 and 2361 424 
mm/season, which confirms the underestimates of PYSEBAL. These plants, because of their 425 
surface areas and their ETseason and NIRseason are too large and the results of PYSEBAL allow us 426 
to identify the crops on which action should be taken either by reducing the cultivated areas 427 
or by improving irrigation techniques by adopting, for example, the drip or sprinkler systems 428 
which are very little present in the plain according to surveys with farmers. On the other hand, 429 
only the orchards have a water consumption adapted to the water available for recharging 430 
(pressure less than 1 in green in Table 7). Orchards benefit indeed from a more modest ETseason 431 
ranging from 443 to 869 but especially from a long rainy season (332 mm) as it is an annual 432 
crop. In theory, all the plants cultivated in the plain should have a NIRseason that is lower than 433 
the volume available for recharge. This negative water balance leads to a total groundwater 434 
consumption of 0.2859 km3 for a precipitation volume available for recharge of only 0.098 km3. 435 
If such water use is repeated every year, this water balance necessarily leads to a decrease in 436 
the piezometric level of the Marvdasht Plain. For this reason, we asked the 60 farmers in the 437 
surveys the current depth of their wells as well as the depth estimated some 30 years ago. 438 
According to these surveys, the average drawdown of the water tables would have been 125 439 
m over the last thirty years due to the intense use of groundwater. This trend can only be 440 
confirmed by the negative water balance of PYSEBAL in 2018 and the intensive cultivation of 441 
these plants in the Marvdasht plain every year for the last 50 years or so, as already shown by 442 
Momeni's report in that study area twenty years ago (Moameni, 1999). 443 

4. Discussion  444 

4.1 PYSEBAL ETseason variabiliy 445 

Table 7 reports some variability in ETseason and NIRseason proportionally, based on the net 446 
precipitation for each plant. We saw in the Hargreaves-Samani equation at Sad Doroudzan 447 
station that was used as a reference to calibrate ETinst from PYSEBAL at 11:00 GMT each day 448 
took into account temperature and solar radiation while the Standardized Penman-Monteith 449 
equation used temperature, wind speed, radiation and relative humidity. We therefore 450 
compared Daily ET from Hargreaves-Samani with ETr24 PYSEBAL on a grassy (assumed to 451 
be well watered) plot of 11 ha next to Sad Doroudzan station (figure 11). This comparison first 452 
explains the heterogeneity of PYSEBAL's results over the whole plain as PYSEBAL takes into 453 
account the calibration between two different equations in the calculation of ETseason: the 454 
reference equation at the station and the reference equation calculated by PYSEBAL.  455 

 456 
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 457 

Figure 11. Comparison of Daily ETHargreaves at Sad Doroudzan station and ETr24 PYSEBAL 458 

Indeed, the comparison of daily ET results shows some differences at the scale of the 459 
hydrological year. The RMSE is 0.63 mm/day and the MAE is 0.46 mm/day. The difference 460 
between the two ET is thus slight and ETr24 estimated by PYSEBAL remains very close to the 461 
ETHargeaves observed on the day of the Landsat-8 overpass. Only days 42 (March), 106 (May), 138 462 
(June), 138 (July) and 170 (August) showed an overestimation of ETr24 compared to the 463 
ETHargreaves of the station. However, this slight difference may have consequences on the ETseason 464 
of the Marvasht Plain. Moreover, ETseason of PYSEBAL remains very dependent on the climatic 465 
data recorded at the Sad Doroudzan station. We calculated the correlation between ETr24 of 466 
the nine largest and closest plots to the Sad Doroudzan station (one sample plot per crop type) 467 
and the daily climatic parameters used by PYSEBAL at the time of the Landsat-8 run: Relative 468 
Humidity, Temperature, Wind Speed and Radiation (Figure 12). There is a strong correlation 469 
between ETr24 and RH with a minimum R² of 0.75 in Table 8, and Temperature (R²2: 0.87) and 470 
Radiation (R²: 0.86). Only the relationship between Wind Speed and ETr24 seems weaker 471 
because Wind Speed can be very variable from one area to another and it seems that PYSEBAL 472 
minimizes the weight of WS in its estimate of ETr24. Recall here that these correlations are such 473 
that they are for the plots closest to the reference station used in our case study. The variability 474 
of the ETseason by crop type on the plots closest to the station because the climatic data are 475 
homogeneous up to a certain radius. Indeed, the climatic conditions are not exactly the same 476 
between the north, the centre and the south of the plain. Logically, Relative Humidity is lower 477 
in the drier areas where Temperatures and Radiation are higher. The four climatic parameters 478 
were not available at other stations in the Marvdasht Plain. Nevertheless, we compared the 479 
PYSEBAL outputs on Daily Radiation from each satellite image as well as Daily Surface 480 
Temperature between three different locations. Indeed, we compared these parameters 481 
between the recorded data (regarding temperature, Air Temperature of the station at 2 meters 482 
as compared to Landsurface Tempreature of PYSEBAL) at Sad Doroudzan with a well-483 
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irrigated alfalfa plot close to the station (over a large area of 11 ha) with an alfalfa plot south 484 
of 8 ha and an alfalfa plot north of 5 ha (Figure 12).  485 

486 

 487 

Figure 12. Strong potitive correlation between T (°C), RH (%), R (MJ/m²) and ETr24 488 
PYSEBAL 489 

Table 8. R² between weather parameters and ETr24 from PYSEBAL on sampled plots 490 

Crops T° RH Ws R 
alfalfa 0.88 -0.75 0.55 0.88 
corn 0.87 -0.82 0.60 0.87 
orchard 0.87 -0.75 0.55 0.88 
tomato 0.99 -0.82 -0.32 0.99 
sugar beet 0.87 -0.82 0.60 0.87 
canola 0.98 -0.87 0.62 0.98 
rice 0.87 -0.82 0.60 0.87 
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wheat 0.98 -0.76 0.82 0.86 
spring vegetables 0.98 -0.76 0.82 0.86 

 491 

Location near the station is 4 km to Sad Doroudzan, location south 55 km and location north 492 
19 km. Logically, the daily temperatures at a location near the station are the closest to those 493 
recorded at Sad Doroudzan station. On the other hand, the further away from the station, the 494 
more different the temperatures are at location north (RMSE 7.2 Kelvin/day compared to 495 
Temperature at a location near the station) and south (RMSE 7.7 Kelvin/day compared to 496 
Temperature location near the station), which in this case are higher than the temperatures at 497 
a location near the station. The warmest surface temperatures are also located at the south 498 
location 55 km to the south, so a stronger ETseason can be expected (ETseason location near the 499 
station 1066 mm, south location: 1518 mm and north location: 1315 mm). Not all Surface 500 
Temperatures are the same everywhere, including in the PYSEBAL results, and ETseason will 501 
depend on this spatial distribution. On the other hand, the Radiation layer of PYSEBAL seems 502 
to be more homogeneous than the Surface Temperature layer (figure 14). Although ETr24 was 503 
correlated with Radiation (Figure 13), it would appear that the Radiation does not vary much 504 
in the plain. However, the PYSEBAL Radiation of near, south and north locations records a 505 
high RMSE of 54 to 57 MJ/m²/day which may limit the reliability of this layer at the scale of a 506 
whole plain, which is essential for the ETseason estimate.  507 

 508 

Figure 13. Comparison of 4 locations temperatures between observed air temperature data 509 
at Sad Doroudzan station and land surface temperature of 3 different locations in the 510 

plain 511 
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 512 

Figure 14. Comparison of 4 locations temperatures between observed air temperature data 513 
at Sad Doroudzan station and land surface temperature of 3 different locations in the 514 

plain 515 

In the PYSEBAL results, Daily ETr24 from the three alfalfa plots correlated well with both 516 
Surface Temperatures with a minimum R² of 0.57 and solar radiation with a minimum R² of 517 
0.68 (Figure 15). This confirms the importance of climatic parameters in the variability of 518 
ETseason but also the fact that the variation comes more from the spatial distribution of Land 519 
Surface Temperature than from Radiation with which ETr24. Indeed, if the whole plain was 520 
characterized by the same Surface Temperature on each Landsat-8 image for each day of 521 
passage, ETseason would probably record much smaller variabilities. This is a strength of the 522 
PYSEBAL model, whose spatial variations reflect different evapotranspiration realities over 523 
an entire plain.  524 
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Figure 15. Strong positive correlation between ETr24 and PYSEBAL Land Surface 526 
Temperature and Radiation 527 

We have just seen the reasons why ETseason recorded more or less significant variations in 528 
PYSEBAL's results. The predominance of climatic parameters is to be questioned in this 529 
variability but Table 7 on the water balance of the Marvdasht plain also showed the variability 530 
of the water used by the farmers, i.e. NIRseason. Although NIRseason is proportional to the ETseason 531 
in terms of available net precipitation, it would appear that there are other factors responsible 532 
for this variability. 533 

4.2 NIRseason varability: groundwater economy        534 

The Marvdasht Plain is also characterised by NIRseason variabilities. Although the soils in the 535 
region are predominantly fine-textured alluvial soils, the soil characteristics are important to 536 
consider. For example, the plots at the foot of the mountains are on deeper, sandier soils on 537 
which farmers will prefer to grow orchards rather than rice. Indeed, a rice plot on sandy soil 538 
would lead to higher percolation values than those obtained by lysimeters in the centre of the 539 
plain in previous studies (Pirmoradian et al., 2002). These values could thus reach 8 mm/day 540 
according to Brouwer (Brouwer et al., 2001), which would considerably increase the total 541 
percolation of the rice plot.  However, beyond the soil conditions of the study area, farmers 542 
practices should be questioned, especially irrigation schedules and irrigation systems (Calera 543 
et al., 2017; Costa et al., 2019; Hess et al., 2016; Zwart and Bastiaanssen, 2007). For this purpose, 544 
we collected in the surveys the irrigation systems of 60 farmers. Of the 60 farmers surveyed, 545 
52 use the furrow system which is more sensitive to evaporation. The variability of NIRseason 546 
can therefore be explained by this practice. Indeed, it would seem that the distribution of net 547 
rainfall varies very little between the north and the south of the plain. For example, the 548 
precipitation for the January-June period is 287 mm in the north of the plain and 272 mm in 549 
the south. Thus, we find wheat plots with low NIRseason of 227 mm/season in both the north 550 
and the south and NIRseason of 466 mm/season in both the north and the south. This means that 551 
some farmers irrigate more than their neighbours. This finding should put us on the track of 552 
the groundwater economy. Indeed, it would seem that farmers who irrigate more on their 553 
plots could apply smaller amounts of water, closer to those of their neighbours in the lower 554 
NIRseason. This shift from high NIRseason to low NIRseason can only be achieved by improving 555 
irrigation, starting with the amounts applied. Thus, we have estimated the groundwater 556 
savings that could be achieved in the plain if all farmers irrigated, theoretically, with the lowest 557 
NIRseason found in the plain (Figure 16).  558 

 559 
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 560 

Figure 16. Possible groundwater economy in the Marvdasht plain in 2018 561 

In this way, the pressure on water resources would be more modest than in the current context 562 
of the year 2018. Such a change would result in a total groundwater use of 0.2208 km3 instead 563 
of the current 0.2859 km3. In absolute terms, the water balance would have to become positive 564 
but this would imply drastic reductions in cultivated areas in addition to the adoption of lower 565 
NIRseason. However, this option does not seem to be economically feasible for farmers. 566 
However, even in this scenario, for all crops except orchards, the road to water savings is still 567 
long as NIRseason remains higher than the volume available for aquifer recharge. This theoretical 568 
scenario is a true illustration of the usefulness of PYSEBAL in a water-saving objective, without 569 
reducing the cultivated areas. These results make it possible to set the objectives necessary to 570 
reduce water use in the Marvdasht plain. 571 

5. Conclusion 572 

This study showed the contributions of remote sensing to the estimation of the water balance 573 
of an important agricultural plain such as Marvdasht in southern Iran. This free technology 574 
requires some fieldwork, particularly for mapping crops from one season to the next. The 575 
fieldwork and NDVI classification mapping of each plot are largely dependent on agricultural 576 
calendars, but at the end of the agricultural year we showed that it was possible to map the 577 
plots quickly and with high accuracy. The second step, ETseason estimation, can also only be 578 
done at the end of the crop year. PYSEBAL proved to be a relevant tool in the estimation of 579 
ETseason and NIRseason. The validation of PYSEBAL with the field (comparison of NIRPYSEBAL and 580 
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NIRFIELD) and with Daily ET FAO-56 was the biggest challenge of this study. PYSEBAL seems 581 
to underestimates the reality. Indeed, the lack of lysimetric data can limit the reliability of such 582 
models, but PYSEBAL seems robust in the case of Marvdasht as the differences between 583 
NIRPYSEBAL and NIRfield, and between Daily ET PYSEBAL et Daily ET FAO-56 remains low, and 584 
this study allowed to understand that the variability of ETseason came primarily from the 585 
variability of the Land Surface Temperature layer generated by PYSEBAL than from the 586 
Radiation Layer. Indeed, climatic conditions are not exactly homogeneous in all parts of an 587 
agricultural plain, which explains the heterogeneity of ETseason results. As such, the Radiation 588 
Layer, due to its homogeneity, does not seem to reflect this climatic diversity as much as the 589 
Land Surface Temperature layer.  590 

Thanks to this methodological combination, it was possible to characterize crops according to 591 
their water requirements. Crops such as rice or maize have too high consumption in relation 592 
to the volume available for groundwater recharge. In this case, most of the crops had a 593 
negative water balance, which in 2018 led to the overutilisation of groundwater in the plain. 594 
Such practices can only lead to groundwater drawdown, but the advantage of this study is 595 
that it targeted the sensitive crops least adapted to the semi-arid context. In this respect, the 596 
results of this study are intended to be used by political decision-makers in the field of 597 
agriculture and water and are intended to be reproducible every year on any plain in the 598 
world. The variability of the NIRseason showed us that some farmers were able to irrigate less 599 
than their neighbours despite similar climatic conditions. It would seem that it is above all on 600 
practices that agricultural policies should act, in order to minimize the use of groundwater by 601 
tending towards these lower volumes already applied by some farmers.  602 
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