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Abstract 

Supply chains are composed of suppliers, manufacturers, distributors, and retailers that are 

integrated with regard to the physical, financial, and information flows across the supply chain 

networks. Considering the financial flow within supply chain models is of paramount 

importance as implementing the supply chain decisions relies on the availability of the financial 

resources. For instance, opening a new facility in the supply chain network is impossible unless 

the funding mechanism is explicit. 

This research aims to incorporate financial flow modelling into the supply chain models to 

ensure that the financial resources are available to the supply chain members at the right time 

while the profitability of the supply chain is maximized. It provides new insights into the 

methods to monitor the flow of cash within supply chain networks. It further provides a more 

realistic view to supply chain total cost by considering the cash holding cost as a constituent of 

the total cost. To analyse and optimise the performance of the studied supply chains in this 

research, Hybrid simulation optimisation modelling is used as the modelling approach as it is 

an effective tool to accommodate uncertainties in internal and external factors to the supply 

chains, conflicting objectives related to the responsiveness and efficiency of the supply chain, 

and delays in the supply chain product, information, and cash flows. 

To distribute the financial resources fairly among supply chain members, two simulation-based 

optimisation (SBO) models are developed. The first model is a multi-objective model which 

contains the minimization of the cash cycle for supply chain members and the second model is 

a single-objective model that considers the cash cycle of the supply chain as objective function. 

The two models are optimised through finding the optimal values to the inventory and financial 

decisions parameters. The results indicated that the cash cycle of the supply chain members 

and the cash cycle of the supply chain can be decreased significantly by identifying the optimal 

values to the inventory and financial decisions parameters. 

To minimize the inventory of the products at supply chain facilities and match the flow of cash 

with the demand of the supply chain members under economic uncertainty, an SBO model is 

developed. The developed model aims to minimize the bullwhip effect, cash flow bullwhip, 

and supply chain total cost through finding the optimal values to the inventory and financial 

decisions parameters. The results showed that the SBO model is an effective tool in managing 

the trade-offs between objective functions as it significantly improved the values of the 

objective functions compared to the simulation modelling. 
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To manage the trade-off between profitability and cash cycle in a manufacturing supply chain 

under economic uncertainty, an SBO model is developed. The developed model aims to 

minimize cash conversion cycle and maximize economic value-added through finding the 

optimal values to the production, inventory, and financial decisions parameters. The results 

showed the superiority of the SBO approach over simulation modelling. 

Finally, to maximize the profitability of a manufacturing supply chain in an integrated supply 

chain network design, supplier selection, and asset-liability management problem under 

economic uncertainty, a hybrid analytical-SBO model is developed. The developed model aims 

to maximize the economic value added through finding the optimal values to the 

manufacturing, inventory, financial, and distribution decisions. The results showed that the 

hybrid approach outperforms the individual analytical and SBO approaches. 

 



10 
 

 
 

2. Chapter 1. Introduction 

1.1. Research Motivation 

Severe competition in the marketplace and the increased expectations of the customers have 

prompted the firms to search for solutions which help them to create competitive edge in order 

to survive in the highly competitive market. Developing supply chain networks which can 

respond quickly to the customer demands and deliver the right products at the right time at the 

minimal price is a preferred way to retain competitive edge. A supply chain network composed 

of all the parties which are involved in the process of providing a good or service for a 

customer. The parties include raw material suppliers, producers, distributors, wholesalers, and 

retailers which are linked through flows of material, money, and information (Gupta and Dutta, 

2011). The material flows downstream to the customers, whereas the funds flow upstream, and 

information moves in both directions. Supply chain management (SCM) is the active 

streamlining of business supply-side activities to match the supply of products with the 

consumers’ demand and the supply of funds with the demand of supply chain members at a 

minimum cost. The activities regarding the supply of products include the procurement of raw 

material, production, distribution, transportation, and so on. While, the activities associated 

with the supply of funds contain issuing the invoices, payment, securing loans, equity issuance, 

and so on.  

To improve the business supply-side activities many decisions relating to the flow of 

information, products, and money are required to be made. These decisions are grouped into 

strategic, tactical, and operational decisions. The strategic decisions have a long-lasting effect 

on the supply chain performance and are reviewed anywhere between yearly and once every 

five years. These include the decisions regarding the location and capacity of the supply chain 

entities. The tactical decisions have a medium-term effect on the supply chain performance and 

are updated anywhere between quarterly and yearly. These contain the decisions related to 

procurement, production planning, inventory planning, and so on. The operational decisions 

have a short-term effect on the supply chain performance and are reviewed anywhere between 

daily and weekly. These include decisions such as production scheduling, transportation 

scheduling and so on. 

In addition to the supply-side activities which relate to supply chain responsiveness, the supply 

chain networks are required to be efficient. Although, efficiency and responsiveness do not 
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move at the same direction. An efficient supply chain strives to eliminate waste and maximize 

performance at a minimum cost. While, a responsive supply chain aims to shorten the product 

distribution lead time and payment lead time. Therefore, a trade-off is required to be made 

between efficiency and responsiveness in the supply chain networks. 

Supply chain networks may confront uncertainties in external factors which may have 

detrimental effects on both supply chain efficiency and responsiveness. For instance, 

uncertainty in demand may result in bullwhip effect. The bullwhip effect occurs when the 

variations in the demand of supply chain members are amplified when moving upstream of the 

supply chain (Lee et al., 1997). This phenomenon causes many inefficiencies in supply chain 

product flow such as excessive inventory, stock-outs and inefficiencies in supply chain cash 

flow such as increased total cost and higher cost of capital. 

In addition to the uncertain external factors, there are some delays in the downstream flow of 

products, upstream flow of funds, and two-sided flow of information in the supply chain 

networks. The distribution lead times, trade credits, and information delays are the examples 

for delays exist in product flow, cash flow, and information flow, respectively.  

The existence of conflicting efficiency and responsiveness objectives, delays and uncertainties 

cause supply chain networks to be complex systems. Computer simulation has been described 

as the most effective tool for analysing the complex systems. Although the simulation is a 

powerful tool in representing the complex systems, it is not able to optimise the performance 

of the systems due to its incapability in identifying the optimal values to the controllable design 

variables. Incorporating optimisation tools into simulation transform it into a prescriptive tool 

rather than a descriptive one. On the other hand, optimisation tools may not be able to 

efficiently accommodate the uncertainties rooted in supply chain networks, due to their 

inability to depict stochastic behaviours and complex relationships between supply chain 

entities that exist in real world problems (Mele et al., 2006). Therefore, to optimise the 

performance of a complex system such as supply chain, the optimisation and simulation tools 

are required to be integrated. Such an integrated framework is knowns as hybrid simulation 

optimisation modelling. The hybrid simulation optimisation modelling is divided into 

simulation-based optimisation (SBO) modelling and hybrid analytical-simulation modelling. 

The SBO includes the integration of simulation and optimisation algorithms and the hybrid 

analytical-simulation contains the integration of independent simulation and optimisation 

models. 
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Financial factors have a major impact on supply chain planning. Implementing all the supply 

chain operational decisions rely directly on the availability of the financial resources. A supply 

chain cannot achieve its desired performance, unless the operational decisions are in 

accordance with its financial decisions. Moreover, the operational and financial decisions have 

mutual effect on each other. For instance, investing in production increases production capacity 

and may affect the production amount. On the other hand, reducing the inventory levels 

increases the profitability and may affect the amount of cash holding. 

The SBO methodology has been frequently applied to address supply chain problems related 

to planning of product flow. For instance, inventory planning (Mele et al., 2006; Duggan, 

2008), capacity planning (Georgiadis and Athanasiou, 2013; Sudarto et al., 2017). While, it has 

been applied in a limited number of studies to address a supply chain problem concerned with 

integrated planning of financial and product flows. For instance, Puigjaner and Laínez (2008) 

applied the SBO to address an integrated supply chain network design, production planning, 

distribution planning, and cash management problem. The research on the application of hybrid 

analytical-simulation approach for supply chain modelling is still in its infancy as the approach 

is new. Therefore, more studies on the application of hybrid analytical-simulation approach for 

solving the supply chain problems are required to be conducted. Supply chain planning models 

predominantly focus on the planning of physical flow, while the studies considered the 

planning of financial flow are very limited in proportion to the relevant literature (Yousefi and 

Pishvaee, 2018; Chauffour and Malouche, 2011). To conclude, supply chain planning literature 

requires the SBO and hybrid analytical-simulation models which integrate the planning of cash 

and material flows to address supply chain problems. 

1.2. Research objectives and methodologies 

This thesis aims to integrate planning of the cash and material flows within supply chain 

networks. The integration is performed through four case studies. As shown in Figure 1.1, all 

four case studies incorporate the stock management problem which refers to the issue of 

optimally regulating stock variables in a system to meet some system objectives. For instance, 

supply chain managers seek to minimize the inventory levels whilst providing 100% service 

levels in fulfilling the orders. 
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Figure 1.2.1. Case studies incorporating the stock management problem. 

Case study 1 and 2 are based on the beer distribution game introduced by Sterman (1989) and 

replicate a four echelon beer supply chain with the objective of fulfilling customer demand 

while minimizing the inventory levels. In both case studies, the beer game is further extended 

through incorporating the financial flow modelling and relaxing the initial assumptions of the 

game including deterministic demand and distribution lead times. In case study 1, minimizing 

the cash conversion cycles, which is a metric for working capital performance, of the supply 

chain members are considered as objective functions. In case study 2, the existence of the cash 

flow bullwhip which relates to the bullwhip effect in the cash flow is illustrated and it is 

minimized. In case study 3, the inventory management model developed by Sterman (2000) is 

extended through incorporating the flow of cash within the supply chain network. The objective 

of the original model is to balance production rate and inventory levels for a manufacturer in 

order to fulfil the customer demand. While, the extended model in addition to the product flow 

decisions such as production rate seeks to determine the optimal financial decisions such as 

collection policy from the customer and the payment policy to the supplier in order to minimize 

the cash to cash cycle of the supply chain while fulfilling the customer demand. In case study 

4, the developed inventory and cash management model in case study 3 is integrated with an 

optimisation model in which the optimal network structure and the optimal values to the stock 

variables such as inventory and cash are determined considering the capacity constraints. To 

put it in a nutshell, the principal objectives of the research are enumerated as follows: 

1. Managing the trade-offs between conflicting cash conversion cycle minimizations for 

supply chain members  
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2. Reducing the bullwhip effect and cash flow bullwhip in a supply chain under 

deterministic demand and lead times, stochastic demand and deterministic lead times, 

and stochastic demand and lead times 

3. Managing the trade-offs between the financial performance and liquidity in a supply 

chain network under economic uncertainty 

4. Addressing an integrated supply chain network design, supplier selection, inventory 

planning, and asset-liability planning 

To achieve the first three research objectives, the SBO methodology in which system dynamics 

simulation and genetic algorithms (GA) are integrated is applied. The GA determines the 

optimal values to the controllable decision parameters in the system dynamics model. The 

fourth objective is addressed using the hybrid analytical-SBO methodology in which an SBO 

model and a mixed integer linear programming (MILP) model are integrated. The MILP model 

identifies the optimal values to the decision variables of the simulation model, while the 

optimal values to the decision parameters of the simulation model are determined by the SBO 

model. 

1.3. Summary of contributions 

The primary contributions of this thesis are as follows: 

A methodology for working capital management in a supply chain using the SBO is provided. 

The employed methodology identifies the optimal values to the inventory and financial 

decision parameters. This work has been published at IEEE conference on intelligent systems, 

Portugal, 2018. (Badakhshan et al., 2018). 

A methodology for reducing the bullwhip effect and cash flow bullwhip in a supply chain using 

the SBO is presented. The efficiency of the methodology for various stages of complexity 

including deterministic demand and lead times, stochastic demand and deterministic lead times, 

and stochastic demand and lead times is investigated. This work has been published at 

International Journal of Production Research (IJPR), Volume 58, Issue 17. (Badakhshan et al., 

2020). 

A methodology for managing the trade-offs between financial performance and liquidity in a 

supply chain under economic uncertainty using the SBO is presented. The applied methodology 

determines optimal values to the inventory and financial decisions parameters in three probable 

economic scenarios. This work will be submitted to an international journal in the near future. 
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A methodology for integrating supply chain network design, supplier selection, inventory 

planning, and asset-liability planning under economic uncertainty by employing the hybrid 

analytical-SBO approach is provided. The applied methodology determines the optimal supply 

chain network structure, the suppliers to work with, the optimal values to the current and fixed 

assets, and the optimal inventory parameters such as inventory adjustment time and financial 

decisions parameters such as payment policy. This work will be submitted to an international 

journal in the near future. 

1.4. Thesis outline 

This thesis contains eight chapters and a brief summary of each chapter is provided as follows: 

Chapter 1 presents an introduction to the research carried out in this project. The research 

objectives, methodologies employed, and contributions are discussed. 

Chapter 2 provides a comprehensive literature review on applications of simulation-based 

optimisation modelling and hybrid analytical-simulation modelling in supply chain 

management. Moreover, a literature review on the supply chain models with financial aspects 

is given.  

Chapter 3 presents an introduction to the system dynamics and the genetic algorithms. The 

integration of the system dynamics simulation and the genetic algorithms in the form of 

simulation-based optimisation framework is also discussed. The integration of the SBO and 

MILP in the form of the hybrid analytical-simulation framework is also elaborated.  

Chapter 4 provides the proposed SBO approach to manage the working capital within supply 

chain networks. The cash conversion cycle is defined and the SBO approach is applied to 

manage the trade-offs between conflicting cash conversion cycle minimizations for supply 

chain members in the beer distribution game through finding the optimal values to the 

inventory and financial decisions parameters. 

In chapter 5 the concept of cash flow bullwhip is explained and the proposed SBO approach is 

applied to reduce the bullwhip effect, cash flow bullwhip, and supply chain total cost in the 

beer distribution game supply chain. This chapter concludes with two experiments designed to 

investigate the ability of the SBO reduced the bullwhip effect, cash flow bullwhip, and supply 

chain total cost when facing stochastic demand and deterministic lead times and stochastic 

demand and lead times. 
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In Chapter 6 the same SBO methodology is employed to manage the trade-offs between 

financial performance and liquidity under economic uncertainty in a real case study from the 

recent literature. The economic value added and the cash conversion cycle represent the 

financial performance and liquidity, respectively. The scenario tree approach is also applied to 

formulate the economic uncertainty. The performance of the SBO methodology is also 

compared with the performance of the system dynamics simulation in each defined scenario. 

Chapter 7 provides the proposed hybrid analytical-SBO methodology that integrates physical 

and financial flows in a supply chain. The proposed methodology is applied to address an 

integrated supply chain network design, supplier selection, and inventory and asset-liability 

planning problem under economic uncertainty. The scenario tree approach is also applied to 

formulate the economic uncertainty. The performance of the hybrid analytical-SBO 

methodology in each defined scenario is also compared with the performances of the analytical 

and SBO approaches. 

Chapter 8 draws a conclusion to the thesis where the major achievements of this research are 

discussed and some potential direction for future research are suggested. 
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2. Chapter 2. Literature review 

2.1. Introduction 

Supply chain management (SCM) is the management of product, information, and financial 

flows among supply chain members in order to deliver superior customer value at the lowest 

cost to the supply chain. In this chapter, firstly an overview of SCM is provided. A discussion 

on the two important paradigms in the SCM, i.e. efficiency and responsiveness, and the drivers 

of the supply chain are presented. The necessity of incorporating financial flow into supply 

chain planning is discussed. A taxonomy on supply chain modelling and a comprehensive 

literature review on simulation-based optimisation and hybrid analytical-simulation modelling 

is provided to identify the gaps in the literature. Finally, the areas which require further research 

are recognized and the need for applying the simulation-based optimisation and hybrid 

analytical-simulation techniques to model the supply chain models with financial aspects is 

justified. 

2.2. Overview of supply chain management 

A supply chain is a network of organizations which cooperatively work together in order to 

manage and improve the flow of products, information, and cash within the network 

(Christopher, 2005). A supply chain is characterized by a forward flow of products, a backward 

flow of cash, and a two-sided flow of information. It is composed of a series of inter-

organizational and intra-organizational business processes in order to procure raw materials 

from suppliers, promote these raw materials into the finished products, distribute them to 

distributors, wholesalers, and retailers, and finally deliver them to the end customers. Brewer 

et al. (2001) classify key supply chain processes into: customer relationship management, 

customer service management, demand management, customer order fulfilment, 

manufacturing flow management, procurement, product development and commercialization, 

and return. It is imperative for a supply chain to continuously control and improve these 

processes. 

The core objective of a supply chain is to fulfil customer needs while optimizing the total cost 

including procurement cost, production cost, inventory holding cost, distribution cost, etc 

(Christopher, 2005). A successful supply chain provides the right product, at the right price, at 

the right time to the customer. Therefore, customer satisfaction is at the heart of supply chain 

management.  To achieve the customer satisfaction several tasks are required to be carried out 
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within the supply chain networks. The three main tasks of the supply chains are design, 

planning, and execution. Supply chain design is related to the strategic decisions such as facility 

location, supply relationships, logistics strategy and so on. Supply chain planning deals with 

tactical decisions such as production and distribution planning. Supply chain execution 

corresponds to the operational decisions such as order management and production 

management (Davis, 1993; Buurman, 2002). Supply chain event management is an additional 

major task in supply chain management that includes reactive risk management activities such 

as announcing plan changes and initiating corrective measures (Otto, 2003). 

Supply chain tasks including design, planning, execution, and event management are required 

to be performed in a way that not only result in customer satisfaction through fulfilling the 

customer demand at the right time and at the right price, but also maintain the supply chain 

total cost at the lowest possible level. In other words, supply chain tasks aim to improve the 

efficiency and responsiveness of the supply chain.  

Supply chain efficiency is defined as the ability of a supply chain to fulfil the customer demands 

at the lowest cost (Chopra and Meindl, 2007). An efficient supply chain focuses on lowering 

various costs which are incurred by supply chain members. These costs include production 

cost, inventory holding cost, transportation cost to name a few. A supply chain is efficient when 

the use of resources is optimised and the waste at all costs is avoided. 

Supply chain responsiveness is concerned with the ability of the supply chain to respond 

quickly to the changes in the marketplace (Kilger et al., 2015). These changes might be related 

to the end customer demand, lead times within the supply chain network and any other internal 

or external factor which necessitates updating the supply chain plans. A supply chain is 

responsive when the products move quickly through the supply chain network from suppliers 

to the manufacturers to the distributors to the retailers and finally to the end customers (Perry 

et al., 1999).  

A responsive supply chain concentrates on shortening the lead times such as manufacturing 

lead times and distribution lead times which prolong the amount of time that takes to deliver 

the products or services of the supply chain to the end customers. To reduce the lead times 

various tools such as electronic data interchange, automated warehousing, and improved 

manufacturing methods might be applied. Although implementing the solutions for lead time 

reduction impose extra costs on the supply chain members, in the long-term they result in 
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reducing supply chain costs. For instance, the cost of holding inventory and the cost of lost 

sales are diminished as a result of lead time reduction.  

The characteristics of efficient and responsive supply chains are described in Table 2.1. An 

efficient supply chain sets decision strategy regarding the product design, pricing, 

manufacturing, inventory holding, lead time, and supplier selection to minimize the total cost 

of the supply chain network. While, a responsive supply chain overlooks the cost savings 

opportunities and focuses on solutions which maximize the speed of responding to customer 

demands. 

Christopher et al. (2016) describe the differences between efficient and responsive supply 

chains from five perspectives: 

1. Core objective. The core objective of an efficient supply chain is to reduce the waste. 

While, the responsive supply chain aims to fulfil customer demand immediately. 

2.  Supply chain structure. The efficiency is related to the developing long-term supply 

chain partnerships that are reinforced over time. Although, the responsiveness involves 

reconfiguring the supply chains based on new market opportunities. 

3. Measuring the performance.  Efficient supply chains strive to improve productivity 

measures such as profit margins. Although, responsive supply chains endeavour to 

improve responsiveness metrics such as order fulfilment ratio. 

4. Organizing the workflow. An efficient supply chain concentrates on developing the 

procedures to standardise the workflow within the supply chain. Whereas, the 

responsive supply chain focuses on developing the flexible workflows that enable the 

supply chain members to respond quickly to the market changes. 

5. Planning and controlling of the workflow. Efficient supply chains plan and control the 

workflow in fixed time periods, e.g., monthly, while the responsive supply chains 

emphasise on immediate interpretation of market changes and quick response to the 

customer demands 
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Table 2.1. Comparing of efficient and responsive supply chains (Chopra and Meindl, 2007). 

 Efficient supply chain Responsive supply chain 

Primary goal Demand fulfilment at the 

lowest cost 

Quick response to the 

demand 

Product design strategy Maximize performance at a 

minimum product cost 

Maximize product 

differentiation 

Pricing strategy Lower margins as price is a 

primary customer driver 

Higher margins as price is 

not a primary customer 

driver 

Manufacturing strategy Lower costs through utilizing 

the benefits of economy of 

scale  

Maintaining the capacity 

flexibility to hedge against 

demand/supply uncertainty 

Inventory holding strategy Minimizing the inventory 

level 

Maintaining safety stock 

inventory to hedge against 

demand/supply uncertainty 

Lead time strategy Reduce but not at the 

expense of cost increase 

Reduce aggressively 

regardless of cost increase 

Supplier selection strategy Supplier selection based on 

cost and quality 

Supplier selection based on 

expedition, quality, 

flexibility, and reliability 

 

Real world supply chains are neither fully efficient nor fully responsive. According to the Fig 

2.1 which illustrates the cost-responsiveness efficient frontier, increasing supply chain 

responsiveness will cost more, thus lowering the efficiency. Chopra and Meindl (2007) state 

that demand uncertainty plays a pivotal role in designing an efficient or responsive supply 

chain. As the uncertainty of customer demand increases the supply chain is required to be more 

responsive.  
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Figure 2.1. Cost-responsiveness efficient frontier (Chopra and Meindl, 2007) 

2.2. Drivers of supply chain performance 

A supply chain is defined as a chain that links supply chain members through flows of products, 

cash, and information across the chain. Effective supply chain management is related to the 

effective management of the products, cash, and information flows across the supply chain to 

make a trade-off between efficiency and responsiveness that best satisfies the needs of a 

competitive strategy of a supply chain. The performance of the supply chain could be 

streamlined through improving its drivers. Chopra and Meindl (2007) classified supply chain 

performance drivers into six categories: facilities, transportation, inventory, sourcing, 

information, and pricing. For each individual driver, a trade-off between responsiveness and 

efficiency is required to be made by supply chain managers. The interplay between these 

drivers determines whether the supply chain is efficient, responsive or both.  

The structure of the supply chain decision making process is illustrated in Fig 2.2. Inventory, 

facilities, and transportation known as logistical drivers are related to the physical flow in the 

supply chain. Information, sourcing, and pricing known as cross functional drivers relate to 

cash and information flows in addition to the physical flow. The performance of the supply 

chain is contingent on the decisions which are made regarding these drivers. It is worth noting 

that the framework should not be viewed from top down as the study of the logistical and cross-

functional drivers may suggest updating the structure of the supply chain and supply chain 

strategy. The detailed discussion on each driver and its impact on supply chain performance 

are provided below. 
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2.2.1. Facilities 

Facilities refer to the locations where a product is manufactured, assembled or stored (Chopra 

and Meindl, 2007). Facilities are known as the “where” of the supply chain. Two major types 

of facilities are production and storage sites. Decisions on the location, capacity, and flexibility 

of the facilities can have a major impact on supply chain performance as they determine the 

degree of efficiency and responsiveness of the supply chain. For instance, a supply chain is 

more efficient if multiple retailers across a wide area are supplied by a single centralized 

storage facility and is more responsive if the retailers are supplied by various storage facilities 

that increases cost but diminishes the delivery time (Pochampally et al., 2004; Huang et al., 

2005). Therefore, when making decisions with regard to facilities, supply chain managers 

should assess the impact of their decisions on efficiency and responsiveness of the supply chain 

(Chopra and Meindl, 2007; Kilger et al., 2015). 
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Figure 2.2. supply chain decision making framework (Chopra and Meindl, 2007). 

2.2.2. Transportation 

Transportation refers to the movement of the products between supply chain facilities (Chopra 

and Meindl, 2007). Rail, motor, water, and air are basic modes of transportation which have 

different characteristics and provide different qualities of transport service with regard to 

expedition, shipment size, shipment cost, and flexibility (Stank and Goldsby, 2000). 

Transportation decisions can have a major impact on supply chain performance as they 

determine the degree of efficiency and responsiveness of the supply chain. Faster transportation 
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modes such as air improve supply chain responsiveness while decreasing its efficiency. On the 

other hand, slower transportation modes such as water shipment improve supply chain 

efficiencies while limiting its responsiveness. Therefore, the challenge for the transportation 

decision is to find the right balance between the transportation time and the transportation cost. 

The transportation decisions must be made in line with customer requirements. Faster 

transportation modes are preferred when serving customers who seek high level of 

responsiveness. Whereas, efficient transportation modes are selected when serving cost-

sensitive customers. Moreover, transportation mode impacts other supply chain drivers. For 

instance, transportation model directly impacts on inventory holding cost, stock out cost, and 

operating costs of the facilities. Therefore, the impact of transportation decisions on other 

supply chain drivers should be examined while making transportation decisions (Chopra and 

Meindl, 2007). 

2.2.3. Inventory 

Inventory refers to the raw materials, work in progress (WIP), and finished goods which are 

held in production and storage sites within the supply chain (Chopra and Meindl, 2007). 

Inventory is the main source of cost to the supply chain and it is held because the supply cannot 

be matched to the demand. Companies are continuously seeking solutions to bridge the gap 

between the supply and demand to reduce the inventory and thus the cost. Inventory decisions 

have a decisive influence on supply chain performance (Magnanti et al., 2006). A responsive 

supply chain entails large quantity of stock to fulfil the orders quickly. While, an efficient 

supply chain holds small quantity of stock to decrease the costs. The size of safety stock, cycle 

inventory, and seasonal inventory are inventory related decisions that determine whether a 

supply chain is more responsive or more efficient. As inventory is a major element of supply 

chain cost, the inventory decisions should be determined in line with supply chain strategy. 

2.2.4. Sourcing 

Sourcing in the supply chain refers to the selection of the suppliers, design of contracts with 

the suppliers, collaboration in product design, procurement of the raw materials, and evaluation 

of the suppliers’ performances (Chopra and Meindl, 2007). Supplier failure is known as one of 

the top supply chain risks which results in increased acquisition costs, excessive downtime of 

production resources, poor customer service, loss of revenue, and market share (O’Marah, 

2009). Various strategies such as single versus multiple sourcing, local versus global sourcing, 

optimizing order allocation among multiple suppliers, and performance-based supply contracts 
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have been suggested by the researchers to mitigate the negative impacts of the supplier failure 

(Swink and Zsidisin, 2006; O’Marah, 2009). Global sourcing includes making a trade-off 

between reliable high-cost local suppliers and unreliable low-cost offshore suppliers 

(Ravindran et al., 2010). Multiple sourcing improves the responsiveness of the firms in 

responding to the customers’ demands. Optimizing order allocation among multiple suppliers 

improves the efficiency of the supply chain in terms of supply chain procurement costs. 

Performance-based supply contracts assure that during the supply contract the quality of the 

raw materials/products which are supplied by the supplier remains unchanged and the firms 

are able to terminate the supply contracts if there is deviation from the committed quality levels. 

2.2.5. Information 

Information is one of the flows that connects supply chain members. Increased global 

competition has raised the need for an intimate relationship between the supply chain partners 

(Flynn et al., 2010). Information sharing is one of the solutions for establishing the intimate 

relationships among supply chain members. Information sharing refers to distributing useful 

information between organizational units within supply chain networks. There are various 

types of information that could be shared among supply chain members. Some familiar types 

of information which are shared within supply chain networks are: inventory information, sales 

data, sales forecasting, order information, product ability information, and information about 

new products (Lotfi et al., 2013). Information sharing may bring several benefits to the supply 

chain members such as inventory reduction, cost reduction, bullwhip effect reduction and 

improved resource utilization (Lee, So and Tang, 2000; Mourtzis, 2011). Therefore, supply 

chain members are required to employ advanced information technologies to share information 

between them to increase the competitive advantage of the supply chain network in today’s 

global economy (Goodman and Darr, 1998; Lotfi et al., 2013). 

2.2.6. Pricing 

Pricing refers to the process of determining the amount a company should charge its customers 

in exchange for its products. A variety of factors such as manufacturing cost, market place, 

market competition, market condition, and the quality of the product influence the price of a 

product (Christopher and Gattorna, 2005). Pricing is one of the major elements of the marketing 

strategy which not only affects the behaviour of the products or services customers but also 

influences the performance of the supply chain (Voeth and Herbst, 2006). Pricing impacts on 

the buying decision of the customers as: (1) price is the most flexible marketing variable that 
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can be adjusted to respond to or stimulate customer demand; (2) price is the trigger of the first 

impression through which the customers make their purchasing decision. Proper pricing is 

crucial as it has been shown that the customers may stop learning more about the product when 

the price is higher than expected; (3) sales promotions which are implanted through price 

adjustment are capable of stimulating demand for a particular product (Christopher and 

Gattorna, 2005). From a supply chain perspective, the pricing decisions are made with the 

objective of the increasing the profitability of the supply chain. Chopra and Meindl (2007) 

argue that the supply chain members should employ a pricing strategy which either increases 

revenue or reduces cost, or preferably both. The pricing process which conforms to the dynamic 

behaviour of the customers can help to absorb the customer demand and improve the supply 

chain profitability (Panda et al., 2015). 

As discussed earlier, the essence of supply chain management is to make a trade-off between 

responsiveness and efficiency through decisions which are made regarding the supply chain 

drivers, i.e., facilities, transportation, inventory, sourcing, information, and pricing. For each 

individual driver, a trade-off between responsiveness and efficiency is required to be made by 

supply chain managers. The interplay between these drivers determines whether the supply 

chain is efficient, responsive or combined. In this study, decisions on facilities, inventory, 

sourcing, information, and pricing are made to manage the trade-off between the efficiency and 

responsiveness. 

2.3. Supply chain finance 

Supply chain management integrates suppliers, manufacturers, distributors, and customers with 

regard to the physical and financial flows across the supply chain network (Comelli et al., 

2008). Considering the financial flow within supply chain networks is of paramount importance 

as implementing the supply chain decisions relies on the availability of the financial resources. 

For instance, opening a new facility in the supply chain network is impossible unless 

the funding mechanism is explicit. Moreover, the financial and physical flows have a mutual 

effect on one another. For example, inventory optimisation leads to savings in the financial 

resources which can in turn provide the required resources for implementing other operational 

decisions such as production capacity expansion. Therefore, it is imperative to incorporate the 

financial flow into supply chain models in addition to the physical flow. 

The financial flow within supply chain networks is usually considered from two perspectives: 

(1) cost and (2) flow of funds (Yousefi and Pishvaee, 2018). The cost perspective is related to 
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attributing fixed or variable costs to supply chain activities such as holding inventory and 

transportation and then deducting these costs from the revenue generated in the supply chain 

to measure the profitability. The flow of funds perspective is related to considering the financial 

flow dynamics by studying the dynamics of the assets and liabilities. 

Supply chain finance which is described as the intersection of the supply chain management 

and finance integrates the planning of the financial and physical flows within the supply chain 

networks considering the financial flow dynamics (Stemmler, 2002; Hofmann, 2005). Supply 

chain finance focuses on a collaborative inter-organizational financing approach, whereby the 

financial situations of the supply chain members are optimised by integrating all the financing 

processes (Pfohl and Gomm, 2009). The objective of supply chain finance is to decrease the 

cost of capital for supply chain members and accelerate cash flow within the supply chain 

networks through applying financing solutions on assets and liabilities that are either offered 

by the financial service providers such as banks to the supply chain members or by the supply 

chain members to their suppliers and customers (Gomm, 2010; Wuttke et al., 2013). 

The financing solutions offered by the financial service providers include short-term solutions 

on receivables and payables and long-term loans for fixed assets financing. For instance, 

reverse factoring is a financing solution provided by a financial service provider and initiated 

by a buyer, in which the financial service provider pays the buyers payables to its suppliers at 

an accelerated rate in exchange for a discounted price (Camerinelli, 2009). The financing 

solutions offered by the supply chain members to their suppliers and customers include 

solutions on optimizing the working capital elements including cash, receivables, payables, 

and inventories (Gelsomino et al., 2016). The trade credit, advance payment, and vendor-

managed inventory are examples of the financing solutions on working capital optimisation. 

Working capital optimisation comprises reducing the current assets including inventory, and 

receivables whilst increasing the current liabilities or payables in order to minimize the capital 

tied up in the company’s turnover process (Hofmann and Kotzab, 2010). Working capital 

optimisation can be achieved through minimizing cash conversion cycle (CCC) which is a 

metric that integrates inventory, receivables, and payables and indicates the efficiency of 

working capital management. The CCC is defined as the average days that it takes for a 

company to convert a dollar invested in raw material into a dollar collected from customer 

(Stewart, 1995) is one of the widely used key performance indicators to measure the efficiency 

of a firm’s working capital management. This study focuses on working capital optimisation 
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by using the financing solutions that are provided by the supply chain members to their 

customers and suppliers in presence of economic uncertainty. Among various solutions, this 

study focuses on trade credit and advance payment. 

• Trade credit is an agreement between the buyer and the supplier in which the buyer is 

permitted to postpone the payment for the received goods or services to a scheduled 

later time. Trade credit can be defined as a type of 0% financing offered by the supplier 

to the buyer. 

• Advance payment is an agreement between the supplier and the buyer in which the 

supplier is paid for the goods or services which have not been received by the buyer. 

Advance payment can be defined as a type of 0% financing offered by the buyer to the 

supplier.  

There are cases in which the buyer is allowed to postpone part of the value for the received 

goods or services known as partial trade credit and the supplier is paid for part of the received 

order known as partial advance payment. In this study, each supply chain member offers either 

full or partial trade credit to its customers and either partial or full advance payment to its 

suppliers. 

Economic uncertainty refers to microeconomic, macroeconomic, financial, and market 

conditions that impact profitability and working capital performance within supply chain 

networks (Longinidis and Georgiadis, 2013). In this study, the economic value added (EVA) 

and the cash conversion cycle (CCC) are used to measure the profitability and working capital 

performance, respectively. The EVA is a widely used index which indicates the economic 

performance of a firm and considers the real costs associated with the main sources of capital, 

i.e., equity and liabilities, used by the firm (Ogier, Rugman and Spicer, 2004). Therefore, it 

provides a more realistic representation of a firm’s profitability. 

Considering the uncertainties in economic parameters that are used in calculating the 

profitability and working capital performance indicators, i.e., CCC and EVA, provides a more 

realistic representation of the profitability and working capital performance within supply 

chains. In this study, the concept of economic cycle in which it is assumed that the economic 

condition between the economic cycles remains unchanged is applied to model the 

uncertainties in five economic parameters including demand, risk free rate of interest, expected 

return of the market, short-term interest rate, and long-term interest rate.  
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• Risk free rate of interest is the reward for placing the capital in an investment without 

taking any risks such as the interest rate of a treasury bill. 

• Expected return of the market is the return of the most representative stock market 

index. 

Moreover, this study focuses on asset-liability optimisation. The asset-liability optimisation 

includes optimizing fixed assets, current assets, current liabilities, long-term liabilities, and 

equity. In other words, the asset-liability optimisation involves optimizing fixed assets, long-

term liabilities, and equity in addition to the working capital. The objective of the asset-liability 

optimisation is to ensure that assets are available to cover liabilities and is achieved through 

using the equations of the balance sheet. The balance sheet is a financial statement that reports 

a firm’s assets, liabilities and equity at a given point in time. The core notion behind balance 

sheet is that the assets are financed by liabilities and/or equity. Therefore, at any given time the 

value of the assets equals to the value of the liabilities plus value of the equity that is known as 

the fundamental equation of the balance sheet. The other equations of the balance sheet include 

equality of the assets, liabilities, and equity with the sum of their elements. In this study, the 

optimal values to the assets, liabilities, and equity is achieved through maximizing the 

economic value added (EVA) index.  

2.4. Supply chain modelling  

Modelling is an extremely powerful tool for analysing complex systems such as supply chains. 

Various modelling approaches such as optimisation and simulation have been applied to deal 

with supply chain problems. Giannoccaro and Pontrandolfo (2001) classified approaches for 

supply chain modelling into: analytical approaches, approaches based on artificial intelligence, 

simulation approaches, and hybrid simulation optimisation approaches. In this thesis, an 

overview of the literature on applying analytical, artificial intelligence, and simulation 

approaches for supply chain modelling is provided to show the application of these modelling 

approaches for addressing the supply chain problems. Moreover, a thorough review of the 

literature on applying hybrid simulation optimisation approaches for supply chain modelling is 

presented to identify the gaps in this area. The literature on hybrid simulation optimisation 

modelling is divided into simulation-based optimisation modelling and hybrid analytical-

simulation modelling and the gaps in both areas are identified. 
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2.4.1. Analytical modelling 

Analytical approaches refer to the approaches such as linear programming, mixed-integer 

linear programming, stochastic programming, and robust optimisation (Giannoccaro and 

Pontrandolfo, 2001). A summary of previous works on analytical approaches is provided in 

Table 2.2. To provide an overview of the studies which applied analytical approaches for 

supply chain modelling a literature search in web of science database using the keywords such 

as “stochastic programming” or “robust optimisation” and “supply chain” was conducted and 

some of the papers which were published in highly reviewed operations and production 

management journals such as International Journal of Production Economics (IJPE) and 

International Journal of Production Research (IJPR) were selected and included in Table 2.2.  

Table 2.2. Analytical approaches for supply chain modelling 

Article Research scope Analytical approach 

Yu and Li (2000) Stochastic logistic problems Robust optimisation 

Agrawal et al. (2002) 
SC capacity and inventory 

planning 
Stochastic programming 

Lababidi et al. (2004) 
SC production and inventory 

planning 
Stochastic programming 

Guillén et al. (2005) SC network design Stochastic programming 

Spitter et al. (2005) SC production planning Linear programming 

Leung et al. (2006) SC production planning Stochastic programming 

Snyder et al. (2007) SC facility location 
Stochastic location 

model with risk pooling 

Aalaei and Davoudpour (2017) SC network design Robust optimisation 

Nindyasari et al. (2018) SC distribution planning 
Mixed integer linear 

programming 

Brunaud et al. (2019) SC inventory planning Linear programming 

Bertsimas and Youssef (2019) SC inventory planning Robust optimisation 

Ganji et al. (2020) 
SC production and 

distribution scheduling 

Mixed integer non-linear 

programming 
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2.4.2. Artificial intelligence modelling 

Approaches based on artificial intelligence consists of approaches such as fuzzy multi-

objective programming, fuzzy linear programming, fuzzy goal programming, evolutionary 

programming, reinforcement learning, and genetic algorithms (Giannoccaro and Pontrandolfo, 

2001). Table 2.3 summarises the studies that applied artificial intelligence approaches. To 

provide an overview of the studies which applied artificial intelligence approaches for supply 

chain modelling a literature search in web of science database using the keywords such as 

“fuzzy linear programming” or “reinforcement learning” and “supply chain” was conducted 

and some of the papers which were published in highly reviewed operations and production 

management journals such as International Journal of Production Economics (IJPE) and 

International Journal of Production Research (IJPR) and highly reviewed journal in the area of 

fuzzy logic such a “Fuzzy Sets and Systems” were selected and included in Table 2.3. 

Table 2.3. Approaches based on artificial intelligence for supply chain modelling 

Article Research scope 
Artificial intelligence 

approach 

Sakawa et al. (2001) 
SC production and transportation 

planning 
Fuzzy linear programming 

Giannoccaro and 

Pontrandolfo (2002) 
SC inventory planning Reinforcement learning 

Giannoccaro et al. 

(2003) 
SC inventory planning Fuzzy numbers 

Lin and Chen (2003) SC inventory planning Genetic algorithm 

Kumar et al. (2004) SC supplier selection 
Fuzzy multi-objective 

programming 

Chen and Lee (2004) 
SC production and distribution 

planning 
Fuzzy numbers 

Deshpande et al. 

(2004) 
SC task assignment 

Fuzzy multi-objective 

programming 

Wang and Shu 

(2005) 
SC inventory planning 

Fuzzy numbers and genetic 

algorithms 

Truong and 

Azadivar (2005) 
SC network design Genetic algorithm 
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Amid et al. (2006) SC supplier selection 
Fuzzy multi-objective 

programming 

Xie et al. (2006) SC inventory planning Fuzzy numbers 

Kumar et al. (2006) SC inventory planning Evolutionary programming 

Selim et al. (2008) 
SC production and distribution 

planning 
Fuzzy goal programming 

Jiang and Sheng 

(2009) 
SC inventory planning Reinforcement learning 

Sun and Zhao (2012) SC inventory planning Reinforcement learning 

Oroojlooyjadid et al. 

(2017) 
SC bullwhip effect Reinforcement learning 

Yousefi and 

Pishvaee (2018) 
Global SC planning 

Fuzzy mixed integer linear 

programming 

 

2.4.3. simulation modelling 

Simulation modelling composed of approaches such as discrete-event simulation and system 

dynamics (Giannoccaro and Pontrandolfo, 2001). Table 2.4 provides a summary of the studies 

which employed the simulation approaches. To provide an overview of the studies which 

applied simulation approaches for supply chain modelling a literature search in web of science 

database using the keywords such as “system dynamics” or “discrete-event simulation” and 

“supply chain” was conducted and some of the papers which were published in highly reviewed 

operations and production management journals such as International Journal of Production 

Economics (IJPE) and International Journal of Production Research (IJPR) and highly 

reviewed journals and conferences in the area of simulation modelling such a “Simulation 

Practice and Theory” and “Winter Simulation Conference” were selected and included in Table 

2.4. 
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Table 2.4. Simulation approaches for supply chain modelling 

Article Research scope Simulation approach 

Towill et al. (1992) Bullwhip effect System dynamics 

Towill and del Vecchio (1994) Bullwhip effect System dynamics 

van der Vorst (2000) SC network design 
Discrete event 

simulation 

Minegishi and Thiel (2000) 
SC production and inventory 

planning 
System dynamics 

Jansen et al. (2001) SC distribution planning 
Discrete event 

simulation 

Zhao and Xie (2002) SC information sharing 
Discrete event 

simulation 

Hung et al. (2006) 
SC production and inventory 

planning 
System dynamics 

Nair and Closs (2006) 
SC inventory and distribution 

planning 

Discrete event 

simulation 

Chatfield et al. (2007) SC architecture Agent-based simulation 

Chiang and Feng (2007) SC information sharing 
Discrete event 

simulation 

Chaerul et al. (2008) SC waste management System dynamics 

Van Der Vorst et al. (2009) SC network design System dynamics 

Persson and Araldi (2009) 
SC production and inventory 

planning 

Discrete event 

simulation 

Ferreira and Borenstein (2011) SC planning Agent-based simulation 

Das and Dutta (2013) Closed loop SC System dynamics 

Vidalakis (2013) SC distribution planning 
Discrete event 

simulation 

Long and Zhang (2014) 
SC production, inventory and 

transportation planning 
Agent-based simulation 

Tian et al. (2014) Green SC System dynamics 

Cigolini et al. (2014) SC network design 
Discrete event 

simulation 
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Bautista et al. (2019) SC sustainability assessment System dynamics 

Prinz et al. (2019) SC energy efficiency 
Discrete event 

simulation 

Yazan and Fraccascia (2020) SC waste management Agent-based simulation 

Tipmontian et al. (2020) SC block chain System dynamics 

 

2.4.4. Hybrid simulation optimisation modelling 

Hybrid simulation optimisation models are constructed through integrating analytical and 

simulation approaches. Integrating mixed-integer linear programming (MILP) and discrete-

event simulation is an example of hybrid simulation optimisation approaches. Simulation-

based optimisation is a hybrid simulation optimisation approach which refers to integrating 

simulation models such as system dynamics and optimisation algorithms such as genetic 

algorithms. In this thesis, the hybrid simulation optimisation models except for simulation-

based optimisation are called hybrid analytical-simulation models. Although, in some studies, 

the hybrid analytical-simulation modelling was called simulation-based optimisation. To 

conduct a systematic literature review on applying simulation-based optimisation and hybrid 

analytical-simulation approaches for supply chain modelling, a literature search in web of 

science database using the keywords “simulation-based optimisation” and “supply chain” was 

conducted. The generated papers were then reviewed and classified into (1) the studies which 

applied simulation-based optimisation approach, i.e., integrating simulation and optimisation 

algorithms, and (2) studies which employed hybrid analytical-simulation approach, i.e., i.e., 

integrating simulation and optimisation models.  

2.4.4.1. Simulation-based optimisation modelling 

Tables 2.5 presents a summary of the previous works on the simulation-based optimisation 

modelling. Table 2.5 is divided into five sections; Article showing the article’s author(s) 

reference; Research scope presents the article’s main field of study; optimisation algorithm 

shows the algorithm which was employed to determine the optimal values to the decision 

parameters; simulation model displays the modelling approach which was used to simulate the 

supply chain problem; optimisation objective shows the objectives which were considered in 

the studied supply chain model.  The full list of the papers presented in Table 2.5 is given in 

appendix. 
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The literature review on simulation-based optimisation (SBO) modelling for supply chain 

management, shown in Table 2.5, demonstrates that discrete-event simulation is the most 

applied simulation technique in the SBO models (Jiang and Ruan, 2008; Aydogan-Cremaschi 

et al., 2009; Ding, Benyoucef and Xie, 2009; Dong and Leung, 2009; Li, Sourirajan and 

Katircioglu, 2010; Maliki, Sari and Souier, 2013; Kulkarni and Niranjan, 2013; Fischer et al., 

2014; Essoussi, 2015; Woerner, Laumanns and Wagner, 2016; Yang, Arndt and Lanza, 2016; 

Chavez, Castillo-Villar and Webb, 2017; Keramydas et al., 2017; Afshar-Bakeshloo et al., 

2018). While, the share of system dynamics simulation in the SBO models is considerably 

lower than the share of the discrete-event simulation. In terms of research scope, the inventory 

planning problem which corresponds to the planning of the material flow within supply chain 

networks has been addressed in a significant number of studied papers (Mele et al., 2006; 

Schwartz, Wang and Rivera, 2006; Amodeo, Chen and El Hadji, 2007; Gao and Wang, 2008; 

Veeraraghavan and Scheller-Wolf, 2008; Diaz and Bailey, 2011; Essoussi, 2015). Although, 

the working capital planning problem which relates to the integrated planning of inventory, 

cash, accounts receivable, and accounts payable has remained under investigated (Puigjaner 

and Laínez, 2008; Bandaly, Satir and Shanker, 2016). 

The cost minimization has been widely considered as objective function in the supply chain 

planning models (Beyer, 2006; Chunxu, Feifei and Jianbing, 2007; Yoshizumi and Okano, 

2007; Jiang and Ruan, 2008; Aydogan-Cremaschi et al., 2009; Duan and Liao, 2013; Pitzer 

and Kronberger, 2015; Kara and Dogan, 2018). While the literature on supply chain planning 

lacks studies that focus on managing the trade-off between financial performance, i.e., cost 

minimization or profit maximization, and working capital management through developing the 

multi objective models. Working capital management focuses on minimizing the inventory 

levels, while financial performance metrics i.e., cost minimization or profit maximization aim 

to minimizing the backlog cost that is higher than the inventory holding cost.  

To fill the gap in the literature of supply chain planning using SBO modelling, in chapters 4-6 

of this study, three SBO models which integrate system dynamics simulation and genetic 

algorithm are developed to address three working capital planning problems. To manage the 

trade-offs between conflicting objectives in the working capital planning models, multi-

objective models are presented in chapters 5 and 6. The model presented in chapter 5, aims to 

minimize the total cost of the supply chain while minimizing the bullwhip effect and cash flow 

bullwhip. The model presented in chapter 6, aims to manage the trade-off between profit 

maximization and CCC minimization which represents the working capital performance. The 
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CCC is minimized through minimizing the inventory levels. While the profit is maximized 

through minimizing the lost sale or backlog that is achieved by maximizing the inventory 

levels. 

Table 2.5. Simulation-based optimisation approaches for supply chain modelling 
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2.4.4.2. Hybrid analytical-simulation modelling 

Tables 2.6 presents a summary of the previous works on the hybrid analytical-simulation 

modelling. Table 2.6 is divided into five sections; Article showing the article’s author(s) 

reference; Research scope presents the article’s main field of study; optimisation model shows 

the optimisation approach which was used for modelling the supply chain problem; simulation 

model displays the modelling approach which was used to simulate the supply chain problem; 

optimisation objective shows the objectives which were considered in the studied supply chain 

model.  

The literature review on hybrid analytical-simulation modelling for supply chain management, 

shown in Table 2.6, indicates that discrete-event simulation is the most commonly applied 

simulation technique in the hybrid analytical-simulation models (Wan et al., 2003; Jung et al., 

2004; Almeder and Preusser, 2007; Chen et al., 2010; Durand, Mele and Bandoni, 2012; Diabat 

et al., 2013; Frazzon, Albrecht and Hurtado, 2016; Ziarnetzky and Mönch, 2016; Chiadamrong 

and Piyathanavong, 2017). While, limited number of studies conducted on applying an SBO 

model in a hybrid analytical-simulation framework. Moreover, from our analysis of the 

literature there is no study that has employed system dynamics simulation in a hybrid 

analytical-simulation model. In terms of research scope, the integrated planning problems such 

as distribution and inventory planning problem has been addressed in a significant number of 

the studied papers (Jung et al., 2004; Almeder and Preusser, 2007; Chen et al., 2010; Gu and 

Rong, 2010; Varthanan, Murugan and Kumar, 2012; Diabat et al., 2013). 

Addressing the strategic supply chain planning problem, which includes integrating the 

strategic decisions such as network design and planning decisions such as inventory planning, 

using the hybrid analytical-simulation framework has remained under investigated. Although, 

a significant number of the hybrid analytical-simulation models were developed to address the 

integrated planning problems (Jung et al., 2004; Almeder and Preusser, 2007; Chen et al., 2010; 

Gu and Rong, 2010; Durand, Mele and Bandoni, 2012; Varthanan, Murugan and Kumar, 2012; 

Diabat et al., 2013). Cost minimization has been the dominant objective function in the hybrid 

analytical-simulation models (Truong and Azadivar, 2003; Wan et al., 2003; Jung et al., 2004; 

Chen et al., 2010; Nikolopoulou and Ierapetritou, 2012; Sahay, Ierapetritou and Wassick, 2014; 

Boulaksil, 2016). While, the literature on supply chain hybrid analytical-simulation modelling 

lacks the sufficient number of studies which consider the profit maximization as the objective 

function.  
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To fill the gap in the supply chain hybrid analytical-simulation modelling literature, in chapter 

7 of this study, a hybrid analytical-simulation framework which integrates an SBO model and 

a mixed-integer linear programming (MILP) model is developed to address a strategic supply 

chain planning problem which integrates supplier selection, network design, inventory 

planning, and asset-liability planning problems. The SBO model integrates a system dynamics 

simulation model and a genetic algorithm.  The developed MILP and SBO models aim to 

maximize the profit of the supply chain and are connected through an iterative process. The 

detailed description of the connection between the SBO and MILP models is elaborated in the 

next chapter. 
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Table 2.6. Hybrid analytical-simulation approaches for supply chain modelling  
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2.5. Research gaps 

2.5.1. Gap 1. working capital management and supply chains 

Working capital management (WCM) seeks to improve the efficiency of a firm’s operation 

through managing its inventory, accounts receivable, and accounts payable. Cash conversion 

cycle which is defined as the average days that it takes for a company to convert a dollar 

invested in raw material into a dollar collected from customer is one of the widely used key 

performance indicators to measure the efficiency of a firm’s working capital management 

(Hofmann and Kotzab, 2010). Supply chain entities, e.g. suppliers, manufacturers are willing 

to decrease their financial cost through diminishing CCC, however, CCC may be fallen for a 

company at the expense of CCC increase for either their upstream or downstream partners or 

both. Consequently, single company perspective toward working capital management appears 

to be inefficient in supply chain perspective.  

Several works studied the CCC in supply chain. For instance, Zhang et al. (2017) considered 

the minimization of the supply chain CCC as an objective in a multi-objective mixed integer 

linear programming model that was developed to address a supply chain network design 

problem. Lind et al. (2012) used an empirical approach to measure the CCCs for the members 

of an automotive supply chain during 2006-2008. The results showed that during the studied 

period there was no considerable change in the CCC of the supply chain members. Banomyong 

(2005) used the balance sheet of the members in a global shrimp supply chain to measure their 

CCCs. Theodore Farris and Hutchison (2002) applied a descriptive research and argued that 

the lower the CCC of the supply chain members the more successful the supply chain is. They 

suggested extending the average accounts payable, reducing the average accounts receivable, 

and shortening the production cycles as the strategies to reduce the cash conversion cycle for 

the supply chain members.  

Hofmann and Kotzab (2010) applied conceptual model building approach and argued that the 

CCC metric should be considered from supply chain perspective rather than single company 

perspective. They introduced a new metric called collaborative cash conversion cycle (CCCC) 

to measure the efficiency of the working capital management in a supply chain.  Ruyken et al. 

(2011) applied an empirical approach and argued that the minimizing of the CCCs for supply 

chain echelons are in conflict, as one firm’s payable conversion period is another firm’s 

receivable conversion period. They inferred that the right CCC for every single supply chain 

member should be determined considering the extent of responsiveness or efficiency 
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of the supply chain, supply chain design configuration, and risk aspect rooted within the supply 

chain network. Talonpoika et al. (2014) used the empirical approach and argued that for supply 

chains such as ICT and publishing, in which the supply chain members receive advance 

payments, CCC may not be an effective tool for measuring the efficiency of working capital. 

They introduced modified cash conversion cycle (CCC) as a new metric for measuring the 

cycle time of working capital in industries which receive advanced payments. 

Much of the literature on working capital management in the supply chain applied the empirical 

approaches to measure the CCCs for supply chain members (Theodore Farris and Hutchison, 

2002; Ruyken et al., 2011; Lind et al., 2012). Although, modelling approaches such as 

simulation and optimisation are under-represented. Moreover, it has been argued that supply 

chain members may reduce their cash conversion cycle at the expense of increasing it for their 

upstream and/or downstream members (Hofmann and Kotzab, 2010; Ruyken, Wagner and 

Jonke, 2011). The literature lacks the studies which applied a practical modelling approach to 

manage the trade-offs between conflicting CCC minimizations for supply chain members by 

finding the optimal values to the financial and inventory decisions parameters. Finally, the 

literature lacks the studies that applied the collaborative CCC (CCCC) as the metric for 

measuring the efficiency of the working capital management in supply chains. 

To fill the gap in the literature, in chapter 4 of  this study, simulation-based optimisation 

approach which integrates system dynamics simulation and genetic algorithms is applied to 

manage the trade-offs between conflicting cash conversion cycle minimizations for supply 

chain members and to minimize the collaborative CCC (CCCC) of the supply chain through 

finding the optimal values to the financial decisions parameters including price and unit cost 

and inventory decisions parameters including desired inventory, desired supply line, inventory 

adjustment parameter, and supply line adjustment parameter. 
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Table 2.7. Working capital management and supply chains literature 

Gap 1 Current literature Focus of 

approach/SC 

issues 

Parameters/variables 

considered 

Approaches 

Working 

capital 

management 

and supply 

chain 

Lack of simulation 

and optimisation 

modelling (Theodore 

Farris and Hutchison, 

2002; Ruyken et al., 

2011; Lind et al., 

2012) 

 

Lack of quantitative 

approach for 

modelling the trade-

offs in CCCs 

minimization 

(Hofmann and 

Kotzab, 2010; 

Ruyken, Wagner and 

Jonke, 2011) 

 

Lack of CCCC 

application for 

measuring the 

working capital 

management in 

supply chains 

(Hofmann and 

Kotzab, 2010; 

Ruyken, Wagner and 

Jonke, 2011; Lind et 

al., 2012) 

Managing the 

trad-offs 

between 

conflicting 

CCCs  

Minimization 

for supply 

chain 

members 

 

Minimizing 

the CCCC of 

the supply 

chain 

Desired Inventory 

Desired Supply line 

Inventory adjustment 

parameter 

Supply line adjustment 

parameter 

Price 

Unit cost 

 

System 

dynamics 

 

Multi-objective 

optimisation  

 

Genetic 

algorithms 

 

Simulation-

based 

optimisation 
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2.5.2. Gap 2. Bullwhip effect and cash flow bullwhip 

Beer distribution game which first was introduced by Sterman (1989) is a simplified but still 

realistic representation of a four-echelon beer supply chain consisting of a retailer, wholesaler, 

distributor, and factory. Using the SD simulation, it is illustrated that variations in end customer 

demands cannot be handled by the supply chain members which results in excessive inventory 

levels for the supply chain members. The inventory levels for upstream members of the supply 

chains, i.e., distributor and manufacturer are several of magnitudes larger than the end customer 

demand (O’donnell et al., 2006). This undesirable phenomenon is called bullwhip effect which 

leads to inefficiencies such as excessive inventory and stock-outs (Lee et al., 1997; Chen et al., 

1999). Demand forecasting, lead times, and ordering policies were identified as the main 

contributors to the bullwhip effect (Dejonckheere et al., 2003).  

Supply chains are mostly forecast-driven rather than demand-driven (Barlas and Gunduz, 

2011). In other words, supply chain members control and replenish inventory based on 

historical data. The impact of forecasting methods on the bullwhip effect has been investigated 

in several studies.  Alwan et al. (2003) study the bullwhip effect in a periodic review inventory 

control and replenishment system in which mean squared forecasting method is used for 

demand forecasting. They conclude that the bullwhip effect could be mitigated using the mean 

squared forecasting method. Zhang (2004) investigated the impacts of three forecasting 

methods including moving average, exponential smoothing, and minimum mean squared error 

on bullwhip effect in a periodic inventory review system with a first order autoregressive (AR1) 

demand process. The findings showed that all the three forecasting methods lead to the 

bullwhip effect. Luong (2007) studied the bullwhip effect in a periodic review inventory system 

with a first order autoregressive (AR1) demand process in which minimum mean squared 

method was used for demand forecasting. He concluded that the bullwhip effect could be 

diminished through increasing the value of the demand autocorrelation.  

The impact of the lead time on the bullwhip effect was investigated in several studies. Chatfield 

et al. (2004) studied the bullwhip effect under stochastic lead time and found that lead time 

variability exacerbates variance amplification in the supply chain. Kim et al. (2006) measured 

the impact of stochastic lead times in a k-stage supply chain and found that the lead time 

variability increases the bullwhip effect. Much of literature regarding the impact of lead time 

on the bullwhip effect point out that the lead time and the lead time variability should be 
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minimized as the longer lead times and larger lead time variations have an adverse effect on 

the supply chain performance (Chen et al., 2000; Agrawal et al., 2009). 

Ordering policy is another main contributor to the bullwhip effect which was investigated by 

the researchers. Dejonckheere et al. (2004) showed that in an order up to (OUT) inventory 

system in which the demand is forecasted using exponential smoothing or moving average, the 

bullwhip effect is unavoidable. They proposed a general replenishment rule for order 

smoothing. Balakrishnan et al. (2004) emphasize the importance of proposing new 

replenishment policies that are able to generate smooth order patterns which in turn can reduce 

the demand amplification. Hosoda and Disney (2006) introduced the Generalized order-up-to 

policy to mitigate the bullwhip effect in a three-echelon supply chain in which minimum mean 

square error method was applied for demand forecasting. The proposed ordering policy added 

a proportional controller to the simple order-up-to (OUT) policy. They showed that the 

proposed replenishment policy reduces the inventory costs by 10%. Boute et al. (2007) 

investigate the impact of ordering policy in a two-echelon supply chain including a retailer and 

a manufacturer with independent and identically distributed (I.I.D) customer demand. They 

showed that smoothing the ordering pattern at the retailer’s level mitigates the replenishment 

lead time and the bullwhip effect. 

Previous research on the bullwhip effect has highlighted the existence of this phenomenon and 

identified its main causes to mitigate its adverse effects (Alwan et al., 2003; Zhang, 2004; 

Luong, 2007). However, there is lack of studies that focus on minimizing the bullwhip effect 

by finding the optimal values to the controllable decisions of the supply chain members. 

Moreover, previous research does not consider the flow of cash in the bullwhip effect 

modelling. To fill the gap in bullwhip effect literature, in chapter 5 of this study, the bullwhip 

effect is minimized through finding the optimal values to the inventory decisions of the supply 

chain members. In the developed model the flow of cash is considered in addition to the flow 

of products. 

In addition to the high volatility in inventory levels, the bullwhip effect results in high volatility 

in the number of days that it takes for supply chain members to convert resource inputs into 

the cash flows collected from the customers known as cash conversion cycle (CCC). In such 

circumstances, supply chain members may confront liquidity constraints, as they are not able 

to predict the amount of time that it takes to get access to the cash. Tangsucheeva and Prabhu 

(2013) named this undesirable phenomenon “cash flow bullwhip” (CFB), which is caused by 
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variations in the CCC that occurs throughout financial flows in the supply chain. Cash flow 

bullwhip was quantified as the ratio of variability in CCC to variability in the end customer 

demand and the bullwhip effect and lead time were identified as its most significant 

contributors in an inventory system with the order up to (OUT) replenishment policy 

(Tangsucheeva and Prabhu, 2013). Goodarzi et al. (2017) identified rationing and shortage 

gaming as the main cause of the CFB in inventory systems with OUT policy, while it was 

identified as the least significant contributor to the CFB in Tangsucheeva and Prabhu (2013) 

study. Tangsucheeva and Prabhu (2014) argue that the existence of the CFB in the supply chain 

networks indicates the need for improving the cash flow forecasting. They presented a 

stochastic model to improve the accuracy of cash flow forecasting models within supply chain 

networks. The proposed model was developed by integrating Markov chain model in which 

payment probabilities were calculated by accounts receivable (AR) aging report (Corcoran, 

1978) and Bayesian model whereby the payment probability was extracted from payment 

behaviour of every single customer (Pate-Cornell et al., 1990). Sim and Prabhu (2017) 

developed a mathematical model to measure the CFB in a two-echelon supply chain including 

a supplier and a manufacturer. It was shown that the financing of the supplier by the 

manufacturer reduces the CFB in the supply chain.  

Previous research on the CFB has identified the causes of this phenomenon (Tangsucheeva and 

Prabhu, 2013; Goodarzi et al., 2017). There is a lack of studies that focus on minimizing the 

CFB through finding the optimal values to the inventory bullwhip contributors including the 

desired inventory, the desired supply line, the inventory adjustment parameter, and the supply 

line adjustment parameter.  Furthermore, price and unit cost are two decision parameters that 

assist the decision maker in controlling variations in the CCC. To fill the gap in CFB literature, 

in chapter 5 of this study, the CFB is minimized through identifying the optimal values to the 

price, unit cost, and inventory decisions that cause the inventory bullwhip. 

 

 

 

 

 

 



46 
 

 
 

Table 2.8. Bullwhip effect and cash flow bullwhip literature 

Gap 2 Current literature Focus of 

approach/SC 

issues 

Parameters/variables 

considered 

Approaches 

Bullwhip 

effect and 

cash flow 

bullwhip 

Lack of studies which 

minimize the bullwhip 

effect through finding 

the optimal values to the 

controllable decisions 

(Alwan et al., 2003; 

Zhang, 2004; Luong, 

2007) 

 

Lack of cash flow 

consideration into 

bullwhip effect 

modelling(Balakrishnan, 

et al., 2004; Hosoda and 

Disney, 2006) 

 

Lack of research on 

minimizing the CFB 

through finding the 

optimal values to the 

bullwhip effect 

contributors 

(Tangsucheeva and 

Prabhu, 2013, 2014; 

Goodarzi et al., 2017; 

Sim and Prabhu, 2017) 

Bullwhip effect 

 

Cash flow 

bullwhip (CFB) 

Desired Inventory 

 

Desired Supply line 

 

Inventory adjustment 

parameter 

 

Supply line 

adjustment parameter 

 

Price 

 

Unit cost 

 

System 

dynamics 

 

Multi-objective 

optimisation  

 

Genetic 

algorithms 

 

Simulation-

based 

optimisation 
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2.5.3. Gap 3: Inventory planning and working capital management under economic 

uncertainty 

Inventory planning refers to making a trade-off between efficiency and responsiveness. The 

inventory levels at the stock keeping units need to be adequate to meet customer demands and 

simultaneously at the minimum level to minimize the inventory holding cost. Inventory 

planning includes controlling the inventory levels and replenishing the inventory to respond to 

the customer demands quickly while minimizing the inventory levels.  

Several studies applied system dynamics to simulate the inventory planning systems. These 

studies aim to explore the dynamics of the inventory planning to evaluate system improvement 

strategies. Ashayeri and Lemmes, (2006) developed a SD model to investigate how various 

demand forecasting methods, different logistics routes, and alternative inventory planning 

methods may increase the profitability of a supply chain. Peng et al. (2014) proposed a SD 

model for inventory and logistics planning in a post-seismic supply chain. They investigated 

the effects of three inventory planning strategies and four demand forecasting methods under 

different lead time uncertainties on the system performance. Umeda, (2007) proposed an 

integrated simulation framework which combined SD and discrete-event simulation to examine 

the efficiency of three inventory planning strategy including push, pull, and hybrid push-pull 

and two production planning strategy including make to order and make to stock in a 

manufacturing supply chain model presented by Sterman (2000). 

Verwater-Lukszo and Christina (2005) developed a SD model to improve inventory and 

production management in a batch-wise plant. The developed model aimed to assess the impact 

of four inventory and production management tactics including increasing production capacity, 

eliminating safety stock, reducing safety stock, and reducing desired service level on the system 

performance indicators which were inventory level and service level. Poles and Cheong (2009) 

applied SD approach to model and simulate an inventory control system for a remanufacturing 

process in a closed-loop supply chain. The study aimed to analyse the impacts of residence 

time which was defined as the time period that products stay with customers and changes in 

level of company incentives for recycling on total inventory costs in an inventory system with 

pull strategy. Belhajali and Hachicha (2013) employed SD simulation to determine the safety 

stock for a single-stage inventory system with order-up-to (OUT) policy. 

Reyes et al. (2013) employed SD simulation to improve the management of the inventory in a 

disaster relief system. They found that the transhipment strategy in which supply chain 
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members at the same echelon exchange inventory could reduce inventory costs and improve 

service to the disaster victims. Cannella et al. (2015) applied SD simulation to quantify the 

impact of inventory record inaccuracy in collaborative supply chains. The results showed that 

the detrimental effects of the inventory record inaccuracy in terms of supply chain costs and 

service level in upstream supply chain is higher than the downstream supply chain. Schuh et 

al. (2015) developed the manufacturing supply chain model introduced by Sterman (2000) to 

investigate the impacts of the disturbances on the manufacturing supply chains. Minnich and 

Maier (2007) developed a SD model to compare the efficiency and responsiveness of the pull-

based and push-based inventory systems in the high-tech electronics industry. The results 

showed that the pull-based inventory planning systems are more efficient and responsive than 

the push-based systems providing higher fluctuations in capacity utilization upstream in the 

supply chain. 

Sánchez et al. (2016) developed a SD model to improve the performance of a production and 

inventory control in an automotive supply chain. Applying sensitivity analysis on model 

parameters including cycle time, production adjustment time, delivery time, desired raw 

material inventory, and desired finished good inventory, the order fulfilment ratio was raised 

to 1. Mehrjoo (2014) used SD to assess the risks of delays, forecasting, and inventory in fast 

fashion apparel industry. Mashhadi et al. (2015) presented a SD model to evaluate the impacts 

of additive manufacturing on configuration of supply chains. The simulation results showed 

that the inventory levels for supply chain members in additive manufacturing systems is lower 

than the traditional systems. Campuzano-Bolarín et al. (2015) integrated SD and optimisation 

to reduce the bullwhip effect and inventory costs in a perishable product supply chain using 

different E-business scenarios.  

Sheehan et al. (2016) applied SD simulation to mitigate the waste of raw material and finished 

good inventory in closed-loop supply chains. Lot size, product variety, process choice, and 

throughput were identified as the driving factors in industrial waste production and waste 

reduction policies were sought through modifying the values to the driving factors. Schmelzle 

and Tate (2015) employed SD modelling to investigate the impact of macroeconomic factors 

including interest rate, exchange rate, and inflation rate on inventory management policies. 

They concluded that keeping low levels of inventory in supply markets with high currency 

devaluation rates decreases the total cost of the supply chain.  Shahi (2016) integrated SD 

simulation and OptQuest optimisation solver to determine the minimum and the maximum 

inventory levels in an order-up-to inventory control and replenishment system. 
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Much of the literature on the application of the SD modelling for inventory control and 

replenishment focuses on evaluating the impacts of various policies on improving the system’s 

performance in terms of efficiency and responsiveness. The effects of the improvement policies 

on the system’s performance are measured through modifying the values to the decision 

parameters of the model. In other words, by applying SD modelling, the modeller is solely able 

to compare the effects of varied policies, i.e., different values of the controllable parameters, 

through performing what-if analysis which may not be an effective strategy particularly, when 

the decision parameters are continuous such as inventory decisions. Therefore, incorporating 

optimisation algorithms into the SD simulation is inevitable when the modeller aims to identify 

the optimal values to the continuous decision parameters.  

To fill the gap in inventory planning using SD simulation, In chapter 6 of this study, the genetic 

algorithm which is a metaheuristic and is an effective tool for optimisation of the continuous 

parameters (Mühlenbein and Schlierkamp-Voosen, 1993) is applied to identify the optimal 

values to the inventory decisions parameters such as inventory and supply line adjustment 

parameters.  

Working capital management from supply chain perspective relates to managing accounts 

receivable, accounts payable, and inventories through cooperation and coordination among 

supply chain members (Gelsomino et al., 2016). Several studies incorporated receivables and 

payables into inventory planning problem by using the trade credit policy. Ravichandran (2007) 

developed a dynamic programming model to address an inventory planning problem. The 

proposed model considered the constraints on receivables and payables in addition to the 

inventory and order fill rate constraints. Due to the complexity of the model, the simulation 

was applied to determine the optimal ordering policies for supply chain members so as to 

maximize the profit of the supply chain, minimize the inventory levels of the members, and 

minimize the working capital for the supply chain members. Teng (2009) developed a 

mathematical model which integrated receivables and payables management into an inventory 

planning problem. The objective of the developed model was to identify the optimal ordering 

policy for a retailer who received trade credit by its supplier and offered either partial trade 

credit or full trade credit to its customer depending on their debt payment history.  

Huang (2007) developed a mathematical model to identify the optimal inventory cycle time 

and order quantity for a retailer which was offered partial permissible delay in payment by its 

supplier when its order quantity was smaller than a predetermined quantity. Huang and Hsu 
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(2008) developed a mathematical model to determine the optimal ordering policy for a retailer 

that had access to the full trade credit offered by its supplier while he offered partial trade credit 

to his customer. Moussawi-Haidar and Jaber (2013) presented a mathematical model that 

incorporated the management of receivables, payables, and cash into an inventory planning 

problem in a two-echelon supply chain including a retailer and a supplier where the delayed 

payment was allowed by the supplier. The objective of the developed model was to determine 

the optimal order size, payment time, and maximum cash level to keep in account for the 

retailer to minimize the inventory and financial costs.  

Ho et al. (2008) presented a mathematical model to address an integrated supplier-buyer 

inventory planning problem in which the supplier offered the retailer a two-part trade credit 

policy. If the buyer paid within a specified time period, he was offered cash discount, otherwise 

he needed to pay the full purchasing price before another specified period which was larger 

than the first specified period. The objective of the developed model was to identify the optimal 

pricing, ordering, shipping and payment policy to maximize the total profit of the supply chain. 

Teng and Chang (2009) developed a mathematical model to determine the optimal 

replenishment decisions for a retailer in presence of two-level trade credit which implied that 

the trade credit offered by supplier to the retailer differed from the trade credit offered to the 

customer by the retailer. Liao (2008) developed a mathematical model based on economic 

order quantity model to identify the optimal replenishment policy for a retailer that received 

trade credit from its supplier and provided trade credit to its customer. Mahata (2012) 

developed an economic order quantity-based inventory model to determine the optimal 

inventory policy for a retailer that was provided with full trade credit by its supplier and offered 

partial trade credit to its customers. 

Much of the literature on inventory planning under trade credit applied mathematical modelling 

approaches, and the simulation-based modelling remains underrepresented. Moreover, cost 

minimization or profit maximization are the dominant objective function in the developed 

models in the literature, while the literature lacks the studies that manage the trade-off between 

profitability and liquidity through developing the multi objective models. Finally, the literature 

lacks the studies that consider uncertainties in economic parameters such as demand and 

interest rates. To fill the gap in the inventory planning under trade credit literature, in chapter 

6 of this study, a simulation-based optimisation model which integrates SD simulation and a 

genetic algorithm is developed to manage the trade-off between profitability and liquidity 

under economic uncertainty. 
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Table 2.9. Inventory planning and working capital management literature 

Gap 3 Current 

literature 

Focus of 

approach/S

C issues 

Parameters/variable

s considered 

Uncertain 

parameters 

Approach

es 

Inventory 

planning 

and 

working 

capital 

managemen

t 

under 

economic 

uncertainty 

Inability of 

SD modelling 

in identifying 

the optimal 

inventory 

parameters 

(Reyes et al, 

2013; Peng et 

al., 2014; 

Cannella et 

al., 2015) 

 

Lack of 

simulation-

based 

modelling for 

integrated 

inventory 

planning 

under trade 

credit problem 

(Liao, 2008; 

Teng, 2009; 

Mahata, 2012) 

 

Lack of multi-

objective 

models which 

manage the 

trade-offs 

between 

profitability 

Managing 

the trade-offs 

between 

economic 

value-added 

(EVA) 

maximizatio

n and cash 

conversion 

cycle (CCC) 

minimization  

 

 

Desired Inventory 

 

Desired Supply line 

 

Inventory adjustment 

parameter 

 

Supply line 

adjustment parameter 

 

Price 

 

Unit cost 

 

Collection policy 

Payment policy 

Demand 

 

Risk-free 

rate of 

interest 

 

Expected 

return of the 

market 

 

Short-term 

interest rate 

Long-term 

interest rate 

System 

dynamics 

 

Multi-

objective 

optimisatio

n  

 

Genetic 

algorithms 

 

Simulation

-based 

optimisatio

n 
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and liquidity 

in inventory 

planning 

under trade 

credit models 

(Huang, 2007; 

Huang and 

Hsu, 2008; 

Teng and 

Chang, 2009) 

 

Ignoring the 

economic 

uncertainty in 

the inventory 

planning 

under trade 

credit problem 

(Ravichandran

, 2007; Liao, 

2008; Teng, 

2009) 

 

2.5.4. Gap 4: Strategic supply chain planning and supply chain finance under economic 

uncertainty 

As explained in section 2, supply chain design refers to strategic decisions such as network 

design and supplier selection. While, supply chain planning is related to the tactical decisions 

such as production and inventory planning. Strategic supply chain planning integrates the 

strategic and tactical decisions. For instance, integrating a network design and an inventory 

planning problem is considered a strategic supply chain planning problem. Strategic supply 

chain planning models show more realistic viewpoint of supply chain decisions; as different 

decisions in the supply chain are related to each other and deciding on them in an integrated 

manner results in better performance. Besides, application of the strategic supply chain 

planning models reduces unexpected events such as increased cost through the supply chain 

network (Laínez et al., 2008; Gupta and Dutta, 2011). 
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Several works incorporated financial flow modelling into the strategic supply chain planning 

problem. Melo et al. (2006) developed a MILP model to address an integrated supply chain 

network design and inventory planning problem considering budget constraints. The developed 

model aimed to identify the optimal network structure, flow of goods in the network, inventory 

levels held at the facilities, and the amount of capacity transferred between the facilities. 

Naraharisetti et al. (2008) developed a MILP model to address a strategic supply chain planning 

problem considering budget constraints. The objective of the developed model was to 

maximize the net present value of the total assets through determining the optimal values to 

the flow of products in the network, inventory decisions, open/close decisions of the facilities, 

and the loans.  

Zhang et al. (2017) presented a multi-objective MILP model to formulate a strategic supply 

chain planning problem for a multi-source, multi-product, multi-stage supply chain. The 

developed model considered minimizing the cash conversion cycle in the supply chain network 

in addition to minimizing the total cost and maximizing the customer service level. The 

developed model aimed to identify the optimal network structure, flow of products in the 

network, and the inventory levels at the facilities. Puigjaner and Laínez, (2008) presented an 

SBO framework to incorporate financial flow planning into a supply chain network design and 

distribution planning problem under demand, price, and interest rate uncertainties. The 

objectives of the developed model were to maximize the change in equity and minimize the 

environmental impact through identifying the optimal level of current assets, fixed assets, and 

liabilities in addition to the network design and distribution planning decisions such as the 

location of the facilities and the flow of products in the network. 

Longinidis and Georgiadis (2011) developed a MILP model to incorporate balance sheet 

equations and financial ratios constraints into a strategic supply chain planning problem under 

demand uncertainty. The proposed model aimed to maximize economic value added of the 

supply chain network through determining the optimal values to the number, location and 

capacity of the warehouses and distribution centres in the supply chain network, the flows of 

materials in the network, the inventory levels at facilities, and the production rates at the plants. 

Nickel et al. (2012) developed a MILP model to incorporate financial flow modelling in a 

strategic supply chain planning problem under demand and interest rates uncertainties. The 

objective of the developed model was to identify the optimal values to the location of the 

facilities in the network, investment choices, loans, inventory levels at the facilities, and the 

flow of products within the network to maximize the total financial benefit. 
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Longinidis and Georgiadis (2013) presented a mixed integer nonlinear programming (MINLP) 

model to make a trade-off between financial performance and credit solvency within a strategic 

supply chain planning problem under economic uncertainty. Economic value added (see 

Stewart Iii (1994)) and Z-score (see Altman (1968)) were applied to measure the financial 

performance and credit solvency, respectively. The developed model determined the optimal 

values to the level of fixed assets, current assets, liabilities, and equity in addition to the optimal 

number, location and capacity of the warehouses and distribution centres in the supply chain 

network, the flows of materials in the network, the inventory levels at the facilities, and the 

production rates at the plants. 

Ramezani et al. (2014) developed a MILP model which considered the financial aspects of the 

supply chain in addition to the operational aspects to address a strategic supply chain planning 

problem. The developed model aimed to find the optimal values to the short-term liabilities, 

optimal level of current assets, fixed assets, and liabilities in addition to the location of the 

facilities, inventory levels at the facilities, and the flow of products in the network so as to 

maximize the change in equity. The results showed that the change in equity in the developed 

model was higher than in the traditional model in which the financial decisions are made after 

deciding on the operational decisions. Cardoso et al. (2016) developed a bi-objective MILP 

model which incorporated financial risk measures into the design and planning of closed-loop 

supply chains under demand uncertainty. The objectives of the developed model include 

maximizing the supply chain expected net present value and minimizing the financial risk. The 

financial risk is measured through applying four different risk measures including VaR, CVaR, 

variability index, and down-side risk. The ε-constraint model was used to solve the developed 

model. 

Yousefi and Pishvaee (2018) presented a MILP model which integrated physical and financial 

flows within a strategic supply chain planning problem under exchange rate uncertainty. The 

developed model aimed to maximize the profitability of the supply chain through identifying 

the optimal financial flow decisions including the level of current assets, fixed assets, and 

liabilities in addition to the optimal physical flow decisions including the number of required 

suppliers and distribution centres in the supply chain network, the amount of raw material to 

be purchased by the manufacturer, the flow of material in the network, and the optimal 

inventory levels should be held at each supply chain entity. The profitability of the supply chain 

was measured by the economic value added (EVA). 
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Previous research on integrated strategic supply chain planning and supply chain finance 

mostly applied MILP modelling, while the hybrid analytical-simulation approach which are 

more efficient than the analytical approaches in capturing the nonlinearities, delays, and 

feedback loops exist in such problems have remained underrepresented. Previous studies take 

into account a limited number of uncertainties, mostly uncertainty in demand, while there is 

lack of studies that consider a wide range of uncertainties in the economic parameters. To fill 

the gap in the literature, in this study, a hybrid analytical-simulation model is developed to 

address a strategic supply chain planning problem under economic uncertainty. The strategic 

supply chain planning problem includes supplier selection, network design, inventory 

planning, and asset-liability optimisation. 

Table 2.10. Strategic supply chain planning and supply chain finance literature 

Gap 4 Current 

literature 

Focus of 

approach/SC 

issues 

Parameters/variables 

considered 

Uncertain 

parameters 

Approaches 

Strategic 

supply 

chain 

planning 

and supply 

chain 

finance 

under 

economic 

uncertainty 

Lack of 

hybrid 

analytical-

simulation 

modelling 

for strategic 

supply chain 

planning 

problem 

(Yousefi 

and 

Pishvaee, 

2018; Melo 

et al., 2006; 

Ramezani et 

al., 2014; 

Cardoso, et 

al., 2016; 

Zhang et al., 

2017) 

SC network 

design 

 

Supplier 
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Inventory 

planning 

 

Working 

capital 

management 

 

Cash 

management 

Desired Inventory 
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Collection policy 

Payment policy 

Desired Cash 
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Fixed and current 

assets 

 

Short-term and long-

term liabilities 

 

Equity 

 

 

Demand 

 

Risk-free 

rate of 

interest 

 

Expected 

return of the 

market 

 

Short-term 
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Long-term 

interest rate 

System 

dynamics 

 

Genetic 

algorithms 

 

Simulation-

based 

optimisation 

 

Hybrid 

analytical-
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Ignoring the 

economic 

uncertainty 

in the 

strategic 

supply chain 

planning 

problem 

(Melo et al., 

2006; 

Naraharisetti  

et al., 2008; 

Ramezani et 

al., 2014; 

Zhang et al., 

2017) 

 

 

 

 

 

 

 

 

 

 

 

 



57 
 

 
 

3. Chapter 3. Simulation-based optimisation and hybrid 

analytical-SBO 

3.1. Introduction 

As the literature reviews presented in the previous chapter concluded, there is a great lack of 

research involving the integration of system dynamics and the genetic algorithms in the SBO 

literature and there is also a considerable need for integration of the SBO and MILP in the 

hybrid analytical-simulation literature. In this chapter, firstly, an introduction to the system 

dynamics and optimisation techniques are provided and the selection of the genetic algorithm 

as the optimisation technique in this study is justified. Later on, the integration of the system 

dynamics simulation and the genetic algorithm in the form of simulation-based optimisation 

framework is discussed. Finally, the integration of the SBO and MILP in the form of the hybrid 

analytical-simulation framework is elaborated.  

3.2. System Dynamics 

System dynamics (SD) is a simulation technique for modelling complex, non-linear, and 

dynamic systems developed by Jay W. Forrester during the mid-1950s. According to 

Richardson (1991), SD is a computer-aided approach to policy analysis and design of any 

dynamic system characterized by independence, mutual function, information feedback, and 

circular causality. SD captures the dynamical behavior of the system through considering 

information feedbacks and delays of the model (Angerhofer and Angelides, 2000). SD 

modelling enables users to evaluate the behaviour of the system and its response to various 

policies. Supply chain processes, information, strategies, and organizational limits can be 

qualitatively described by the SD modelling. Supply chains are complex systems comprise 

multiple autonomous entities which can be characterized by a stock and flow structure for 

acquisition, storage, converting inputs into outputs, and the decision rules governing these 

flows (Sterman, 2000). SD is an applicable approach for modelling and analysing the supply 

chains as the existing flows in the supply chain networks, e.g. information, material, and cash 

flows, create important feedbacks among the supply chain agents (Georgiadis, Vlachos and 

Iakovou, 2005). SD modelling process can be subdivided into three steps. First, the generation 

of a causal loop diagram, which is translated into a stock and flow diagram in the second step. 

The final step includes the formulation of a mathematical system of differential equations 

(Bießlich et al., 2014). In order to transfer the causal loop diagram into a simulation-capable 

stock and flow diagram, five central building blocks, namely; stocks, flows, auxiliaries, 
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feedbacks, and time delays, are defined. The stocks indicate the current state of the system and 

are only changed through their in-and outflows. The flows, on the other hand, are determined 

by various model variables that change the flows and consequently the stocks. The auxiliary is 

attributed to all other model variables which cannot be defined as stocks and flows. The 

corrective measures taken by the system to bridge the gap between the actual value and the 

desired value of a variable are known as feedback loops (Campuzano and Mula, 2011). The 

time delay is defined as a process whose output lags behind its input (Sterman, 2000). An SD 

stock and flow model representing a simple capital injection process, utilizing the building 

blocks is depicted in Figure 3.1. 

The stock in this process is the system’s cash level where the inflow of cash which is as the 

result of products selling and the outflow of cash triggers by purchasing costs increase and 

decrease the cash level. 

 

Figure 3.1. A simple SD stock and flow model with feedback loop and delay 

The initial cash inflow rate and the cash gap variable constitute the flow of cash injection into 

the cash pool, by defining the cash inflow variable. The cash gap variable is part of the feedback 

loop which takes corrective measures to keep the cash at a desired level, by increasing or 

decreasing the cash gap. There is a delay between identifying the cash gap and bridging the 

gap through the cash inflow rate. As explained, the stocks accumulate their flows where the 

net flow, e.g., the inflow less the outflow, into the stock is the rate by which the stock is 

changed. The cash stock is defined by integral Equation 3.1, where Casht−1 represents the cash 

level in the previous time period, andCasht  ,Cash inflowt, Cash outflowt  represent the variable 

values at current time t.  

𝐶𝑎𝑠ℎ𝑡 = 𝐶𝑎𝑠ℎ𝑡−1 + (𝐶𝑎𝑠ℎ 𝑖𝑛𝑓𝑙𝑜𝑤𝑡 − 𝐶𝑎𝑠ℎ 𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑡)                                   (3.1) 
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In chapters 4-7 of this study, the stock and flow structure of the system dynamics simulation 

modelling is applied to represent the flow of products, information, and cash within distribution 

and manufacturing supply chains. The state of each supply chain system is indicated by stocks 

such as the inventory of the raw material, the inventory of the products, and the inventory of 

cash. The change in the stocks is represented by flows such as order delivery, and order 

payment. The parameters that remain unchanged during the simulation time such as payment 

policy, i.e., the amount of cash payment at the time of order placement, and desired level of 

inventory are shown as auxiliaries. The corrective measures that are taken by the supply chain 

systems to bridge the gap between the auxiliaries such as the desired inventory and the desired 

cash with their actual values are indicated by feedback loops. Finally, the time delays exist in 

the supply chain systems such as the time delay between placing an order and receiving of the 

order known as the distribution lead time and the time delay between shipping of an order and 

receiving of the payment are shown by delay functions.  

3.3. optimisation techniques  

Optimisation is defined as the determination of optima which is maxima or minima in a search 

space using a fitness function (cost function). The main objective of the optimisation is to 

identify the singular global optimum in a search space that may contain multiple local optimal. 

There main approaches to the optimisation include analytical optimisation, exhaustive 

searching and natural optimisation.  

3.3.1. Analytical optimisation 

Analytical optimisation includes using differential calculus to minimize a cost function (fitness 

function) and to find the global optimum. If the cost function contains one variable, the first 

derivative of the cost function is set to zero and the variable value is determined. If the second 

derivative of the cost function in the determined point is less than zero, the determined point is 

a maximum. Otherwise, it is a minimum (Lawden, 2006). 

3.3.2. Exhaustive searching 

Exhaustive searching approach determines the global optimum by extensively investigating the 

cost function surface (Aliev and Larin, 1998).  In other words, the extensive searching approach 

performs an extensive survey of the surface to gain an overall perspective on the entire 

topological layout of the cost function surface. Using this approach, each possible solution 

within the entire search area is evaluated the global optimum is identified after complete 
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analysis. As in the exhaustive searching approach, all possible solutions need to be examined, 

this method requires a considerable amount of time to identify the global optimum. To make 

the exhaustive approach more effective in terms of solving time, a variation of this approach 

that uses branch and bound heuristics, is applied which is called semi-exhaustive search 

approach. This approach considers the positions of neighbouring solutions and requires less 

evaluation. Heuristic methods are employed to determine the number and proximity of the 

neighbours to be used in the semi-exhaustive search approach (Yoo, 2006). 

3.3.3. Natural optimisation 

Natural optimisation approaches use the mechanisms that exist in our natural surroundings to 

identify the global optimum in the search space. There are many nature inspired algorithms 

such as genetic algorithms (GAs), particle swarm optimisation (PSO), ant colony optimisation 

(ACO), and simulated annealing (SA) to name a few. Some of widely applied nature inspired 

algorithms are explained as follows. 

3.3.3.1. Simulated annealing 

Simulated annealing algorithm is inspired from annealing process whereby metal is heated to 

melting point and is then very slowly cooled. The slow cooling allows the atoms to line up and 

form a crystal that is the state of minimum energy in the system. The rate by which cooling 

occurs is of paramount importance as a rapid cooling results in a non-crystalline meta-stable 

glass. The formation of the perfect crystal is analogues to finding the global optimum in an 

optimisation problem and the formation of non-crystalline meta-stable glass is analogous to 

mistake a local minimum for the global optimum. Similar to the annealing process in which 

the temperature is set to high in the early stages of the process for faster melting, simulated 

annealing algorithm initially wanders toward a broad region of the search space that contain 

good solutions. Similar to the annealing process in which after the melting the temperature is 

slowly reduced for greater stability, simulated annealing algorithm thoroughly examines the 

sections of the search space that provide better solutions than the other sections to identify the 

global optimum. This approach guides the optimisation to find the best valley in the search 

space before searching for the lowest point within the specific valley which is the global 

optimum. Simulated annealing approach is used for solving combinatorial optimisation 

problems in which the search space is discrete (Van Laarhoven and Aarts, 1987). 
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3.3.3.2. Particle swarm optimisation 

Particle swarm optimisation is inspired from the swarming behaviour of birds and fish. It solves 

an optimisation problem by having a population of candidate solutions knowns as particles and 

moving these particles in the search space according to their best known positions and the best 

known position of the entire swarm. When improved positions are discovered, they guide the 

movements of the swarm. By repeating the process it is hoped but not guaranteed that a 

satisfactory solution will be identified (Kennedy and Eberhart, 1995). Particle swarm 

optimisation algorithm does not require the optimisation problem to be differentiable as 

opposed to the classic optimisation methods. Although, it cannot guarantee an optimal solution 

is ever discovered. As the decision parameters that are required to be optimised in this study 

are continuous, particle swarm optimisation can be used to obtain the optimal values to the 

decision parameters. 

3.3.3.3. Ant colony optimisation 

Ant colony optimisation algorithm is inspired by ants behaviour. In the natural world, ants walk 

randomly in search of food and upon finding it go back to their colony while laying down 

pheromone trails. Other ants that find such a path are likely to follow the trail in an attempt for 

finding food rather than travelling randomly. If the ants which followed the trail are successful 

at finding the food, they reinforce the pheromone trail while returning to their colony. Over 

time the pheromone trail will start to evaporate, thus reducing its attractiveness. The longer it 

takes for an ant to travel down the path and back again, the longer it takes for the pheromones 

to evaporate. The evaporation of the pheromone avoids the convergence to a locally optimal 

solution. Ant colony optimisation algorithm is used for solving combinatorial optimisation 

problems. As the decision parameters that are required to be optimised in this study are 

continuous, ant colony optimisation is not a viable method for obtaining the optimal values to 

the decision parameters. 

3.3.3.4. Genetic algorithms 

Genetic algorithms (GAs) are computational algorithms inspired by Darwinian evolutionary 

theory which can be called in short as “survival of the fittest” (Darwin, 1859). In GAs it is 

assumed that fittest solutions survive and their characteristics are transferred from one 

generation to the next (Duggan, 2008). GAs do not require derivative information found in 

analytical optimisation, work well with numerically generated data, experimental data or 

analytical functions, possess the ability to jump out of local minimum, and are able to optimise 
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continuous and discrete parameters, particularly the continuous parameters (Lu et al., 2009). 

Consequently, GAs are an efficient and robust method of obtaining global optimisation in 

complex optimisation problems (Johnson and Vonk, 1997). GAs are able to optimise 

conflicting objectives simultaneously; the population is composed of individuals from different 

sectors of the cost function surface that enables the GA algorithm to search over large areas of 

the search space in parallel. This attribute makes the Gas a perfect fit for multi-objective 

optimisation problems (Streichert, 2002). 

The GA is a well-suited optimisation algorithm for this study as the decision parameters that 

are required to be optimised in this study are continuous and the studied optimisation problems 

are multi-objective. In chapters 4-7 of this study, the GA is applied to find the optimal values 

to the decision parameters, i.e., auxiliaries, of the system dynamics simulation models such as 

inventory and financial decisions parameters while making trade-offs between conflicting 

supply chain objectives such as simultaneous bullwhip effect and total cost minimization.  

To optimise SD models using GAs, each solution known as chromosome is represented by an 

array of elements, where each position in the array pertains to a possible parameter value. A 

solution pool named population is formed by a set of chromosomes. The algorithm starts with 

setting up a population of random possible solutions. Then, the chromosomes are evaluated 

based on the objective function to obtain the fitness of the solution. A fitness value shows that 

how good each solution is in satisfying objective functions. Applying the rule of survival of 

the fittest, strongest solutions are selected from the population. Subsequently, solutions with 

higher fitness are combined to produce new solutions by performing crossover operator. These 

solutions are known as parent solutions. To ensure maintaining variety in the overall 

population, new solutions may then be subjected to small variations from parent solutions 

called mutation operator. Each population then represents a generation, and the process 

continues until predefined stopping criteria is met, such as convergence of fitness over 

generations or reaching maximum number of generations (Lu et al., 2012). A brief outline of 

how GA derives optimal parameter values is illustrated in Figure 3.2 and outlined below. 

Initialization. Initially many individual solutions are randomly generated to form an initial 

population. The population size depends on the nature of the problem, but typically contains 

several hundreds or thousands of possible solutions. Traditionally, the population is generated 

randomly, covering the entire range of possible solutions (the search space). Occasionally, the 

solutions may be "seeded" in areas where optimal solutions are likely to be found. 
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Evaluation. Every solution is then evaluated through simulation based on an objective(s), e.g. 

total cost of the supply chain, and is assigned a fitness value. The fitness value for the solution 

is computed using the objective function(s) value(s), e.g. the lower the total cost of the supply 

chain, the higher the fitness value of the solution.  

Selection. During each successive epoch, a proportion of the existing population is selected to 

breed a new generation. Individual solutions are selected through a fitness-based process, 

where fitter solutions (as measured by a fitness function) are typically more likely to be 

selected. Certain selection methods rate the fitness of each solution and preferentially select 

the best solutions. Other methods rate only a random sample of the population, as this process 

may be very time-consuming. Most functions are stochastic and designed so that a small 

proportion of less fit solutions are selected. This helps keep the diversity of the population 

large, preventing premature convergence on poor solutions. Popular and well-studied selection 

methods include roulette wheel selection and tournament selection. 

Reproduction. This process includes generating a new population of solutions from those 

selected through genetic operators: crossover and mutation. Crossover operator is used to take 

two solutions from the mating pool, and combines elements of those solutions to produce two 

new solutions: the procedure for this contains: (1) identifying a random crossover point on the 

two selected parent chromosomes and mark the two solutions at this point, (2) joining the first 

half of the first solution with the second half of the second solution also the first half of the 

second solution with the second half of the first solution to produce first and second child, 

respectively, and finally (3) replace parent solutions with the newly defined solutions (Duggan, 

2008). Mutation operator is another genetic operator makes random changes to the solutions to 

deter stuck on a local optimum. Mutation operator generates a new solution by randomly 

changing one or more elements of the selected solution, namely, the value of one of the control 

parameters. The procedure for mutation involves: (1) selecting a small number of solutions for 

each generation by random, (2) selecting one or more elements of that solution randomly, and 

(3) generating a new value for the chosen elements considering the highest and lowest possible 

values for each parameter (Duggan, 2008). 

Iteration and termination. The old population is replaced with the new population and cycle 

repeats until an optimal or near optimal solution to the problem appears in the population. 

Common terminating conditions are: a solution is found that satisfies minimum criteria, fixed 

number of generations reached, allocated budget (computation time/money) reached, the 
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highest ranking solution's fitness is reaching or has reached a plateau such that successive 

iterations no longer produce better results, or combinations of the aforementioned conditions. 

To put it in a nutshell, the overall solution set becomes fitter through each generation and finally 

converges to an optimum.  

   

Figure 3.2. General GA process 

3.4. Simulation-based optimisation 

SBO is the process of obtaining optimal control parameters, i.e., input parameters, where the 

objective functions are examined through the output results of the simulation model (Ólafsson 

and Kim, 2002). The SBO process has been depicted schematically in Figure 3.3. The 

optimisation model encompasses optimisation algorithms, optimisation objectives, and 

constraints, whereas the simulation model depicts the system environment and considers 

governing dynamics such as uncertainties, time delays, feedback loops, and complex 
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relationships (Aslam, 2013). The two models are related through defined input and output 

parameters. SBO is an iterative process which mostly is launched during the optimisation 

modeling process by generating initial values for the input parameters in the simulation model 

(supply chain decision variables). The simulation model is then run using inputted values to 

evaluate system performance. The performance measures are then fed back into the 

optimisation model. Based on this feedback a new set of decision variables are generated and 

inputted into the simulation model for evaluation (Aslam, 2013). This iterative process 

continues until a stop criterion has been met, such as performing a defined number of 

evaluations, elapsing a specific amount of time or any user-specified criterion (Syberfeldt, 

2009). The SBO integrates the advantages of the simulation and optimisation modelling. 

Simulation models are powerful tools to model the complexities and incorporate the dynamic 

behaviour of supply chains. However, they are not able to determine optimal values to the 

decision parameters (Abo-Hamad and Arisha, 2011). On the other hand, optimisation models 

can identify the optimal values to the decision parameters. Although, they are not as efficient 

as simulation models in capturing the dynamics exist in supply chain networks including the 

uncertainties, time delays, feedback loops, and complex relationships. In the SBO framework, 

firstly a supply chain network is represented through simulation modelling to take into account 

its dynamic behaviour, and then integrated with optimisation methods to acquire optimal 

solution sets (Aslam, 2013).  

 

Figure 3.3. Simulation-based optimisation process 
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In chapters 4-6 of this study, the simulation-based optimisation (SBO) methodology is 

employed to integrate system dynamics simulation models and optimisation models. The 

system dynamics simulation models represent the dynamic behaviours of the studied supply 

chains and the optimisation models include the optimisation objectives such as total cost 

minimization, the constraints on the decision parameters i.e., auxiliaries, of the system 

dynamics models, and the genetic algorithm that is applied for identifying the optimal values 

to the decision parameters. 

3.5. Hybrid analytical-SBO 

The SBO technique merely enables the modeller to identify the optimal values to the decision 

parameters which are the input parameters to the simulation model. Although, it is not able to 

determine the optimal values to the decisions such as production level which cannot be 

formulated as input parameters to the simulation model. These decisions are states and flows 

in the simulation model. The analytical-simulation modelling enables the modeller to identify 

the optimal values to the decision variables, i.e., states and flows, in addition to the decision 

parameters, i.e., input parameters or auxiliaries. The hybrid analytical-simulation modelling 

consists of constructing independent optimisation and simulation models and then integrating 

the solution strategy through connecting the independent models. In this study, the SBO is the 

simulation model. Therefore, the hybrid analytical-simulation modelling is called hybrid 

analytical-SBO modelling. The process of the hybrid analytical-SBO modelling is illustrated 

in Figure 3.4. The optimisation model encompasses optimisation objectives and constraints on 

decision variables, while the SBO model contains the simulation model, constraints on decision 

parameters, and optimisation algorithms. The two models are connected through defined input 

and output parameters. The hybrid analytical-SBO modelling is an iterative process which is 

launched by considering initial values for the capacities in the optimisation model. The 

optimisation model is then solved and the optimal values to the decision variables are 

determined and inputted into the SBO model. The SBO model is then run and the optimal 

values to the capacities in the optimisation model, which are the input parameters to the SBO 

model, are identified and outputted into the optimisation model to generate a new set of 

decision variables. This iterative process continues until the difference between the value of 

the objective function(s) obtained from the optimisation model and the value of the objective 

function(s) obtained from the SBO model is less or equal to a user-specified difference 

tolerance level. 
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The hybrid analytical-SBO integrates the advantages of the SBO and optimisation modelling. 

SBO models are powerful tools to incorporate the dynamic behaviour of supply chains and to 

determine the optimal values to the decision parameters. Although, they are not able to 

determine the optimal values to the decision variables.  

On the other hand, optimisation models are capable of identifying the optimal values to the 

decision variables. While, they are not as efficient as SBO models in capturing the dynamics 

exist in supply chain networks including the uncertainties, time delays, feedback loops, and 

complex relationships and also identifying the optimal values to the decision parameters. 

Optimizing the decision parameters in the optimisation models converts them into non-linear 

models and increases the computational time. In the hybrid analytical-SBO framework, firstly 

the optimal values to the decision variables are determined by optimisation modelling which 

takes into account the constraints on the decision variables and then integrated with the SBO 

modelling which incorporates dynamics in the supply chain network to identify the optimal 

decision parameters. 

 

Figure 3.4. Hybrid analytical-SBO process 

In chapter 7 of this study, the hybrid analytical-SBO approach is applied to integrate a mixed-

integer linear programming (MILP) model and an SBO model. The MILP contains the 

optimisation objective that is maximizing the economic value added (EVA) and the constraints 

on the decision variables, i.e., flows and stocks, of the SBO model. The SBO model includes 

the system dynamics simulation model, which represents the dynamic behaviour of the studied 
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supply chain and the genetic algorithm that is applied for identifying the optimal values to the 

decision parameters such as the desired inventory. 

3.6. Conclusions 

This chapter presents an introduction to the simulation approach that was used in this study, 

i.e., SD, and justifies the selection of the GA as the optimisation algorithm, i.e., for solving 

multi-objective optimisation problems in this study. Thereafter, the integration of simulation 

models and optimisation algorithms within the SBO framework and the integration of the 

optimisation and SBO models within the hybrid analytical-simulation framework are clarified. 

The SBO framework is merely capable of identifying the optimal decision parameters. While, 

using the hybrid analytical-SBO framework the optimal decision variables are determined in 

addition to the optimal decision parameters. 
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4. Chapter 4. Simulation-based optimisation of collaborative 

working capital management within supply chain 

4.1. Introduction 

Working capital management (WCM) integrates the product and cash flows for supply chain 

members. The WCM seeks to improve the efficiency of a firm’s operation through managing 

its inventory, accounts receivable, and accounts payable. Cash conversion cycle (CCC) which 

is defined as the average days that it takes for a company to convert a dollar invested in raw 

material into a dollar collected from customer is one of the widely-used key performance 

indicators to measure the efficiency of a firm’s working capital management. A low CCC 

implies that the company has lower financial cost to fund its business operation. Supply chain 

entities, e.g. suppliers, manufacturers are willing to decrease their financial cost through 

diminishing CCC, however, CCC may be fallen for a company at the expense of CCC increase 

for either their upstream or downstream partners or both. Consequently, single company 

perspective toward working capital management appears to be inefficient in supply chain 

perspective. 

In this chapter to manage the working capital from supply chain perspective two optimisation 

models are developed. The first optimisation model is a multi-objective model that aims to 

minimize the cash conversion cycle (CCC) of supply chain members and the second 

optimisation model is a single-objective model that aims to minimize the collaborative cash 

conversion cycle (CCCC) of the supply chain. A simulation-based optimisation approach, 

which integrates system dynamics (SD) simulation and the genetic algorithm (GA), is applied 

to fulfill the objectives by identifying the optimal values to the inventory and financial 

decisions parameters.  

The rest of the chapter is organized as follows. Section 4.2 describes the model that was 

developed to measure the CCC for the supply chain members, the CCCC of the supply chain, 

and the proposed SBO methodology for reducing the CCC of the members and the CCCC of 

the supply chain. In section 4.3, the beer distribution game that is the studied supply chain is 

elaborated and two optimisation models for minimzing the CCC and the CCCC are developed. 

Section 4.4 illustrates the applicability of the proposed SBO approach and compares its 

performance with system dynamics simulation. Finally, concluding remarks are presented in 

section 4.5. 
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4.2. Methodology 

4.2.1.  Ordering policy 

Amongst various types of replenishment policies (see Silver et al., 1998; Zipkin, 2000), Order-

Up-To (OUT) policy and reorder point-order quantity or (r,Q) model are the most commonly 

used replenishment policies. In this study OUT policy is considered as the ordering policy. In 

this system, the inventory position is determined by (= amount on-hand + inventory on-order 

– backlog). The inventory position is reviewed periodically (e.g. daily, weekly, monthly) and 

an order is placed to enhance inventory level to an OUT level (S) that defines order quantities 

(Towill, 1982). Therefore, the values to the two decision variables need to be recognized: (1) 

inventory position review period, and (2) the OUT level (S). The OUT level is determined by 

the sum of expected demand during risk period (= lead time+ review period) and a safety stock 

to satisfy higher than expected demands during the risk period. To simplify, in this study, the 

review period is assumed to be equal to one week. Therefore, 

 

𝑆𝑡 = 𝐷̂
𝑇𝑝+1 + 𝐾. 𝜎𝑇𝑝+1       (4.1)         

    

𝑇𝑝  represents lead time, 𝐷̂𝑇𝑝+1 is an estimate of mean demand over 𝑇𝑝 + 1 periods, K is a 

constant chosen to meet a desired service level, and 𝜎𝑇𝑝+1 is an estimate standard deviation of 

forecast error over 𝑇𝑝 + 1 periods. 

The exponential smoothing method used to forecast the demand. Accordingly, the ordering 

policy is defined as follows: 

 

 𝑂𝑡 = 𝑆𝑡 − 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑡        (4.2)             

     

The order at the end of period t (𝑂𝑡 ) equals to the difference between OUT level and inventory 

position. The inventory position is determined by the sum of net inventory (NI) and inventory 

on order (SL). The net inventory equals to the value of inventory on hand (INV) minus backlog 

(B). The safety stock level is replaced with desired net inventory (DNI). Subsequently, (4.2) 

can be rewritten as follows: 

 

 𝑂𝑡 = 𝐷𝐹𝑡  (𝑇𝑝 + 1) + 𝐷𝑁𝐼
⏞            

𝑆𝑡

− (𝑁𝐼𝑡 + 𝑆𝐿𝑡)
⏞      ,

𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
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𝑂𝑡 = 𝐷𝐹𝑡⏟
𝐷𝑒𝑚𝑎𝑛𝑑 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

+ (𝐷𝑁𝐼 − (𝐼𝑁𝑉𝑡 − 𝐵𝑡)⏟            
𝐴𝐼𝑁𝑉

) (𝑇𝑝𝐷𝐹𝑡 − 𝑆𝐿𝑡⏟        
𝐴𝑆𝐿

), 

𝑤ℎ𝑒𝑟𝑒 𝐷𝐹𝑡 = 𝑆𝑀𝑂𝑂𝑇𝐻(𝐷𝑡, 𝛾), 

𝛾 = 1           (4.3)              

 

The 𝑇𝑝𝐷𝐹𝑡  is assumed to be desired supply line or DSL. As the gap between the OUT level 

(St) and the current inventory is not replenished entirely in a review period, smoothing 

replenishment rules should be used to give an appropriate weight (i.e.,α and β) to the gap terms 

(Disney et al., 2007). 

  

𝑂𝑡 = 𝐷𝐹𝑡 + 𝛼(𝐷𝑁𝐼 − (𝐼𝑁𝑉𝑡 − 𝐵𝑡)) + 𝛽(𝐷𝑆𝐿 − 𝑆𝐿𝑡), 

𝑂𝑡
′ = 𝑀𝐴𝑋(0, 𝑂𝑡)          (4.4)             

               

In (4.4), desired net inventory (DNI), desired supply line (DSL), inventory proportional 

parameter (α), and inventory on order proportional parameter (β) which are known as 

controllable parameters; allow us to amend the dynamic behavior of the supply chain. 

Moreover, it is ensured that the place orders by supply chain members are non-negative. 

 

 4.2.2.  Working capital management 

Working capital management involves managing inventories, accounts receivable, and 

accounts payable to ensure capability of a firm to continue its operation. The objective of 

working capital management is to reduce current assets and also extend current liabilities in 

order to minimize the capital tied up in the company’s turnover process (Hofmann and Kotzab, 

2010). To manage working capital effectively, firstly metrics which are used for measuring its 

efficiency should be identified. Cash conversion cycle (CCC) is one of the key indicators for 

measuring the efficiency of working capital management which is defined by (4.5) through 

adding days inventory outstanding (DIO) and days sales outstanding (DSO) minus days 

payable outstanding (DPO). The days inventory outstanding (DIO) is measured by dividing 

average inventory value into daily cost of goods sold (COGS). The days sales outstanding 

(DSO) is defined as average accounts receivable divided by daily revenue and the days 

accounts payable outstanding (DPO) is the ratio of average accounts payable and daily COGS. 

CCC indicates the length of time that it takes for a company to convert resource inputs into 

cash flows collected from customers. 
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𝐶𝐶𝐶 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦

𝐶𝑂𝐺𝑆
365⁄⏟          

𝐷𝐼𝑂

+
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑎𝑏𝑙𝑒

𝑅𝑒𝑣𝑒𝑛𝑢𝑒
365⁄⏟              

𝐷𝑆𝑂

−
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡 𝑃𝑎𝑦𝑎𝑏𝑙𝑒

𝐶𝑂𝐺𝑆
365⁄⏟              

𝐷𝑃𝑂

 (4.5) 

               

To determine DIO (4.6), the value of average inventory which is the product of inventory 

position (I) and sales price per unit (sp) is divided by daily cost of goods sold (COGS) which 

is measured by multiplying unit cost (uc) and the average demand (D). Dividing COGS by 365 

assures the expression of DIO in days since both average inventory and COGS are expressed 

in currency unit (£). Therefore, DIO can be calculated as: 

 

𝐷𝐼𝑂 = 365 (
𝑠𝑝

𝑢𝑐
) (

𝐼

𝐷
)         (4.6)         

       

In (4.7), account receivable (AR) can be expressed in terms of demand, backlog (B) and 

inventory level (I) as follows:       

𝐴𝑅 = 𝑚𝑚𝑖𝑛(𝑠𝑝(𝐷 + 𝐵), 𝑠𝑝𝐼)       (4.7)         

                    

Where m indicates the collection policy of the firm; 0 ≤ 𝑚 ≤ 1. It would be equal to 1 if all 

sales is in the form of credit and would be zero if all value of sales is in the form of advanced 

payment. Replace (4.7) in DSO, obtain 

𝐷𝑆𝑂 = 𝑚(
𝑚𝑖𝑛(𝑠𝑝(𝐷+𝐵),𝑠𝑝𝐼)

𝑠𝑝𝐷
365⁄

) = 365 𝑚 (
min(𝐷+𝐵,𝐼)

𝐷
)                  (4.8)               

                        

Lastly, consider (4.9) in which accounts payable (AP) can be calculated by order quantity (q) 

and unit cost (uc) as follows: 

 

𝐴𝑃 = 𝑛𝑢𝑐𝑞                        (4.9)         

       

Where 0 ≤ 𝑛 ≤ 1, shows the payment policy of the company. It would be equal to 1 for all 

credit purchases and zero for all purchases the price must be paid before delivery. In this study 

both m, n is assumed to be equal to one. 

Replace (4.9) in DPO, we get 
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𝐷𝑃𝑂 =
𝑛𝑢𝑐𝑞

𝑢𝑐𝐷
365⁄

= 365 𝑛 (
𝑞

𝐷
)                    (4.10)            

                  

Given (4.5), CCC can be obtained as follows: 

 

𝐶𝐶𝐶 = 365 (
𝑠𝑝

𝑢𝑐
) (

𝐼

𝐷
) + 365 𝑚 (

𝑚𝑖𝑛(𝐷+𝐵,𝐼)

𝐷
) − 365 𝑛 (

𝑞

𝐷
)   (4.11)      

                      

The lower the CCC, the lower financial cost for a company to fund its business operation. The 

cash to cash cycle (CCC) can be diminished through lowering days inventory outstanding 

(DIO), reducing days sales outstanding (DSO), and extending days payable outstanding (DPO) 

(Tangsucheeva and Prabhu, 2013).  

 

Hofmann and Kotzab (2010) argue that the “leading” and most powerful companies in a supply 

chain are often able to degrade their own cash conversion cycle at the expense of CCC increase 

for either their upstream or downstream partners or both. Hence, a single company perspective 

on working capital management appears to be inefficient in the supply chain perspective. They 

suggest collaborative CCC as an indicator for measuring efficiency of the working capital 

management in supply chain networks. The collaborative CCC in a supply chain can be 

obtained by adding up all inventory periods of the members, adding accounts receivable period 

(DSO) of the last member of the chain (retailer) and deducting accounts payable period (DPO) 

of the first member of the chain (supplier) (Hofmann and Kotzab, 2010).  

 

4.3. Experiments 

4.3.1.  Beer distribution game 

The beer game (BG) is a role playing simulation game was originally developed in (Sterman, 

1989). The main objective of the game was to demonstrate the existence of the bullwhip effect 

within supply chain networks. In this study, a four-agent BG consists of a manufacturer, a 

distributor, a wholesaler, and a retailer is modelled and cash flow between supply chain 

members is taken into account, in addition to material and information flows, to measure the 

collaborative CCC of the supply chain network. Each member strives to maintain a dynamic 

equilibrium between inflows (arriving goods from upstream member) and outflows (goods 

being sent to downstream member). According to the assumptions of the beer game (BG), 

customer demand starts by ordering 4 crates of beer during the first four week and then 
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suddenly, in week 5, the customer demand rises to 8 crates per week for the rest of the 

simulation (Joshi, 2000). The distribution lead time is constant and equals to 2 weeks. The 

initial values of the variables at each entity at 𝑡 = 0 are extracted from (Joshi, 2000). The 

simulation model is run for 120 weeks and the values of the CCCC are illustrated in Fig.2. 

   

4.3.2.  Optimisation model 

4.3.2.1. Optimisation model I 

As discussed earlier, the objective of the first optimisation model is to manage the trade-offs 

between the CCC minimizations for the supply chain members through identifying the optimal 

values to the decision parameters (e.g. 𝛼, 𝛽, 𝐷𝑁𝐼, 𝐷𝑆𝐿, 𝑆𝑃, 𝑈𝐶). The optimisation model is 

formulated as: 

 

𝑀𝑖𝑛 𝑀𝐶𝐶𝐶 = 𝑀𝑖𝑛 𝜇𝑀𝐶𝐶𝐶 = ∑
𝑀𝐶𝐶𝐶

𝑇
𝑇
𝑡=0

𝑀𝑖𝑛 𝐷𝐶𝐶𝐶 = 𝑀𝑖𝑛 𝜇𝐷𝐶𝐶𝐶 = ∑
𝐷𝐶𝐶𝐶

𝑇
𝑇
𝑡=0

𝑀𝑖𝑛 𝑊𝐶𝐶𝐶 = 𝑀𝑖𝑛 𝜇𝑊𝐶𝐶𝐶 = ∑
𝑊𝐶𝐶𝐶

𝑇
𝑇
𝑡=0

𝑀𝑖𝑛 𝑅𝐶𝐶𝐶 = 𝑀𝑖𝑛 𝜇𝑅𝐶𝐶𝐶 = ∑
𝑅𝐶𝐶𝐶

𝑇
𝑇
𝑡=0

          (4.12)                        

Subject to: 

 0 ≤ 𝛼𝑖 ≤ 1, 0 ≤ 𝛽𝑖 ≤ 1, 0 ≤ 𝐷𝑁𝐼𝑖 ≤ 12, 0 ≤ 𝐷𝑆𝐿𝑖 ≤ 15, 1 ≤ 𝑆𝑃𝑖 ≤ 4,                     

              0.5 ≤ 𝑈𝐶𝑖 ≤ 3.5                                                                                            (4.13) 

The objective functions are related to minimizing the cash conversion cycle (CCC) of the 

supply chain entities which is measured by the mean of cash to cash cycle for each entity over 

the simulation period. The lower and upper bounds for the decision parameters of entity i (e.g., 

manufacturer, distributor, wholesaler, and retailer) are defined by Eq. (4.13). 

 

4.3.2.2. optimisation model II 

As discussed earlier, the objective of the second optimisation model is to minimize the 

collaborative CCC (CCCC) or supply chain CCC (SCCC) through identifying the optimal 

values to the decision parameters (i.e.α, β, DNI, DSL, SP, and UC). The optimisation model is 

formulated as: 

 

𝑀𝑖𝑛 𝑆𝐶𝐶𝐶 = 𝑀𝑖𝑛 𝜇𝑆𝐶𝐶𝐶 =

∑
𝑆𝐶𝐶𝐶

𝑇
𝑇
𝑡=0                                                                                                                                              (4.14)               
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0 ≤ 𝛼𝑖 ≤ 1,           0 ≤ 𝛽𝑖 ≤ 10, 

0 ≤ 𝐷𝑁𝐼𝑖 ≤ 12, 0 ≤ 𝐷𝑆𝐿𝑖 ≤ 15, 

1 ≤ 𝑆𝑃𝑖 ≤ 4,            0.5 ≤ 𝑈𝐶𝑖 ≤ 3.5                     (4.15)            

          

The objective function is related to minimizing the supply chain cash conversion cycle (SCCC) 

which is measured by the mean of supply chain cash conversion cycle over the simulation 

period. The lower and upper bounds for the decision parameters of entity i (e.g., manufacturer, 

distributor, wholesaler, and retailer) are defined by (4.15). 

4.4.  SBO implementation 

 SD simulation approach and the GA as optimisation engine are integrated in the form of an 

SBO model to derive optimal values to the controllable parameters (i.e. α, β, DNI, DSL, SP, 

UC) so as to make trade-offs between conflicting CCC minimizations in the optimisation model 

I and minimize collaborative CCC (CCCC) of the supply chain in the second optimisation 

model. To solve the optimization model I that is a multi-objective model the weighted sum 

method which is one of the widely used methods for addressing multi- objective optimization 

problems is applied. In this method, the multi-objective optimisation problem is transformed 

into a single objective optimisation problem through multiplying each objective function by a 

weighting factor and aggregating all weighted objective functions (Marler and Arora, 2010). 

The weight of an objective is chosen in proportion to the relative importance of the objective 

(Gass and Saaty, 1955) and the aggrgated weights of objectives needs to add up to 1. In the 

optimization model I all objective functions are given the same importance and consequently 

the same weight. Therfore the multi-objective model presenyted in Eq. (4.12) is transformed 

into a single-objective model as follow that is used the fitness function of the GA for identifying 

the optimal values to the decision parameters. 

𝑛𝑒𝑤 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑤1×Min 𝜇𝑀𝐶𝐶𝐶+w2×Min 𝜇𝑀𝐶𝐶𝐶+w3×Min 𝜇𝑀𝐶𝐶𝐶+w4×Min 𝜇𝑀𝐶𝐶𝐶 ; 

    w1=w2=w3 =w4= 0.25        (4.16) 

The genetic algorithm parameters are set as follows. Population size is set to be 200, crossover 

rate is set to be 0.8, and the mutation rate is set to be 0. The fitness function for the optimization 

model I is as follows. 

Fitness Function =
1

𝑤1×Min 𝜇𝑀𝐶𝐶𝐶+w2×Min 𝜇𝑀𝐶𝐶𝐶+w3×Min 𝜇𝑀𝐶𝐶𝐶+w4×Min 𝜇𝑀𝐶𝐶𝐶
    ; 

w1=w2=w3 =w4= 0.25        (4.17) 

With the defined constraints for the decision parameters in the optimisation model I and the set 

values for the GA parameters, the SBO is run.  
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Figure 4.1 illustrates the CCC of the supply chain members before and after employing the 

SBO methodology. According to the results demonstrated in Figure 4.1(a), before applying 

SBO methodology, cash conversion cycle (CCC) of the manufacturer in week 30 arrived at 

500 days, almost 72 weeks,  while employing optimal parameter values not only results in 

significant decrease in cash to cash cycle of upstream members, i.e. distributor and 

manufacturer, but also improves CCC of the downstream members, i.e. wholesaler and retailer 

(see Figure 4.1(b)).  The CCC of the manufacturer and the distributor in some weeks is negative 

that implies they are collecting money from their customers before providing any service. The 

optimal values to the decision parameters also objective functions values are displayed in Table 

4.1. 

 

Figure 4.1. System performance before and after applying the SBO methodology 

Table 4.1. Optimal parameter values 

 

 

With the defined constraints for the decision parameters in the optimisation model II and setting 

the GA parameter values as population size 200, crossover 0.8, and mutation 0.1, the SBO is 

run. The fitness function for the optimization model II is defined as follows. 

(a) (b) 

Retailer cash conversion cycle (RCCC), Wholesaler CCC (WCCC), Distributor CCC (DCCC), Manufacturer CCC (MCCC) 
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Fitness Function=
1

𝑆𝐶𝐶𝐶
        (4.17) 

Figure 4.2 depicts the collaborative CCC (CCCC) of the supply chain members before and 

after employing the SBO methodology. According to the results demonstrated in Figure 4.2(a), 

before applying SBO methodology, collaborative cash conversion cycle (CCCC) in week 30 

arrived at 600 days, almost 86 weeks, while employing optimal parameter values results in 

negative cash conversion cycle for the supply chain in most of the weeks (see Figure 4.2(b)). 

The optimal values to the decision parameters also objective function value are displayed in 

Table 4.2. 

 

  

Figure 4.2. Collaborative cash conversion cycle (CCC) before and after employing the SBO 

Table 4.2. Optimal parameter values 

 

 

4.5.  Conclusions 

In addition to matching the supply of products with the demand of customers within supply 

chain networks, the supply of cash is also required to be matched with the demand of supply 

chain members. Single company perspective on working capital management results in 

(a) (b) 
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heterogeneous distribution of cash among supply chain entities. Therefore, working capital 

management should be considered from supply chain perspective in which each company is 

aware of the impact of its corrective measures for managing the working capital on its suppliers 

and customers. 

 

As discussed in section 2.5.1 and is illustrated in Table 4.3, much of the literature on working 

capital management in the supply chain applied the empirical approaches to measure the CCCs 

for supply chain members (Theodore Farris and Hutchison, 2002; Ruyken et al., 2011; Lind et 

al., 2012). Although, modelling approaches such as simulation and optimisation are under-

represented. Moreover, it has been argued that supply chain members may reduce their cash 

conversion cycle at the expense of increasing it for their upstream and/or downstream members 

(Hofmann and Kotzab, 2010; Ruyken, Wagner and Jonke, 2011). The literature lacks the 

studies which applied a practical modelling approach to manage the trade-offs between 

conflicting CCC minimizations for supply chain members by finding the optimal values to the 

financial and inventory decisions parameters. Finally, the literature lacks the studies that 

applied the collaborative CCC (CCCC) as the metric for measuring the efficiency of the 

working capital management in supply chains. 

 

To fill the gap in the literature, in this chapter, a simulation-based optimisation model which 

integrates system dynamics simulation and genetic algorithms is developed for working capital 

management in a supply chain. In this model financial flow modelling is incorporated into the 

system dynamics simulation of the beer distribution game and minimizing the cash conversion 

cycle for supply chain members and minimizing the collaborative CCC of the supply chain are 

considered as optimisation objectives. This contribution extends the previous research on 

working capital and supply chain management by using the SBO modelling for managing the 

trade-offs between conflicting CCCs minimization for supply chain members and minimizing 

the collaborative CCC of the supply chain (Theodore Farris and Hutchison, 2002; Ruyken et 

al., 2011; Lind et al., 2012; Hofmann and Kotzab, 2010; Ruyken, Wagner and Jonke, 2011). 

The genetic algorithm is applied to identify the optimal values to the financial decisions 

parameters including price and unit cost and inventory decisions parameters including desired 

inventory, desired supply line, inventory adjustment parameter, and supply line adjustment 

parameter so as to mange the trade-offs between conflicting CCCs minimization for supply 

chain members and minimize the collaborative CCC of the supply chain. 
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Table 4.3. Working capital management and supply chains literature 

Current literature Parameters 

considered 

Managing the 

trad-offs 

between 

conflicting 

CCCs  

Minimization 

for supply 

chain members 

Minimizing 

the 

collaborative 

CCC 

(CCCC) of 

the supply 

chain 

Approaches 

(Theodore Farris and 

Hutchison, 2002; Ruyken 

et al., 2011; Lind et al., 

2012; Hofmann and 

Kotzab, 2010; Ruyken, 

Wagner and Jonke, 2011) 

 

 

 

This study 

 

 

- 

 

 

 

Inventory control 

parameters 

Price 

Unit cost 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Empirical 

 

Conceptual 

modelling 

 

Simulation-

based 

optimisation 

(System 

dynamics and 

genetic 

algorithms) 

 

The results indicated that the CCC of the supply chain members and the collaborative CCC of 

the supply chain (CCCC) can be decreased significantly by identifying the optimal values of 

inventory and financial decision parameters. Given the results of our study, supply chain 

managers should measure Collaborative CCC rather than CCC. In other words, this research 

provided the supply chain managers with a novel view to shift from the common paradigm of 

single perspective toward working capital management to collaborative cash flow 

management.  

 

As it was shown in Figure 3, volatility of CCC for upstream members of the supply chain is 

significantly higher than that of the downstream members. This phenomenon is called cash 

flow bullwhip and relates to the bullwhip effect in the cash flow of the supply chain. In the 

next chapter an SBO model is developed to minimize the cash flow bullwhip in supply chains. 
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5. Chapter 5. Minimizing bullwhip effect and cash flow bullwhip 

in a supply chain using simulation-based genetic algorithms 

optimisation  

5.1. Introduction 

To remain responsive to uncertain demand conditions, supply chain members carry inventory 

to prevent orders being lost and also try to update orders placed to their upstream member 

according to the volatility in demand of their downstream member. However, there is a delay 

between the order placement time and the receiving of the order by the upstream member. In 

other words, the volatility in demand is not concurrently perceived by the upstream members 

such as the manufacturer and distributor. This unwanted phenomenon is called the Bullwhip 

Effect (BWE) and is mostly attributed to the lack of coordination between participants, 

distorted information, and information delays in the supply chain (Coppini et al., 2010).  

In addition to the inefficiencies in product flow within a supply chain, such as excessive 

inventory, stock-outs, distorted demand forecasting (Chen et al. 2000; Lee, Padmanabhan, and 

Whang 1997), the BWE also negatively affects the financial flow through heterogonous 

distribution of cash among supply chain members. The cash conversion cycle (CCC) is one of 

the pivotal metrics used to measure supply chain efficiency in cash flow management (Zhao et 

al., 2015). The CCC is defined as the length of time that it takes for a company to convert 

resource inputs into cash flows collected from customers (Stewart, 1995). The lower the CCC, 

the more successful the firm is in managing cash flow. For example, Amazon is a role model 

in the effective management of cash flow possessing a CCC of -51 days in 2009 (Kumar, Eidem 

and Perdomo, 2012). Indeed, Amazon collects cash from customers before providing any 

service. Reducing the number of days inventory held at a firm is one of the actions that can be 

taken to reduce the CCC (Randall and Theodore Farris, 2009).  

Volatility in inventory levels, which is caused by the BWE, results in variability in the number 

of days inventory outstanding, and accordingly causes variations in the CCC (Tangsucheeva 

and Prabhu, 2013). In such circumstances, supply chain members may face liquidity 

constraints, as they are not able to predict the amount of time that it takes to get access to the 

cash. The term “cash flow bullwhip” (CFB) was first introduced by Tangsucheeva and Prabhu 

(2013) to name this undesirable phenomenon, which is caused by variations in the CCC that 
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occurs throughout financial flows in the supply chain. In this chapter, a simulation-based 

optimisation (SBO) framework including genetic algorithm (GA) and SD is developed to 

minimize the CFB, BWE, and supply chain total cost through identifying the optimal values to 

the inventory and financial decisions. 

The rest of the chapter is organized as follows. Section 5.2 describes the model that was 

developed to measure the CFB within the supply chain and the proposed SBO methodology 

for mitigating the CFB. The beer distribution game which is the studied supply chain is 

elaborated in section 5.3. Section 5.4 illustrates the applicability of the proposed SBO approach 

and compares its performance with information sharing starategy in mitigating the CFB. 

Finally, concluding remarks are presented in section 5.5. 

5.2. Supply chain model for cash flow bullwhip effect  

Simulation stages of our case study model are outlined as follows. First, nomenclatures are 

demonstrated. Second, ordering policies applied by supply chain members are introduced and 

causes of the inventory bullwhip are identified in the ordering policy. Then, the impact of the 

ordering policy on CCC is investigated. To measure variations of the CCC and CFB, the SD 

simulation model of the studied supply chain composed of one manufacturer, one distributor, 

one wholesaler, and one retailer is developed. Causes of the inventory bullwhip and CFB are 

part of inputs and outputs of the simulation model, respectively. The validity of the SD model 

is assessed through implementing an extreme condition test. Furthermore, the capability of the 

model in showing the bullwhip effect within the supply chain network is another proof of its 

validity. Thereafter, feasible intervals of the input parameters, including causes of inventory 

bullwhip, price, and unit cost, are defined and the SBO approach is applied to derive optimal 

combination of the parameters to minimize CFB, BWE, and SCTC. Nomenclatures are 

presented in Table 5.1. 

Table 5.1. Nomenclatures 

Symbol Definition 

𝑂𝑃𝑡 Ordering decision made at the end of period t; 

𝐷𝐹𝑡 Demand forecast at period t; 

𝑁𝐼𝑡 Net inventory at time t; 

𝑆𝐿𝑡 Supply line at time t; 

γ Smoothing parameter; 

COGS Cost of goods sold; 

file:///C:/Users/e212741/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/CA6US0NO/figures%20and%20tables.docx
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DIO Days inventory outstanding; 

DSO Days sales outstanding; 

DPO Days payable outstanding; 

q Order quantity; 

D Demand; 

I Level of average inventory; 

B Backlog; 

m Collection policy; 

n Payment policy; 

SCTC Supply chain total cost; 

MBWE Manufacturer bullwhip effect; 

MCFB Manufacturer cash flow bullwhip; 

𝑇𝐶𝑖  Total cost of entity i; 

MPO Manufacturer placed orders; 

MCCC Manufacturer cash conversion cycle; 

𝜎2𝑀𝑃𝑂  Variance of manufacturer placed order; 

𝜎2DD Variance of distributor demand; 

𝜎2𝑀𝐶𝐶𝐶  Variance of manufacturer cash conversion cycle; 

𝛼𝑖 
A fraction of the gap between desired on-hand inventory and current level of on-hand 

inventory of entity i; 

𝛽𝑖 
A fraction of the gap between desired supply line and current level of supply line of 

entity i; 

𝐷𝐼𝑖 Desired inventory of entity i; 

𝐷𝑆𝐿𝑖 Desired SL of entity i; 

𝑆𝑃𝑖  Sales price per unit of entity i; 

𝑈𝐶𝑖  Unit cost of entity i; 

RPO Retailer placed orders; 

WPO Wholesaler placed orders; 

DPO Distributor placed orders; 

RI Retailer inventory; 

WI Wholesaler inventory; 

DI Distributor inventory; 

MI Manufacturer inventory; 

RCCC Retailer cash conversion cycle; 

WCCC Wholesaler cash conversion cycle; 

DCCC Distributor cash conversion cycle; 

i Supply chain member index; 
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5.2.1. Ordering policy 

In this study we have applied the ordering policy developed by Mosekilde et al. (1991) to 

calculate the amount to order (OP) for each member of the supply chain. The placed order 

which must be non-negative is calculated as: 

 OPt = MAX (0, DOPt)        (5.5) 

Where the desired amount to order (DOP) is defined as follows: 

 DOPt = DFt+ α(DI – (INV
t
- Bt)⏞      

NI

)
⏟            

INV Gap

+β (DSL – SLt)⏟        
SL Gap

    (5.6) 

To determine the desired amount to order (DOP), each member endeavours not only to meet 

the forecasted demand of its downstream member but also bridge the inventory and supply line 

gaps. The exponential smoothing method with a smoothing parameter (γ) that equals to one is 

used to forecast the demand forecast (DF) as follows: 

  DFt = SMOOTH (Dt, γ)        (5.7) 

The inventory gap is the difference between the desired inventory (DI) and net inventory (NI) 

which is calculated by subtracting the unfulfilled orders (B) from the inventory (INV). The 

supply line (SL) gap is defined as the gap between the desired and actual supply line. The 

supply line represents the previous orders which have been sent by the upstream member but 

still have not been delivered. The desired inventory and the desired supply line are constant 

values which are specified by each member and represent the inventory levels which are 

desired to be held or to be on order for each member. As the inventory and supply line gaps are 

not replenished entirely in a review period, smoothing replenishment rules should be used to 

give an appropriate weight (i.e., 𝛼 and 𝛽) to the gap terms (Disney et al., 2007). 

𝛼 and 𝛽 represent the discrepancy of units needed in the form of on-hand inventory (INV) and 

the supply line (SL) respectively. A high 𝛼 value indicates an aggressive policy to bridge the 

gap between the desired inventory and the current net inventory. In the case of 𝛽, a high value 

shows that all the orders in the supply line have been considered, when deciding on the amount 

of orders to be placed with the upstream member.  

In Expression (2), desired inventory (DI), desired supply line (DSL), inventory proportional 

parameter (𝛼 ), and inventory on order proportional parameter (𝛽 ) which are known as 
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controllable parameters allow us to amend the dynamic behaviour of the supply chain. Indeed, 

changing these exogenous factors results in a set of ordering patterns ranging from order 

variance amplification (bullwhip) to dampening (smoothing) (Disney et al., 2007). In the next 

section, it is explained how Expression (5.2) may lead to a fluctuation in the CCC known as 

CFB. 

5.2.2. Impact of ordering policy on CCC and CFB 

According to Eq. (4.11) that defines the CCC using its three constituents: days sales 

outstanding (DSO), days inventory outstanding (DIO), and days payable outstanding (DPO) 

the CCC is a function of order quantity (q), inventory (I), demand (D), sales price per unit (SP), 

upstream sales price (USP), and unit cost (UC). Each supply chain member applies the 

replenishment rule presented in Eq. (5.1) to determine its order quantity. The variability of 

CCC is used to measure the cash flow bullwhip (CFB) for supply chain members as follows 

(Tangsucheeva and Prabhu, 2013): 

 CFB = 
Variance of CCC

Variance of downstream demand
=

VAR(CCC)

VAR(D)
                          (5.4) 

To decrease CFB, the variability of CCC needs to be diminished through determining the 

optimal values for the inventory decision parameters (e.g., α, β, DNI, DSL), sales price per unit 

(SP), and unit cost (UC). To measure CFB through the supply chain, a system dynamics (SD) 

structure of the Beer distribution game is developed. In this case, inputs are inventory decisions 

parameters, price, and unit cost (i.e., control parameters) and outputs are variations of cash to 

cash cycle and CFB for participants. Simulation models that are developed by the SD approach 

are considered to be more robust than other types of simulation models, even though there are 

robustness tests that can be used to test the validity of the model. To show the robustness of 

our developed simulation model, the extreme condition test (Sterman, 2000) is applied. The 

extreme condition test deals with a test accompanied by a reasonable expected behaviour 

according to its inputs values (Sterman, 2000). e.g., dramatic increase in price of a product 

results in converging the demand function to zero (Sterman, 2000). To run the extreme 

condition test in our developed model, sales price per unit of product which is a model input is 

increased significantly. As a result, the CCC rises dramatically. Hence, it can be concluded that 

the behaviour of the model is reasonable.  
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5.2.3. Simulation-based optimisation (SBO) 

After simulating the supply chain’s cash flow and observing the CFB across the supply chain 

network, we need to manage its adverse effects through recognizing optimal values for the 

controllable parameters. As was indicated in the previous section, the CCC is a function of 

order size which is affected by ordering parameters including demand forecast updating (𝛼), 

and rationing and shortage gaming (𝛽) given in Eq. (5.2). That is to say, the CCC is influenced 

by factors that contribute to inventory bullwhip, hence our objective is to minimize CFB by 

recognising optimal values to the ordering parameters, inventory decisions, price, and unit cost. 

These are input parameters for the simulation model. Moreover, minimizing supply chain total 

cost and the BWE are other objective functions that will be taken into account. Here, 

simulation-based optimisation (SBO) is used to determine the optimal decision variables 

through integrating system dynamics (SD) and a Genetic algorithm (GA). SBO is an emerging 

field which consolidates simulation analysis by integrating optimisation methods into it. In 

other words, SBO transforms simulation model from a descriptive tool toward a prescriptive 

method. Regardless of the optimisation algorithm used, the process of optimizing an SD model 

involves four steps: (1) Developing the stock and flow diagram, (2) Selecting control 

parameters by which performance of the system is adjusted, (3) Specifying the lower and upper 

bounds of control parameters, and (4) Identifying model variables for optimisation. These 

variables represent the values that need to be optimised (Duggan, 2008). 

After following these steps, the optimisation algorithm can be implemented. In all cases, SBO 

involves an iterative process between the optimiser and the simulation model, where firstly the 

optimisation algorithm inputs a set of parameter values to the simulation model and the 

simulation model then outputs performance measurements of the model to the optimiser. The 

optimisation algorithm then compares the performance of the system with the performance 

produced by previous permutations of the parameters in order to generate a new set of 

parameter values. This process continues until a stop criterion has been met, such as performing 

a defined number of evaluations, elapsing a specific amount of time or any user-specified 

criterion (Syberfeldt, 2009). The framework of the SBO approach in this study is shown in 

Figure 5.1. 

file:///C:/Users/e212741/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/CA6US0NO/figures%20and%20tables.docx
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Figure 5.1. SBO process 

5.2.4. Genetic algorithms (GAs) 

Genetic algorithms (GAs) are computational algorithms inspired by Darwinian evolutionary 

theory which can be called in short as “survival of the fittest” (Darwin, 1859). In GAs it is 

assumed that fittest solutions survive and their characteristics are transferred from one 

generation to the next (Zaman et al. 2012). To optimise SD models using GAs, each solution 

known as a chromosome is represented by an array of elements, where each position in the 

array pertains to a possible parameter value. A solution pool named population is formed by a 

set of chromosomes. The algorithm starts with setting up a population of random possible 

solutions. Then, the individuals are evaluated based on the objective function to obtain the 

fitness of the solution. A fitness value shows how good each solution is in satisfying objective 

functions. Applying the rule of survival of the fittest, fittest solutions are selected from the 

population. Subsequently, solutions with higher fitness are combined to produce new solutions 

by performing a crossover operator. These solutions are known as parent solutions. To ensure 

maintaining variety in the overall population, new solutions may then be subjected to small 

variations from parent solutions called a mutation operator. Each population then represents a 

generation, and the process continues until predefined stopping criteria are met, such as 

convergence of fitness over generations or reaching the maximum number of generations (Lu 

et al., 2012). GAs are well suited for parameter optimisation and can also be extended to 

multiple objective optimisation (MOO) (Streichert, 2002). Therefore, in this research, a GA is 

employed to specify optimal values to the control parameters (e.g. 𝛼, 𝛽, 𝐷𝑁𝐼, 𝐷𝑆𝐿, 𝑆𝑃, 𝑈𝐶). As 

it was explained in section 3.3.3.4 and shown in Figure 3.2, the GA derives the optima values 

to the control parameters as follow. 
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Representation. The first step in applying GA is to encode a solution of the problem into 

appropriate array representation. The length of the array is 25 (four supply chain members with 

6 element each participant plus supplier sales price).  

Initialization. The population size is set to be 200 solutions, each of which consists 

of 25 random elements, i.e. 6 elements for each member plus supplier sales rice. The values to 

the elements are randomly generated within their feasible intervals defined by the modeller. 

The lower and upper bounds of these intervals must be large enough to ensure that the optimal 

settings are inside the searching boundary (Chiadamrong and Piyathanavong, 

2017). The process of generating random solutions continues until the population 

of 200 solutions is reached.  

Evaluation. Every solution is then evaluated through simulation based on the supply 

chain total cost (SCTC), bullwhip effect (BWE), and cash flow bullwhip (CFB) and is assigned 

a fitness value. The fitness value for the solution is computed using the objective functions 

values, i.e. the lower the SCTC, BWE, and CFB, the higher the fitness value. Supply chain total 

cost (SCTC) includes inventory cost and backorder (backlog) cost. Bullwhip effect (BWE) 

and cash flow bullwhip (CFB) are minimized for manufacturer, as this member experiences 

the highest demand fluctuations and CCC variability compared to other supply 

chain members.   

Selection. The roulette wheel principle (Goldberg, 1994) is applied to select chromosomes 

from the solution pool into a mating pool for generating offspring. Firstly, solutions are given 

a range between [0, 1] according to their fitness function value. The higher the fitness of the 

solution, the greater the assigned range.  Then, random numbers between [0, 1] are 

generated and based on the range they are in the solutions are inserted into the mating pool. For 

example, one solution may be in the range of [0, 0.30], if the random number generated is 

within this range, this solution would be selected to enter the mating pool.  

Reproduction. This process includes generating a new population of solutions from those 

selected through genetic operators: crossover and mutation. Crossover operator is used to take 

two solutions from the mating pool, and combines elements of those solutions to produce two 

new solutions: the procedure for this contains: (1) identifying a random crossover point on the 

two selected parent chromosomes and mark the two solutions at this point, (2) joining the first 

half of the first solution with the second half of the second solution also the first half of the 

second solution with the second half of the first solution to produce first and second child, 

respectively, and finally (3) replace parent solutions with the newly defined solutions (Duggan, 

2008). The crossover operator in this study is set to be 0.8. Mutation operator is another genetic 
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operator makes random changes to the solutions to deter stuck on a local optimum. Mutation 

operator generates a new solution by randomly changing one or more elements of the selected 

solution, namely, the value of one of the control parameters. The procedure for mutation 

involves: (1) selecting a small number of solutions for each generation by random, (2) selecting 

one or more elements of that solution randomly, and (3) generating a new value for the chosen 

elements considering the highest and lowest possible values for each parameter (Duggan, 

2008).  The mutation operator in this study is set to be 0.1. 

Iteration and termination. The old population is replaced with the new population and cycle 

repeats until an optimal or near optimal solution to the problem appears in the population. GA 

tries to determine the optimal control parameters for each member. It applies a fitness function 

to determine the best chromosomes (solutions) in all generations also decide when to stop 

evolution. The proposed fitness function is defined as the inverse of the SCTC, BWE, and CFB 

as shown in Eq. (5.5), where a lower TC, BWE, and CFB results in a higher fitness value. 

SCTC aggregates inventory holding cost and backlog cost of all the members. The BWE is 

quantified through the ratio between the variance of orders and the variance of demand (Chen 

et al., 2000). Finally, the CFB is measured through Eq. (5.4). 

 Fitness Function=
1

SCTC + MBWE + MCFB
                               (5.5)

                        

As the initial population in GA, i.e. solution set, is randomly selected within the solution space 

and also that the optimisation process is stochastic, the exact same results will not be replicated 

every time. To obtain a wide range of optimal results, the optimal parameter sets are gained by 

defining various initial population. Thereafter, non-dominated optimal solutions are chosen 

from generated optimal solutions. Finally, the most ideal solution is selected by the decision 

maker based on higher level information (Duggan, 2008). In this work, MATLAB GA toolbox 

was used to perform the simulation with the fitness function of Eq. (5.5) with the restriction set 

on the ranges of the control parameters (e.g. α, β, DNI, DSL, SP, UC).  

5.3. The beer distribution game 

In this study, a four-agent Beer distribution game consisting of a manufacturer, a distributor, a 

wholesaler, and a retailer is modelled and cash flow between supply chain members is taken 

into account, in addition to the material and information flows, to measure the CFB for each 

supply chain member. 
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The studied supply chain model is shown in Figure 5.2., As in the case of the original BG, there 

is no information sharing between the supply chain entities and each entity places orders with 

its upstream member using the ordering policy outlined in section 5.2.1. The stock and flow 

structure of the material flow is shown in Figure 5.3. Joshi (2000) provides a complete 

description of the BG stock and flow model. Another relevant variable in this model, in addition 

to the orders placed to the upstream members, is the supply chain total cost (SCTC) (5.6), 

which is calculated by aggregating the total cost of the supply chain members. Total cost (5.7) 

for each agent is composed of the inventory holding cost and backlog cost. Inventory holding 

cost (5.8) is the product of inventory level and unit holding cost. However, the backlog cost 

(5.9) is determined by multiplying the backlog level into the unit stock out cost. 

Supply chain total cost = TCM + TCD + TCW + TCR (5.6) 

Total cost = Inventory holding cost + backlog cost (5.7) 

Inventory holding cost = Inventory × unit holding cost (5.8) 

Backlog cost = Backlog × unit stock out cost (5.9) 

 

 

Figure 5.2. A four-echelon supply chain 
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Figure 5.3. Generic structure of material stock and flow diagram for a member 

The financial stock and flow model is shown in Figure 5.4 Each member pays for the orders 

placed to its upstream member and is paid for the orders received from its downstream member. 

The variable of interest in this model is the CCC which is determined by Eq. (4.11). The 

detailed description of the financial stock and flow model are presented as follows. The 

accounts receivable for each agent (5.10) is the product of downstream shipments and unit sales 

price of the product. The sales price of each member’s product is determined by (5.11) -(5.14). 

The revenue of each agent (5.15) is defined as the product of unit sales price and downstream 

orders. The days sales outstanding (DSO) (5.16) is defined as average accounts receivable 

divided by the daily revenue. As the simulation model is run weekly, the revenue is divided by 

seven to determine daily revenue. To measure inventory value (5.17), the inventory level is 

multiplied by the product unit sales price. The cost of goods sold (COGS) (5.18) is measured 

by multiplying downstream orders and unit product cost. The unit product cost is composed of 

all the costs that the members incur for unit of product, such as the production cost for the 

manufacturer and purchasing cost for the distributor. The unit product cost for each member is 

defined by (5.19) - (5.22). 
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Figure 5.4. Generic structure of financial stock and flow diagram for a member 

d(Accounts receivable)

dt
 = downstream shipments × product unit sales price (5.10) 

Manufacturer unit sales price = 1.5 (5.11) 

Distributor unit sales price = 2 (5.12) 

Wholesaler unit sales price = 2.5 (5.13) 

Retailer unit sales price = 3 (5.14) 

d(Revenue)

dt
 = downstream orders × product unit sales price (5.15) 

DSO = 
Average(accounts receivable)

Revenue
7⁄

 (5.16) 

d(Inventory value)

dt
 = Inventory× product unit sales price (5.17) 

d(COGS)

dt
=downstream orders × unit product cost (5.18) 

 Manufacturer unit product cost = 1.25 (5.19) 

 Distributor unit product cost = 1.75 (5.20) 
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 Wholesaler unit product cost = 2.25 (5.21) 

Retailer unit product cost = 2.75 (5.22) 

 

The days inventory outstanding (DIO) (5.23) is measured by dividing the average inventory 

value into the daily COGS. To measure the amount of payables (5.24), product unit sales price 

of the upstream member is multiplied by orders. The days accounts payable outstanding (DPO) 

(5.25) is the ratio of average accounts payable and daily COGS. Cash conversion cycle (CCC) 

(5.26) for each supply chain member is the summation of DSO, and DIO minus DPO.  

DIO = 
Average (inventory value)

COGS
7⁄

 
(5.23) 

 

d(Accounts payable)

dt
= orders × upstream unit sales price (5.24) 

DPO = 
Average(accounts payable)

COGS
7⁄

 (5.25) 

CCC = DSO + DIO - DPO (5.26) 

 

5.3.1. MOO of the BG 

To determine the optimal decision parameters for the supply chain members, an optimisation 

problem which contains the objective functions and constraints on parameter values should to 

be formulated. The objective functions for the optimisation problem are denoted as (5.27): 

 

{
 
 

 
 Min SCTC = Min μ

SCTC
 = ∑

SCTC

T

T
t=0

Min MBWE = Min
σ2

MPO

σ2
DD

⁄  

Min MCFB = Min
σ2

MCCC

σ2
DD

⁄

              (5.27) 

Decision variables: αI, βI, DII, DSLI, SPI, UCi 

Subject to: 

 0 ≤ αI ≤ 1,  0 ≤ β
I 
≤ 1,  0 ≤ DII ≤ 12,  0 ≤ DSLI ≤ 15, 1 ≤ SPI ≤ 4,   

            0.5 ≤ UCi ≤ 3.5             (5.28)
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The first objective function is related to minimizing the SCTC which is measured by the mean 

of supply chain total cost over the SBO period. The second objective is to minimize the BWE 

for the manufacturer which is formulated as the ratio of variation in manufacturer’s order to 

variation in its downstream demand. The third objective function pertains to CFB minimization 

for the manufacturer quantified by the ratio of variation in the manufacturer’s CCC to variation 

in its downstream demand. The lower and upper bounds for the decision parameters of entity i 

(e.g., manufacturer, distributor, wholesaler, and retailer) are defined by Eq. (5.28). The 

manufacturer, as the final upstream member of the supply chain, endeavours to manage 

variations in the order quantity, and cash conversion cycle (CCC) in order to reduce the BWE, 

and CFB respectively. It would be interesting to know whether minimizing the order quantity 

and CCC fluctuations for the manufacturer results in volatility reduction in order quantity and 

CCC for other supply chain members. The premise for this model is that the decision maker 

aims to minimize SCTC and also minimize the BWE and CFB throughout the supply chain 

network. 

To solve the multi-objective optimisation problem indicated in Eq. (5.27) and Eq. (5.28) the 

weighted sum method which is one of the most widely used methods for solving multi-

objective optimisation problems is applied. In this method, the multi-objective optimisation 

problem is transformed into a single objective optimisation problem through multiplying each 

objective function by a weighting factor and aggregating all weighted objective functions 

(Marler and Arora, 2010). The weight of an objective is chosen in proportion to the relative 

importance of the objective (Gass and Saaty, 1955). Considering a multi-objective optimisation 

problem with m objectives, where 𝑤𝑖 (𝑖 = 1,… ,𝑚) represents the weighting factor for the 𝑖th 

objective function. If ∑ 𝑤𝑖
𝑚
𝑖=1 = 1 and 0 ≤ 𝑤𝑖 ≤ 1, the weighted sum is a convex combination 

of objectives (Kim and De Weck, 2006). As the objective functions in Eq. (5.27) have the same 

importance for the decision maker, they are given equal weights that add up to one and Eq. 

(5.27) is transformed into a single-objective function as follows. 

 new obj= w1×Min μ
SCTC

 +w2×Min
σ2

MPO

σ2
DD

⁄ +w3×Min
σ2

MCCC

σ2
DD

⁄ w1=w2=w3 = 0.33    (5.29) 

5.4. Experiments 

This section outlines the results of the tests conducted on the beer distribution game using the 

SBO methodology and information sharing, which are two common techniques for bullwhip 

effect reduction. The SBO aims to minimize the total cost of the supply chain in addition to the 
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BWE and CFB for the manufacturer by obtaining the optimal price, unit cost, and inventory 

decision parameters for all members. The information sharing strategy involves supply chain 

members being informed about end customer demand. 

5.4.1. Experiment 1 

The first experiment was designed to test the performance of the SBO and information sharing 

under the assumptions of the original beer game, which included deterministic demand and 

lead times. According to the assumptions of the beer game (BG), customer demand starts by 

ordering 4 crates of beer during the first four weeks and then suddenly, in week 5, the customer 

demand rises to 8 crates per week for the rest of the simulation (Joshi, 2000). Aslam and Ng 

(2016) provides the initial values for material flow variables and parameters at each entity 

at t = 0. The values for cash flow parameters, unit cost and price, are shown in Table 5.2. As 

expected from running the SD-BG model, Figure 5.5 clearly demonstrates the existence of the 

BWE. The placed orders by upstream members is several orders of magnitude larger than the 

end customer demand. The manufacturer placed order (MPO) is 3.4 times more than the end 

customer demand at week 12. This oscillating effect shows how an increase in the customer 

demand, from four to eight in week 5, has resulted in a huge oscillating effect at the final 

upstream member, manufacturer.  

Table 5.2. Sales price and unit cost of supply chain members 

Manufacturer Distributor Wholesaler Retailer 

𝑆𝑃 𝑈𝐶 𝑆𝑃 𝑈𝐶 𝑆𝑃 𝑈𝐶 𝑆𝑃 𝑈𝐶 

1.5 1.25 2 1.75 2.5 2.25 3 2.75 

 

 

SCTC= £10816.69 

file:///C:/Users/e212741/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/CA6US0NO/figures%20and%20tables.docx
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Figure 5.5. The bullwhip effect 

The inventory levels for entities is shown in Figure 5.6. The inventory level for the 

manufacturer between weeks 25 and 35 remains at 60, which is 7.5 times larger than the 

customer demand.  

 

Figure 5.6. The inventory of supply chain members 

The variability of the cash conversion cycle (CCC) for supply chain members is shown in 

Figure 5.7. The existence of the BWE results in an increase in inventory levels which 

subsequently leads to a rise in days inventory outstanding (DIO). An increase in DIO also 

results in CCC growth. The oscillations in CCC rises significantly as we move toward upstream 

members of the chain so that CCC for the final entity, manufacturer, ranges from 30 to 500 

days. Hence, it can be concluded that the existence of the BWE prolongs the cash to cash cycle 

for the upstream members.  

Retailer placed orders (RPO) 

Wholesaler PO (WPO) 

Distributor PO (DPO) 

Manufacturer PO (MPO) 

file:///C:/Users/e212741/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/CA6US0NO/figures%20and%20tables.docx
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Figure 5.7. The cash flow bullwhip 

5.4.1.1 Impact of information sharing 

Considering the assumption that SC members do not share the demand information, each entity 

forecasts the end customer demand based on the previous orders of its downstream member. 

Most companies amplify the demand of their downstream member which leads to information 

distortion throughout the supply chain that is one of the main drivers of the BWE. Information 

sharing is a mechanism which eliminates information distortion and reduces the BWE through 

sharing the end customer demand between the SC members (Yu et al .2001).  

To illustrate the impact of information sharing on diminishing the BWE, CFB and SCTC, the 

results of the original SD model in which the demand information are not shared among the 

SC members are compared with the results obtained from the SD model in which there is 

information sharing between the entities. According to the results shown in Figure 5.8(a)-(c), 

the information sharing among the SC members reduces the variability in the placed orders by 

the customers, variability in inventory levels of the entities, and variability in cash conversion 

cycles of the entities. According to the results shown in Figure 5.5, the placed orders by the SC 

members in the original SD model has a scale of 0-27. While, after the information sharing the 

placed orders by the SC members vary in the range of [1, 12] (see Figure 5.8(a)). According to 

Retailer cash conversion cycle (RCCC), Wholesaler CCC (WCCC), Distributor CCC (DCCC), Manufacturer CCC (MCCC) 
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the results shown in Figure 5.6, the inventory levels of the SD members in the original SD 

model has a scale of 0-60. While, after the information sharing the inventory levels of the SC 

entities vary in the range of [0, 20] (see Figure 5.8(b)). According to the results illustrated in 

Figure 5.7, the CCCs of the members has a scale of 30-500. Although, after the information 

sharing the CCCs of the SC entities vary in the range of [0, 27] (see Figure 5.8(c)). 

As explained, the DIO volatility is caused by increasing the inventory levels. Therefore, 

mitigating the inventory levels through information sharing reduces the CFB in addition to the 

BWE. Although the BWE and CFB decrease dramatically as a result of implementing the 

information sharing strategy, the impact of the strategy on reducing the SCTC is not significant. 

The SCTC decreases by 8 percent, from £10816 to £9915.65. The reason is that the information 

sharing strategy does not identify the optimal values for the inventory decision parameters 

which affect the inventory levels of the SC members and consequently the SCTC. 

  

 

Figure 5.8. Impact of information sharing for experiment 1 

Although, information sharing may bring several benefits to the supply chain members such as 

inventory reduction, cost reduction, bullwhip effect reduction and improved resource 

utilization (Lee, So and Tang, 2000; Mourtzis, 2011). Some of the supply chain members are 

not willing to share their information including sales data, sales forecasting, order information, 

(a) (b) 

(c) 
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inventory information and so on with other members of their supply chains, unless those 

members are part of their own company. It goes without saying that partial information sharing 

is not as effective as full information sharing in reducing the bullwhip effect, cash flow 

bullwhip, and supply chain total cost. Although, it should be noted that the partial information 

sharing particularly when the order information is shared with the upstream members of the 

supply chains that are hardest hit by bullwhip effect and cash flow bullwhip, the partial 

information sharing may have a significant impact in reducing the bullwhip effect, cash flow 

bullwhip, and supply chain total cost (Zhang and Chen, 2013).  

5.4.1.2 SBO implementation 

The execution of the SBO methodology is based on the process referred to in section 5.2.3. In 

order to implement the SBO, a number of specific values need to be decided on, including: 

• The range of values for decision parameters which are defined by Eq. (18). 

• The parameters for the GA which are set as follows: the population size is 200, the 

crossover and mutation rates are set to be 0.8 and 0.1, respectively. To specify an 

appropriate population size, a number of population sizes are selected, and the 

algorithm is run 15 times for each population size. The results are reported in Table 5.3. 

Increasing the population size improves the mean and the standard deviation of the 

fitness function. The population size of 200 is an appropriate population size as the 

population size of 250 does not improve the best fitness value. Although, it slightly 

reduces the standard deviation of the fitness function. 

Table 5.3. Impact of population size on fitness function 

Population size 
Reverse fitness value 

Best (Min) Worst (Max) Mean Standard deviation 

50 7055.64 7116.68 7072.37 28.68 

100 7049.38 7136.38 7050.40 25.26 

150 7046.29 7073.51 7047.80 14.62 

200 7035.64 7053.38 7043.72 5.50 

250 7035.64 7052.23 7041.52 5.21 

 

The optimal solution recommends a non-aggressive strategy toward bridging the gap between 

the desired inventory and current net inventory, i.e., the value of 𝛼 for all members is less than 
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0.5, and a cautious approach to order quantity for distributor and retailer, i.e., the value of 𝛽 

for distributor and retailer is more than 0.5. 

To illustrate the effectiveness of the SBO methodology in minimizing the BWE, CFB, and 

SCTC, the results of the SBO model in which the end customer demand is not shared among 

the members are compared with the results obtained from the SD model in which there is 

information sharing between the entities. According to the results shown in Figure 5.9(a), order 

quantities of all supply chain members converge with customer demand (8 crates/week) at 

week 40. Whilst, before applying the SBO notwithstanding sharing the demand information 

within the SC network, the placed orders adjust to customer demand at week 60 (see Figure 

5.8(a)). SC members are not required to hold inventory from week 60 until the end of the 

simulation in the SBO model (see Figure 5.9(b)) , while in the SD model with information 

sharing at the same period the SC members hold 10 crates/week in inventory (see Figure 

5.8(b)). Similarly, optimal controllable parameters lead to a 0 day cash conversion cycle for all 

the members at week 30 (see Figure 5.9(c)). However, the non-optimal parameter values result 

in an 11 day cash cycle for the retailer at week 40 (see Figure 5.8(c)). In addition to the BWE 

and CFB reduction, implementing the SBO methodology leads to a 29% decrease in the SCTC 

due to the lower inventory levels which is held by the SC members. The SCTC reduced from 

£9915.65 obtained from the SD model with information to £7017.94 after employing the SBO 

methodology. 

 

  

(a) (b) 
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Figure 5.9. Impact of employing SBO for experiment 1 

5.4.2 Experiment 2 

The second experiment examines the performance of the SBO and information sharing under 

stochastic demand where it is assumed that the customer demand fluctuates in the range of 

[0,15] (Kimbrough et al. 2002). Figure 5.10(a) illustrates the ordering quantities for each 

member of the supply chain before applying the SBO and information sharing. It demonstrates 

the amplifications occurring in the orders and the customer’s orders cannot be easily tracked. 

The manufacturer placed order (MPO) is 3.4 times more than the highest orders could be placed 

by the end customer at week 12. As expected, the performance of the members in tracking the 

customer’s demand is inferior to their performance in experiment 1. Therefore, the inventory 

levels of the members that are shown in Figure 5.10(b) are higher than the inventory levels in 

experiment 1 (see Figure 5.6). In experiment 2 before employing the information sharing and 

SBO, the highest inventory level which held by the SC members is 110 which held by the 

distributor at week 30 of the simulation (see Figure 5.10(b)). While, in experiment 1 the highest 

inventory level held by the SC members before employing the information sharing and SBO is 

60 which was held by the manufacturer between weeks 25 and 35 (see Figure 5.6). Figure 

5.10(c) depicts the oscillations in cash cycles of the members which are higher than the cash 

cycle oscillations in experiment 1. The highest CCC for the SC members before information 

sharing and SBO in experiment 2 is 1432 days. While, the highest CCC for the SC members 

before information sharing and SBO in experiment 1 is 27 days. The accumulated cost of the 

supply chain in this experiment before applying BWE reduction techniques is £14283.42 that 

is higher than the total cost in experiment 1. 

(c) 
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Figure 5.10. Results for experiment 2 before using information sharing and SBO 

5.4.2.1 Impact of information sharing 

The impact of information sharing on reducing the BWE, CFB, and SCTC is shown in Figure 

5.11(a)-(c). The ordering quantity of all members is given in Figure 5.11(a), which has a scale 

of 0-27. While before information sharing, the placed orders by the SC members has a scale 0-

51 (see Figure 5.10(a)). According to the results shown in Figure 5.10(b), the inventory levels 

of the SC members before information sharing has a scale of 0-110. While, after the 

information sharing the inventory levels of the SC entities vary in the range of [0, 83] (see 

Figure 5.11(b)). According to the results illustrated in Figure 5.10(c), the CCCs of the members 

before information sharing has a scale of 0-1432. Although, after the information sharing the 

CCCs of the SC entities vary in the range of [0, 712] (see Figure 5.11(c)). In addition to the 

BWE and CFB reductions, the SCTC decreased dramatically as a result of implementing the 

information sharing strategy. The SCTC reduced by 23 percent, from £14283.42 before 

information sharing to £10947.54 after information sharing.  

 

(a) (b) 

(c) 



102 
 

 
 

  

 

Figure 5.11. Impact of information sharing for experiment 2 

5.4.2.2 Impact of SBO 

Using the values for the GA parameters presented in the previous section, i.e., population size 

200, crossover 0.8, and mutation 0.1, the SBO is run for 15 times. The standard deviation of 

the obtained fitness values is 6.71 and the best fitness value is 8332.83. The order quantities of 

the members are shown in Figure 5.12(a), which has a scale of 0-45. The largest order placed 

by a member in the SBO method is higher than the largest order placed in the case of 

information sharing, i.e., 27(see Figure 5.11(a)). While, the inventory levels of the members, 

as illustrated in Figure 5.12(b), are significantly lower than the inventory levels in the 

information-sharing scenario. The inventory levels of the SC members in the SBO model 

reaches to 0 at week 30 and remains unchanged until the end of the simulation. While, in the 

SD model with information sharing the inventory of the retailer who possess the lowest 

volatility among the SC members fluctuates in the range of [0, 38] from week 30 until the end 

of the simulation (see Figure 5.11(b)). The cash cycle of the members after using the SBO 

method is indicated in Figure 5.12(c) that proves the cash flow bullwhip is significantly reduced 

comparing the SD model with information sharing. After employing the SBO method, the CCC 

of the all members remains at 0 day from week 40 until the end of the simulation. While, after 

(a) (b) 

(c) 
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employing the information sharing strategy, the CCC of the manufacturer who possess the 

lowest volatility in cash to cash cycle among the SC members varies in the range of [0, 225] 

(see Figure 5.11(c)). 

The SBO method proposes an aggressive approach toward bridging the gap between the desired 

inventory and current net inventory for the manufacturer and retailer. This implies that the 

value of 𝛼 for the manufacturer and retailer is less than 0.5. A cautious strategy is needed for 

orders in the supply line for the retailer as, the value of 𝛽 for the retailer is more than 0.5. 

Further experiments were performed to investigate if the recommended policy was robust for 

all random values in the range of [0-15] and deterministic lead times. 50 sets of random 

customer’s demand were generated by MATLAB, and the SBO was run 15 times for each set 

to determine the fitness function. The lowest fitness function found would be the optimal 

solution for that specific set of random values when all 50 sets of random values are examined. 

The results indicate that the aggressive approach to inventory gap for the manufacturer and 

retailer and cautious approach to order quantity for the retailer was optimal in 45 sets. This 

shows that the recommended policy for inventory replenishment is an effective policy for 

diminishing the BWE, CFB, and SCTC when demand varies slightly [0-15], and the lead times 

are deterministic. The lower inventory levels held by the SC members after employing the SBO 

method leads to lower SCTC comparing the information sharing. The total cost of the supply 

chain after using the SBO method decreased by 24 percent. The SCTC reduced to £8292.74 

from the total cost of £10947.54 in SD model with information sharing.  

  

(a) (b) 
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Figure 5.12. Impact of employing SBO for experiment 2 

5.4.3 Experiment 3 

Experiment 3 extends the experiment 2 through considering the stochastic lead times in 

addition to the stochastic demand. The shipping lead time varies in the range of [0, 4] in each 

time period. Figure 5.13(a) illustrates the ordering quantities for each member of the supply 

chain before applying the SBO and information sharing. It demonstrates the amplifications 

occurring in the orders and the customer’s orders cannot be easily tracked. The manufacturer 

placed order (MPO) is 2.7 times more than the highest orders could be placed by the end 

customer at week 12. Although amplifications occurred in the placed orders, the performance 

of the members in tracking the customer’s demand is better than their performance in 

experiment 2. Therefore, the inventory levels of the members that are shown in Figure 5.13(b) 

are lower than the inventory levels in experiment 2. In experiment 3 before employing 

information sharing and SBO, the highest inventory level which held by the SC members is 27 

which held by the distributor at week 30 of the simulation. While, in experiment 2 the highest 

inventory level held by the SC members before employing the information sharing and SBO is 

110 which was held by the distributor at week 35 (see Figure 5.10(b)). Figure 5.13(c) depicts 

the oscillations in cash cycles of the members which are lower than the cash cycle oscillations 

in experiment 2. The highest CCC for the SC members before information sharing and SBO in 

experiment 3 is 40 days. While, the highest CCC for the SC members before information 

sharing and SBO in experiment 2 is 1432 days. The accumulated cost of the supply chain in 

this experiment before applying BWE reduction techniques is £18387.96, which is higher than 

the total cost in experiment 2 notwithstanding the lower levels of the inventory held by the 

members. The reason is that uncertainty in lead times affects the on-time delivery of the 

products negatively and consequently the stock outs increase. As the unit stock out cost is 

(c) 
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higher than the unit inventory holding cost, the total cost of the supply chain in experiment 3 

is higher than the total cost in experiment 2. 

  

 

Figure 5.13. Results for experiment 3 before using information sharing and SBO 

5.4.3.1 Impact of information sharing 

The impact of information sharing on reducing the BWE, CFB, and SCTC is shown in Figure 

5.14(a)-(c). The ordering quantity of all members is given in Figure 5.14(a), which has a scale 

of 0-23. While before information sharing, the placed orders by the SC members has a scale 0-

40 (see Figure 5.13(a)). Although the ability of the members in tracking the customer’s demand 

is ameliorated as a result of information sharing, the inventory levels illustrated in Figure 

5.14(b) show amplifications and are higher than the inventory levels before information 

sharing. The inventory levels of the SC members before information sharing has a scale of 0-

27(see Figure 5.13(b)). While, after the information sharing the inventory levels of the SC 

entities vary in the range of [0, 42] (see Figure 5.14(b)).  The higher inventory levels help the 

members to mitigate the lost sale, which decreases the total cost to £10672.94 after information 

sharing, from the original cost of £18387.96 before information sharing. Figure 5.14(c) depicts 

the CCC of the members after information sharing that have risen compared with before 

information sharing. The CCC increases are caused by higher days inventory outstanding that 

(a) (b) 

(c) 
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is caused by higher inventory levels. According to the results illustrated in Figure 5.13(c), the 

CCCs of the members before information sharing has a scale of 0-40. Although, after the 

information sharing the CCCs of the SC entities vary in the range of [0, 687] (see Figure 

5.14(c)). 

  

 

Figure 5.14. Impact of information sharing for experiment 3 

5.4.3.2 Impact of SBO 

Using the values for the GA parameters presented in experiment 1, the SBO is run 15 times. 

The standard deviation of the obtained fitness values is 8.59 and the best fitness value is 

8761.54. The order quantities of the members that are shown in Figure 5.15(a) have a scale of 

0-30. Similar to experiment 2, the largest order placed by a member in the SBO method is 

higher than the largest order placed in the case of information sharing, i.e., 23 (see Figure 

5.14(a)). Whilst the inventory levels of the members, are illustrated in Figure 5.15(b), are much 

lower than the inventory levels in the information-sharing scenario. In the SBO model, the 

inventory of the retailer who possess the highest inventory level among the SC members from 

week 60 until the end of the simulation remains at 8 crates. While, in the SD model with 

information sharing the inventory of the retailer who possess the lowest volatility among the 

SC members fluctuates in the range of [0, 42] at the same time period (see Figure 5.14(b)). The 

(a) (b) 

(c) 
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cash cycle of the members after using the SBO method is shown in Figure 5.15(c) that proves 

the cash flow bullwhip is significantly reduced comparing the SD model with information 

sharing. After employing the SBO method, the CCC of the retailer who possess the highest 

cash to cash cycle among the members remains at 10 days from week 60 until the end of the 

simulation. While, in the SD model with information sharing the CCC of the retailer has a scale 

of 0-275 (see Figure 5.14(c)). 

  

 

Figure 5.15. Impact of employing SBO for experiment 3 

The SBO method proposes an aggressive approach to bridging the gap between the desired 

inventory and current net inventory for the distributor and the wholesaler.  The value of 𝛼 for 

the distributor and wholesaler is less than 0.5, and a cautious strategy is required for orders in 

the supply line for the distributor and wholesaler, i.e., the value of 𝛽 for the retailer is more 

than 0.5. Further experiments were performed to investigate if the recommended policy was 

robust for all random values in the range of [0-15] and random lead times in the range of [0-4]. 

50 random sets representing customer’s demand and lead times were generated, and the SBO 

was run 15 times for each set to determine the fitness function. The lowest fitness function 

found would be the optimal solution for that specific set of random values. To identify the most 

frequent policy for bridging the inventory gap and supply line consideration, the recommended 

(a) (b) 

(c) 
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policies for the random sets are examined. Table 5.4 shows the replenishment policies that 

occurred most frequently and the associated mean fitness values. 

This experiment proves that the replenishment policy is found by the SBO method. Aggressive 

policies by the distributor and wholesaler for inventory gap and cautious policies by the 

distributor and wholesaler to supply line are not robust for every set of random customer orders 

and lead times within the defined ranges. However, these policies occur most frequently and 

provide the highest fitness value. The lower inventory levels held by the SC members after 

employing the SBO method leads to lower SCTC comparing the information sharing. The 

accumulated cost of the supply chain in the SBO method amounts to £8729.90 which is 18 

percent lower than the accumulated cost in the SD model with information sharing.  

Table 5.4. Replenishment policies found optimal for random demand and lead times 

Replenishment policy Rate of occurrence Mean reverse fitness value 

Aggressive distributor and 

wholesaler to net inventory gap 

Cautious distributor and 

wholesaler to supply line 

23 8876.28 

Aggressive manufacturer and 

retailer to net inventory gap 

Cautious retailer to orders in 

supply line 

19 8935.61 

Non-aggressive members to 

inventory gap 

Cautious retailer and distributor 

8 9027.52 

 

5.5. Concluding discussion 

Supply chain management seeks to match the supply of products with the demand of customers 

and the supply of money with the demand of the agents. Heterogeneous distribution of products 

among supply chain members known as the bullwhip effect (BWE) and heterogenous 

distribution of cash among supply chain members known as the cash flow bullwhip (CFB), 

trigger inefficiencies in operational processes of the members such as purchasing and inventory 

management and consequently reduce supply chain service level. 

As discussed in section 2.5.2 in chapter 2 and is presented in Table 5.5, Previous research on 

the BWE has highlighted the existence of this phenomenon and identified its main causes to 
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mitigate its adverse effects (Alwan et al., 2003; Lee et al., 2004; Zhang, 2004; Luong, 2007). 

However, there is lack of studies that focus on minimizing the BWE by finding the optimal 

values to the controllable decisions of the supply chain members. Moreover, previous research 

does not consider the flow of cash in the BWE modelling.  

Previous research on the CFB has identified the causes of this phenomenon (Tangsucheeva and 

Prabhu, 2013; Goodarzi et al., 2017). There is a lack of studies that focus on minimizing the 

CFB through finding the optimal values to the inventory bullwhip contributors including the 

desired inventory, the desired supply line, the inventory adjustment parameter, and the supply 

line adjustment parameter.  Furthermore, price and unit cost are two decision parameters that 

assist the decision maker in controlling variations in the CCC.  

To fill the gap in the BWE and CFB literature, in this chapter, an SBO model is developed for 

reducing the bullwhip effect, cash flow bullwhip, and the total cost in a supply chain under 

deterministic demand and lead times, stochastic demand and deterministic lead times, and 

stochastic demand and lead times. In this model financial flow modelling is incorporated into 

the system dynamics simulation of the beer distribution game to identify the optimal financial 

decisions in addition to the optimal operational decisions. This contribution extends previous 

supply chain research on minimizing the bullwhip effect (Alwan et al., 2003; Zhang, 2004; 

Luong, 2007; Balakrishnan, et al., 2004; Hosoda and Disney, 2006; Tangsucheeva and Prabhu, 

2013, 2014; Goodarzi et al., 2017; Sim and Prabhu, 2017) through diminishing the destructive 

effects of the bullwhip effect in supply chain financial flow in addition to the physical flow. 

Moreover, it incorporates the financial flow modelling into the inventory planning models and 

determines the optimal values to the financial decisions parameters, in addition to the inventory 

decisions. Finally, it incorporates CFB minimization as an objective function into an SBO 

model.  

The initial model is developed as in Aslam and Ng (2016) to validate the approach by observing 

similar results and then extending the SBO model. The main objective of the proposed SBO 

model is to find the optimal values of desired inventory, desired supply line, forecasting 

parameter for inventory, forecasting parameter for supply line, sales price per unit, and unit 

cost for supply chain entities to make trade-offs between the SCTC, CFB, and BWE. Three 

experiments were developed to investigate the ability of the SBO model in identifying the 

optimal replenishment policy. 
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Table 5.5. Literature on bullwhip effect and cash flow bullwhip 

Current literature Parameters 

considered 

Minimizing 

the BWE by 

finding 

optimal 

parameter 

values 

Minimizing 

the CFB by 

finding 

optimal 

parameter 

values 

Approaches 

(Alwan et al., 2003; 

Zhang, 2004; Luong, 

2007; Balakrishnan, et 

al., 2004; Hosoda and 

Disney, 2006; 

Tangsucheeva and 

Prabhu, 2013, 2014; 

Goodarzi et al., 2017; 

Sim and Prabhu, 2017) 

 

 

This study 

Inventory control 

parameters 
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The first experiment was the MIT beer distribution game, which employs deterministic demand 

and lead times. The SBO found the optimal replenishment policy to be non-aggressive 

approach to the inventory gap for all members, and a cautious approach to orders in the supply 

line for the retailer and distributor. The second experiment tested random demand and 

deterministic lead times. The SBO found the optimal replenishment policy to be an aggressive 

approach to the inventory gap for the retailer and manufacturer, and a cautious approach to 

orders in the supply line for the retailer. The third experiment extended the second experiment 

through considering random lead times in addition to the random customer demand. In this 

experiment, an aggressive approach to the inventory gap for the distributor and wholesaler and 

cautious approach to orders in supply line for the distributor and wholesaler was identified to 

be the optimal replenishment policy.  
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Comparing the performance of the developed SBO model with the information sharing strategy 

in reducing the SCTC showed that the SBO outperformed the information sharing in all three 

experiments. In the first experiment, after employing the SBO technique the SCTC reduced by 

29 percent comparing the SCTC of the SD model with information sharing. Similarly, the 

SCTC in the SBO model under demand uncertainty, and demand and lead time uncertainties, 

i.e., experiments 2 and 3, reduced by 24 percent and 18 percent, respectively comparing the 

SD model with information sharing. Decreasing the gap between the SD model with 

information sharing and the developed SBO model as the number of stochastic parameters 

increase conveys the importance of the information sharing among supply chain members in 

mitigating the SCTC.  

In this chapter, the uncertainties in economic parameters which refers to macroeconomic, 

financial, and market conditions are not considered. While, these uncertainties may have a 

tremendous impact on financial and working capital performances in supply chain networks. 

In the next chapter the impact of uncertain economic parameters such as short-term interest 

rate on working capital performance and profitability, which are measured by the CCC and 

economic value added (EVA) index is investigated. 
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6. Chapter 6. Managing the trade-off between financial 

performance and liquidity in a supply chain under economic 

uncertainty 

6.1. Introduction 

Supply chain finance that is described as the intersection of the supply chain management and 

finance integrates the planning of the financial and physical flows within the supply chain 

networks (Stemmler, 2002; Hofmann, 2005). The objective of supply chain finance is to 

decrease the cost of capital for supply chain members and accelerate cash flow within the 

supply chain networks through applying financing solutions on assets and liabilities. The 

financing solutions employed by the supply chain finance could be divided into two categories: 

(1) the “finance oriented” solutions that comprises short-term financial solutions on accounts 

payable and receivable offered by a third-party creditor (e.g., factoring, reverse factoring), and 

(2) “supply chain oriented” solutions where a financial institution such as a bank might not be 

involved and consists of solutions on working capital optimisation and sometimes asset-

liability optimisation through cooperation and coordination among supply chain 

participants (e.g., VMI financing, fixed asset financing) (Gelsomino et al., 2016). Working 

capital optimisation involves optimizing inventories, accounts receivable, and accounts 

payable to ensure capability of a firm to continue its operation. The objective of working 

capital optimisation is to reduce the current assets and also increase the current liabilities in 

order to minimize the capital tied up in the company’s turnover process (Hofmann and Kotzab, 

2010). 

Economic uncertainty which refers to macroeconomic, financial, and market conditions has a 

tremendous impact on financial and working capital performances in supply chain networks 

(Longinidis and Georgiadis, 2013). The financial performance represents the profitability of 

the supply chain and the working capital performance represents the accessibility of the supply 

chain members to necessary funds for continuing their operations. Although considered 

together, financial performance and working capital metrics which in this study are economic 

value added (EVA) and cash conversion cycle (CCC) are not necessarily moving to the same 

direction as each one has a different fundamental objective. The EVA, targets at maximizing 

the wealth, while the CCC focuses on minimizing the accumulated capital. 
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In this chapter, an SBO framework, including genetic algorithm (GA) and system dynamics 

(SD) simulation, that integrates the planning of the financial and physical flows is presented to 

manage the trade-off between financial performance and working capital management in 

presence of economic uncertainty. 

The rest of the chapter is organized as follows. Section 6.2 describes the model assumptions 

and the stock management problem. The proposed SBO model is presented in section 6.3. 

Section 6.4 illustrates the applicability of the proposed model through a case study. Finally, 

concluding remarks are presented in section 6.5. 

6.2. Problem Definition and Assumptions 

The stock management problem refers to the issue of controlling a system state or stock to meet 

some system objectives. For instance, all supply chain participants manage their inventory and 

resources to balance production with the demand of their customer. Stocks are solely altered 

through modification in their inflow and outflow rates, thus requiring a decision maker to set 

the inflow of the stock so as to counteract the drainage of the stock also eliminate any 

discrepancy between the current and the desired state of the stock (Sterman, 2000). Sterman 

(Sterman, 2006) points out that there is a delay between a decision maker control actions and 

its effect on the stock (system state) which needs to be formulated. A firm seeking to increase 

its raw material inventory cannot acquire new units immediately but must await delivery of the 

orders by the supplier. The control of the stock management problem can be split into two 

parts, where the first part pertains to stock and flow structure of the stock management system, 

and the second part relates to the decision rules applied by the decision maker to control the 

inflow rate of the stock (Sterman, 2000).  

The stock management structure can be found in several different application domains such as 

inventory management, capital investment, and human resources. In this paper, the stock 

management structure of inventory management model presented by Sterman (2000) is 

developed through considering the financial flow in addition to physical flow. Moreover, multi-

objective optimisation (MOO) is integrated with the proposed model by implementing SBO 

approach. Figure 1 displays the stock and flow structure of an extended version of the inventory 

management model developed by Sterman (2000). A new stock variable namely materials 

supply line has been added to the original model. The production centre implements a make-

to-stock production strategy, in which the products are manufactured for storage based on 

demand forecasts. However, two delays exist in the model: (1) the time lag in filling the 
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inventory as the manufacturing of a product takes time, and (2) the time lag in materials 

shipment from suppliers known as order lead time. All the units that ordered to be manufactured 

but are not yet finished is represented through the work-in-process (WIP) inventory and the 

materials which ordered to the suppliers but not yet received is described by materials supply 

line. As Figure 1 depicts, the WIP inventory is defined through production start rate and 

production rate, while materials supply line is determined by materials order rate and materials 

delivery rate. 

The original model seeks to specify an adequate production start rate which in time restores 

the expected shipments of products from the inventory and ensures the adequacy of work in 

process and inventory levels to provide a good customer service level (Sterman, 2006). In 

addition to the production start rate, the presented model aims to define a sufficient material 

order rate that will in time replace the material usage rate from the materials inventory as well 

as keeping a sufficient materials supply line and inventory to provide a good service level for 

production line. These objectives are achieved by identifying the optimal values for the 

inventory control parameters which have been highlighted in Figure 6.1. For a detailed 

information about the inventory management model the reader is referred to (Sterman, 2000). 
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Figure 6.1. Stock and flow structure of extended inventory management model 
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6.2.1. Economic uncertainty 

The concept of economic cycle is applied to model economic uncertainty. Stagnation, boom, 

and recession are categories which express the economic cycle. In our model five uncertain 

parameters illustrate the uncertainty in economic environment: (1) customer demand, (2) 

expected return of the market, (3) risk-free rate of interest, (4) short-term interest rate, and (5) 

long-term interest rate (Longinidis and Georgiadis, 2013). During a boom period, economic 

prosperity leads to increased purchasing power of customers which results in excessive demand 

for products and services. The expected return of the market rises, as the investors who are 

optimistic about the future of the companies present in the stock market increase their 

investment. Risk-free rate of interest, which is usually the interest rate of a governmental bond, 

falls as the risk of default diminishes. The risk of borrower’s default decreases, therefore 

financial institutions charge lower short-term and long-term interest rates. On the other hand, 

during a recession period all the aforementioned parameters move to the opposite direction. In 

a stagnation period, it is assumed that the past shapes the future due to the fact that there are 

minor deviations in the value of parameters comparing the preceding period (Longinidis and 

Georgiadis, 2013).  

The scenario analysis approach is applied to formulate economic uncertainty. Postulated 

scenarios are shown in Figure 6.2. In the current period there is no economic uncertainty 

resulting in a single scenario branch over the first year. In the start of the second period, there 

are three potential conditions, e.g. boom, stagnation, and, recession, which leads to three 

scenarios. Each scenario encompasses a set of constant parameter values.  
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Figure 6.2. Scenarios tree for economic uncertainty 

6.2.2. Economic value added (EVA) 

Stewart Iii (1994) presented Economic value added (EVA) index to measure the financial 

performance of a company. The proposed index measures the economic value created by a 

business through deducting cost of capital employed from its operating profit. The calculation 

of the EVA index is expressed in Eq. (6.1), where NOPAT is the net operating profit after tax 

derived from income statement. WACC is the weighted average cost of capital which indicates 

the average rate of return is expected to be paid for the main sources of capital, i.e. debt and 

equity, leveraged by the company (Ogier et al., 2004). 

𝐸𝑉𝐴 = 𝑁𝑂𝑃𝐴𝑇 −𝑊𝐴𝐶𝐶 × (𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑏𝑡 + 𝑆ℎ𝑎𝑟𝑒ℎ𝑜𝑙𝑑𝑒𝑟′𝑠 𝐸𝑞𝑢𝑖𝑡𝑦) (6.1) 

6.3. System-Dynamics Modelling  

The proposed model extends the inventory management model developed by Sterman 

(Sterman, 2000) through incorporating financial flow modelling also considering economic 

uncertainty. Another novelty relates to presenting MOO structure of the model and pareto-

optimal solutions set obtained from the MOO. 

6.3.1 Financial Flow Modelling  

To measure the efficiency of the financial flow management through the supply chain, the 

economic, and working capital performances of the supply chain members should be evaluated. 
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In this study, cash conversion cycle (CCC), and economic value added (EVA), indexes are 

applied to measure the economic, and working capital performances, respectively.  

The financial stock and flow structure is illustrated in Figure 6.3. The end customers place 

orders  to the manufacturer. The collecetion policy (m) (6.2) defines the amount of order value 

must be collected in cash. For instance, 𝑚 = 0.2  implies that 20 percent of the order value 

needs to be paid in cash before the product delivery. These order values accumulate on cash 

(6.3). The rest of the order value is integrated in receivable accounts (6.4). To fulfill the end 

customer demand, the manufacturer places orders to the raw material suppliers. The payment 

policy (n) (6.2) indicates the share of order value paid in cash. The rest of the order cost required 

to be paid by the manufacturer to the suppliers is accumulated on payable accounts (6.5). The 

value of inventory held in the manufacturer warehouse is determined by inventory value (6.6). 

As the manufacturer pays some part of its order value in cash also is being paid in advance by 

end customers for some part of its sales revenue, CCC (4.11) may not be an effective tool for 

measuring the cash to cash cycle. Days of advance receivement outstanding (DAdRO) (6.7) 

and days of advance payment outstanding (DAdPO) (6.8) are incorporated into updated CCC 

metric (6.9). 
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Figure 6.3. Stock and flow structure of financial flow 

R
ec

ei
va

b
le

A
cc

o
un

ts
R

ec
ei

va
b
le

A
cc

o
un

ts
 I

nf
lo

w

R
ec

ei
va

b
le

A
cc

o
un

ts
 O

ut
flo

w

In
ve

nt
o
ry

V
al

ue
In

ve
nt

o
ry

 V
al

ue

In
flo

w
In

ve
nt

o
ry

 V
al

ue

O
ut

flo
w

P
ay

ab
le

A
cc

o
un

ts
P

ay
ab

le
 A

cc
o

un
ts

In
flo

w

P
ay

ab
le

 A
cc

o
un

ts

O
ut

flo
w

S
a
le

s 
P

ri
ce

 (
S

P
)

C
o
lle

ct
io

n 
P

o
lic

y

<
In

ve
nt

o
ry

>
<

M
at

er
ia

l
D

el
iv

er
y 

R
at

e>

S
up

p
lie

r 
P

ri
ce

D
ay

s 
In

ve
nt

o
ry

O
ut

st
an

d
in

g
U

n
it

 C
o
st

 (
U

C
)

<
C

us
to

m
er

O
rd

er
 R

at
e>

D
ay

s 
S

al
es

O
ut

st
an

d
in

g
D

ay
s 

P
ay

ab
le

O
ut

st
an

d
in

g

P
ay

m
en

t 
P

o
lic

y

M
o
d
ifi

ed
 C

as
h

C
o
nv

er
si

o
n 

C
yc

le
(m

C
C

C
)

S
ho

rt
-t

er
m

L
ia

b
ili

tie
s

S
ho

rt
-t

er
m

 L
ia

b
ili

tie
s

P
ya

m
en

t 
R

at
e

L
o
ng

-t
er

m

L
ia

b
ili

tie
s

L
o
ng

-t
er

m
 L

ia
b

ili
tie

s

P
ay

m
en

t 
R

at
e

C
as

h
C

as
h 

In
flo

w
C

as
h 

O
ut

flo
w

<
P

ay
m

en
t

P
o
lic

y>
<

M
at

er
ia

l
D

el
iv

er
y 

R
at

e>

R
et

ai
ne

d

E
ar

ni
ng

s
R

ea
in

ed
 E

ar
ni

ng
s

In
flo

w

W
o
rk

in
g
 C

a
p
it

a
l

P
o
li
cy

 (
W

C
P

)

P
ro

fi
t 

D
is

tr
ib

u
ti

o
n

P
o
li
cy

 (
P

D
P

)
<

W
o
rk

in
g 

C
ap

ita
l

P
o
lic

y 
(W

C
P

)>

<
P

ro
fit

 D
is

tr
ib

ut
io

n

P
o
lic

y 
(P

D
P

)>

N
et

 S
al

es

E
ar

ni
ng

 b
ef

o
re

In
te

re
st

 a
nd

 T
ax

N
et

 O
p
er

at
in

g

P
ro

fit
 a

ft
er

 T
ax

In
te

re
st

 E
xp

en
se

s

T
ax

 R
at

e
A

d
m

in
is

tr
at

iv
e

E
xp

en
se

s 
C

o
ns

ta
nt

E
q
ui

ty

E
q
ui

ty
 I

nf
lo

w

S
to

ck
 V

al
ue

S
to

ck
 V

al
ue

In
flo

w

S
to

ck
N

ew
 S

to
ck

 R
at

e

N
e
w

 S
to

ck

p
a
ra

m
e
te

r 
(N

S
P

)
U

ni
t 
S

to
ck

 v
al

ue

In
ve

st
ed

C
ap

ita
l

In
ve

st
ed

 C
ap

ita
l

In
flo

w
W

e
ig

h
te

d
 A

v
e
ra

g
e

C
o
st

 o
f 

C
a
p
it

a
l

B
et

a 
C

o
ef

fic
ie

nt

R
is

k
-f

re
e 

R
at

e 
o
f

In
te

rs
t

S
ho

rt
-t

er
m

 I
nt

er
st

R
at

e
L

o
ng

-t
er

m
 I

nt
er

st

R
at

e
E

xp
ec

te
d

 R
et

ur
n 

o
f

th
e 

M
ar

k
et

E
co

no
m

ic
 V

al
ue

A
d
d
ed

<
N

et
O

p
er

at
in

g
P

ro
fit

 a
ft
er

T
ax

>

<
N

et
 O

p
er

at
in

g
P

ro
fit

 a
ft
er

T
ax

>

D
ay

s 
A

d
va

nc
e

R
ec

ei
ve

m
en

t 
O

us
ta

nd
in

g

D
ay

s 
A

d
va

nc
e

P
ay

m
en

t 
O

ut
st

an
d

in
g

<
C

as
h

>

S
ho

rt
-t

er
m

 I
nt

er
es

t

E
xp

en
se

s

D
iv

id
en

d
s

<
T

ax
 R

at
e>

L
o

ng
-t

er
m

 I
nt

er
es

t

E
xp

en
se

s

<
S

ho
rt

-t
er

m
In

te
re

st
E

xp
en

se
s>

<
L

o
ng

-t
er

m

In
te

re
st

 E
xp

en
se

s>

<
S

ho
rt

-t
er

m

L
ia

b
ili

tie
s>

<
S

to
ck

 V
al

ue
 I

nf
lo

w
>

<
E

q
ui

ty
>

D
ep

re
ci

at
io

n

O
ri
gi

na
l V

al
ue

 o
f

F
ix

ed
 A

ss
et

s

S
al

va
ge

 V
al

ue

<
S

to
ck

 V
al

ue
In

flo
w

>

<
D

C
 I

nv
en

to
ry

>
<

D
C

 s
hi

p
m

en
t 
ra

te
>

<
D

C
 s

hi
p
m

en
t 
ra

te
>



120 
 

 
 

0 ≤ 𝑚, 𝑛 ≤ 1 
(6.2) 

𝐶𝑎𝑠ℎ = 𝐼𝑁𝑇𝐸𝐺𝑅𝐴𝐿(𝐶𝑎𝑠ℎ 𝐼𝑛𝑓𝑙𝑜𝑤 − 𝐶𝑎𝑠ℎ 𝑂𝑢𝑡𝑓𝑙𝑜𝑤) (6.3) 

𝑅𝑒𝑐𝑒𝑖𝑣𝑎𝑏𝑙𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠

= 𝐼𝑁𝑇𝐸𝐺𝑅𝐴𝐿(𝑅𝑒𝑐𝑒𝑖𝑣𝑎𝑏𝑙𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠 𝐼𝑛𝑓𝑙𝑜𝑤

− 𝑅𝑒𝑐𝑒𝑖𝑣𝑎𝑏𝑙𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠 𝑂𝑢𝑡𝑓𝑙𝑜𝑤) 

(6.4) 

𝑃𝑎𝑦𝑎𝑏𝑙𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠 = 𝐼𝑁𝑇𝐸𝐺𝑅𝐴𝐿(𝑃𝑎𝑦𝑎𝑏𝑙𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠 𝐼𝑛𝑓𝑙𝑜𝑤 − 𝑃𝑎𝑦𝑎𝑏𝑙𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠 𝑂𝑢𝑡𝑓𝑙𝑜𝑤) (6.5) 

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑉𝑎𝑙𝑢𝑒 = 𝐼𝑁𝑇𝐸𝐺𝑅𝐴𝐿(𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝐼𝑛𝑓𝑙𝑜𝑤 − 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑉𝑎𝑙𝑢𝑒 𝑂𝑢𝑡𝑓𝑙𝑜𝑤) (6.6) 

𝐷𝐴𝑑𝑅𝑂 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑎𝑠ℎ

𝑅𝑒𝑣𝑒𝑛𝑢𝑒
365⁄

 (6.7) 

𝐷𝐴𝑑𝑃𝑂 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑎𝑠ℎ

𝐶𝑂𝐺𝑆
365⁄

 (6.8) 

𝑈𝑝𝑑𝑎𝑡𝑒𝑑 𝐶𝑎𝑠ℎ 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝐶𝑦𝑐𝑙𝑒 = 𝐷𝐼𝑂 + 𝐷𝑆𝑂 − 𝐷𝑃𝑂 − 𝐷𝐴𝑑𝑅𝑂 + 𝐷𝐴𝑑𝑃𝑂 (6.9) 

 

The income statement is a fiancial statement which represents the earnings also the costs 

incured by a company in a fiscal year. Eq. (6.10)-(6.12) formulate the income statement. Net 

sales (6.10) is the product of shipment rate and sales price. Earning before interest and taxes 

(EBIT) (6.11) is calculated by subtracting COGS (6.12), depreciation, and administrative 

expenses from net sales. To calculate depreciation (6.13), the sum of years’ digits method 

(Dhaliwal, Salamon and Smith, 1982) which is a form of accelerated depreciation is applied. It 

is assumed that fixed assets are depreciated within two years (104 weeks) which is the length 

of simulation time. Administrative Costs (6.14) is the product of administrative constants 

which equals to 0.01 and net sales. Net operating profit after taxes (NOPAT) (6.15) is 

determined by subtracting interest expenses (6.16), which includes short-term and long-term 

interests expenses, from EBIT and then multiplying the result with the term (1-Tax Rate). 

Short-term interest expenses and long-term interest expenses are constants values that are equal 

to the weekly payment for short-term and long-term liabilities, respectively. NOPAT is 

allocated between dividends, working capital, and retained earnings. Dividends (6.17) is the 

product of NOPAT and profit distribution policy (6.18) which is decided in board of directors 

meeting. Working capital policy (6.19) indicates the share of NOPAT alloted to working 

capital. Finally, the rest of NOPAT is added to retained earnings (6.20).  
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𝑁𝑒𝑡 𝑆𝑎𝑙𝑒𝑠 = 𝑆𝑎𝑙𝑒𝑠 𝑃𝑟𝑖𝑐𝑒 × 𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒 (6.10) 

𝐸𝐵𝐼𝑇 = 𝑁𝑒𝑡 𝑆𝑎𝑙𝑒𝑠 − 𝐶𝑂𝐺𝑆 − 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 − 𝐴𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑣𝑒 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠 (6.11) 

𝐶𝑂𝐺𝑆 = 𝑈𝑛𝑖𝑡 𝐶𝑜𝑠𝑡 × 𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒 (6.12) 

𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 =
104 − 𝑇𝑖𝑚𝑒 + 1

(1 + 2 +⋯+ 104)⏟            
5460

× (𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐹𝑖𝑥𝑒𝑑 𝐴𝑠𝑠𝑒𝑡𝑠 − 𝑆𝑎𝑙𝑣𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒) (6.13) 

𝐴𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑣𝑒 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠 = 𝐴𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑣𝑒 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × 𝑁𝑒𝑡 𝑆𝑎𝑙𝑒𝑠 (6.14) 

𝑁𝑂𝑃𝐴𝑇 = (𝐸𝐵𝐼𝑇 − 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠) ∗ (1 − 𝑇𝑎𝑥 𝑅𝑎𝑡𝑒) (6.15) 

𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠 = 𝑆ℎ𝑜𝑟𝑡 − 𝑡𝑒𝑟𝑚 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠 + 𝐿𝑜𝑛𝑔 − 𝑡𝑒𝑟𝑚 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠 (6.16) 

𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑𝑠 = 𝑁𝑂𝑃𝐴𝑇 × 𝑃𝑟𝑜𝑓𝑖𝑡 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑃𝑜𝑙𝑖𝑐𝑦 (6.17) 

0 ≤ 𝑃𝑟𝑜𝑓𝑖𝑡 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑃𝑜𝑙𝑖𝑐𝑦 ≤ 1 (6.18) 

0 ≤ 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑃𝑜𝑙𝑖𝑐𝑦 ≤ 1 (6.19) 

𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 = 𝐼𝑁𝑇𝐸𝐺𝑅𝐴𝐿(𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝐼𝑛𝑓𝑙𝑜𝑤) (6.20) 

 

The  level of equity (6.21) increases by stock value inflow (6.22) which is a function of new 

stock rate and unit stock value. Short-term liabilities (6.23) and long-term liabilities (6.24) are 

depleted by payment of the short term interst expenses and long term inteerest expenses, 

respectively. Invested capital (6.25) accumulates the amount of financing from short term 

liabilities, long term liabilities, and equity. WACC (6.26) is a figure expressing the required 

return on the invested capital which is determined by multiplying cost of debt (6.27) and cost 

of equity (6.28) by their proportional weight and take the sum of the results. Unlike cost of 

debt, Cost of equity may not be easily calculated  as there is not an explicit value on the return 

that the firm’s equity investors required on their investments. Therefore, the capital asset 

pricing model (CAPM) is applied as a substitute. The CAPM model calculates expected return 

for assets, notably stocks through considering time value of money and risk. The risk-free rate 

of interest , which is usually the yield on government bonds such as U.S. Treasuries, 

compensates for time value of money, while the second part of the formula represents the 

amount of compensation for taking on additional risk. The risk measure (𝛽) is the amount of 
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systematic risk existing in an asset. Economic value added (EVA) (6.29) is calculated by 

subtracting the cost of invested capital from NOPAT. 

𝐸𝑞𝑢𝑖𝑡𝑦 = 𝐼𝑁𝑇𝐸𝐺𝑅𝐴𝐿( 𝑆𝑡𝑜𝑐𝑘 𝑉𝑎𝑙𝑢𝑒 𝐼𝑛𝑓𝑙𝑜𝑤) (6.21) 

𝑆𝑡𝑜𝑐𝑘 𝑉𝑎𝑙𝑢𝑒 𝐼𝑛𝑓𝑙𝑜𝑤 = 𝑁𝑒𝑤 𝑆𝑡𝑜𝑐𝑘 𝑅𝑎𝑡𝑒 × 𝑈𝑛𝑖𝑡 𝑆𝑡𝑜𝑐𝑘 𝑉𝑎𝑙𝑢𝑒 (6.22) 

𝑆ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙(−𝑆ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠) (6.23) 

𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙(−𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠) (6.24) 

𝐼𝑛𝑣𝑒𝑠𝑡𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 = 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝑆ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 + 𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 + 𝐸𝑞𝑢𝑖𝑡𝑦) (6.25) 

𝑊𝐴𝐶𝐶 =
𝐸𝑞𝑢𝑖𝑡𝑦

𝐼𝑛𝑣𝑒𝑠𝑡𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙
× 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐸𝑞𝑢𝑖𝑡𝑦 + 

𝑆ℎ𝑜𝑟𝑡 − 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 + 𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝐼𝑛𝑣𝑒𝑠𝑡𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙
× 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑑𝑒𝑏𝑡 × (1 − 𝑇𝑎𝑥 𝑅𝑡𝑎𝑒) 

 

 

(6.26) 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐷𝑒𝑏𝑡 =
𝑆ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝑆ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 + 𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
× 

𝑆ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 +
𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝑆ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 + 𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
× 

𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 

(6.27) 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐸𝑞𝑢𝑖𝑡𝑦 = 𝑅𝑖𝑠𝑘 𝑓𝑟𝑒𝑒 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 + (𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑀𝑎𝑟𝑘𝑒𝑡 − 

𝑅𝑖𝑠𝑘 𝑓𝑟𝑒𝑒 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡) × 𝛽 

(6.28) 

𝐸𝑉𝐴 = 𝑁𝑂𝑃𝐴𝑇 −𝑊𝐴𝐶𝐶 × 𝐼𝑛𝑣𝑒𝑠𝑡𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 (6.29) 

 

Although SD simulation models are considered to be more robust than other type of simulation 

models, they are required to be validated through validation tests. The extreme conditon test 

(Sterman, 2000), which is one of the validation tests for SD models, is used to show the 

robustness of our developed simulation model. The extreme condition test assesses whether 

model behaves appropriately according to its inputs values (Sterman, 2000). E.g., the demand 

for a product converges to zero when there is a significant increase in the price (Sterman, 2000). 

To run extreme condition test in our developed model, sales price per unit of product that is a 

model input increases dramatically. Consequently, CCC and EVA grow significantly.   
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6.3.2. Multi-objective Modelling of the Extended Inventory Management Model 

The main objective of the extended inventory management model is to provide a good customer 

service level by meeting customer demand through keeping a sufficient amount of inventory 

level. Although keeping high level of inventory ensures the capability of the firm on meeting 

the customer demands, it imposes significant holding costs on the manufacturing company. 

Thus, a trade-off is required to be made between the sufficient level of inventory and shipment 

rate. Furthermore, the downstream flow of material from the suppliers to the firm is required 

to be responded by the upstream flow of money which necessitates the availability of the 

working capital. Minimization of working capital metric (CCC) expedites the accessibility to 

cash through minimizing the inventory level. Finally, profitability is the main objective of all 

businesses which in this study is measured by EVA. Maximization of EVA may be achieved 

by increasing the shipment rate which leads to increasing the inventory level, even though CCC 

minimization seeks to decrease the level of inventory. Consequently, another trade-off is 

required to be made between the cash to cash and profitability metrics. The objective functions 

are denoted as follows: 

  

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 {
𝑀𝑎𝑥 𝐸𝑉𝐴 = 𝑀𝑎𝑥 𝜇𝐸𝑉𝐴
𝑀𝑖𝑛 𝐶𝐶𝐶 = 𝑀𝑖𝑛 𝜇𝐶𝐶𝐶

 

 

Where   𝜇𝐸𝑉𝐴 =
∑ 𝐸𝑉𝐴𝑇
𝑡=0

𝑇
, 𝜇𝐶𝐶𝐶 =

∑ 𝐶𝐶𝐶𝑇
𝑡=0

𝑇
 

Where  

𝐼𝑛𝑝𝑢𝑡 (𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

= 𝑊𝐼𝑃𝐴𝑇,𝑀𝐶𝑇, 𝐼𝐴𝑇,𝑀𝑂𝑃𝑇, 𝑆𝑆𝐶, 𝑇𝐴𝑂𝑅,𝑚,𝑀𝐼𝐴𝑇,𝑀𝑆𝑆𝐶,𝑀𝑀𝐼𝐶, 𝑁𝑆𝑃, 𝑛, 𝑃𝐷𝑃, 𝑆𝑃, 𝑈𝐶,𝑊𝐼𝑃𝐴𝑇,𝑊𝐶𝑃 

And 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝜇𝐸𝑉𝐴, 𝜇𝐶𝐶𝐶 

Subject to: 0.25 ≤ 𝑊𝐼𝑃𝐴𝑇 ≤ 10, 5 ≤ 𝑀𝐶𝑇 ≤ 15, 5 ≤ 𝐼𝐴𝑇 ≤ 15, 0.25 ≤ 𝑀𝑂𝑃𝑇 ≤ 10, 0.25 ≤ 𝑆𝑆𝐶 ≤

10, 5 ≤ 𝑇𝐴𝑂𝑅 ≤ 15, 0 ≤ 𝑚 ≤ 1, 5 ≤ 𝑀𝐼𝐴𝑇 ≤ 15, 0.25 ≤ 𝑀𝑆𝑆𝐶 ≤ 10, 0.25 ≤ 𝑀𝑀𝐼𝐶 ≤ 10, 0 ≤ 𝑁𝑆𝑃 ≤ 1 ,

0 ≤ 𝑛 ≤ 1, 0 ≤ 𝑃𝐷𝑃 ≤ 0.50, 7 ≤ 𝑆𝑃 ≤ 12, 3 ≤ 𝑈𝐶 ≤ 6, 0.25 ≤ 𝑊𝐼𝑃𝐴𝑇 ≤ 10, 0 ≤ 𝑊𝐶𝑃 ≤ 0.50, 0 ≤ 𝛼 ≤ 1,

0 ≤ 𝛽 ≤ 1, 0 ≤ 𝐷𝐷𝐼 ≤ 30000, 0 ≤ 𝐷𝐷𝑆𝐿 ≤ 35000    

𝛼 = 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡: denote the aggressiveness of the distributor in 

bridging the gap between the desired and current inventory. 

(6.30) 

(6.31) 
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𝛽 = 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝑠𝑢𝑝𝑝𝑙𝑦 𝑙𝑖𝑛𝑒 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡: denote the level of consideration of the distributor 

to the inventory on-orders at the time of order placement 

𝑚 = 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑖𝑐𝑦: denotes the share of the sales is required to be collected in cash 

𝑛 = 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 𝑝𝑜𝑙𝑖𝑐𝑦: denotes the share of the raw material purchase is required to be paid in cash 

𝐷𝐷𝐼: denote the desired inventory by the distributor  

𝐷𝐷𝑆𝐿: represent the desired inventory on order by the distributor  

𝐼𝐴𝑇 = 𝑇ℎ𝑒 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 : represents the time period over which the manufacturer seeks to 

bridge the gap between the desired and current inventory of finished products 

𝑀𝐼𝐴𝑇 = 𝑇ℎ𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒: represents the time period over which the manufacturer 

seeks to bridge the gap between desired and current inventory of the raw material 

𝑀𝑆𝑆𝐶 = 𝑇ℎ𝑒 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟 𝑠𝑎𝑓𝑒𝑡𝑦 𝑠𝑡𝑜𝑐𝑘 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒: represents the time period over which the manufacturer 

would like to maintain a safety stock coverage to hedge against volatility in distributor’s demand 

𝑆𝑆𝐶 = 𝑇ℎ𝑒 𝑠𝑎𝑓𝑒𝑡𝑦 𝑠𝑡𝑜𝑐𝑘 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒: represents the time period over which the distributor would like to maintain 

a safety stock coverage in order to meet any variations in retailers’ demands 

𝑀𝑀𝐼𝐶 = 𝑇ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒: represent the minimum material inventory required 

by the manufacturer 

𝑀𝑂𝑃𝑇 = 𝑇ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑟𝑑𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑛𝑔 𝑡𝑖𝑚𝑒: denotes the minimum time required by the manufacturer to 

process and ship a distributor order 

𝑃𝐷𝑃 = 𝑇ℎ𝑒 𝑝𝑟𝑜𝑓𝑖𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑖𝑐𝑦: denotes the dividends that is required to be paid to the shareholders 

𝑆𝑃 = 𝑇ℎ𝑒 𝑠𝑎𝑙𝑒𝑠 𝑝𝑟𝑖𝑐𝑒: The price per tonne of product which is paid to the retailers by the customers 

𝑇𝐴𝑂𝑅 = 𝑇ℎ𝑒 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑟𝑑𝑒𝑟 𝑟𝑎𝑡𝑒: denotes the time period over which the distributor demand forecast 

is adjusted to actual retailers’ orders 

𝑈𝐶 = 𝑇ℎ𝑒 𝑢𝑛𝑖𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡: denotes the production cost per tonne of product at the manufacturer 

𝑊𝐼𝑃𝐴𝑇 = 𝑇ℎ𝑒 𝑊𝐼𝑃 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 : represents the time required for the manufacturer to adjust its WIP 

inventory to its desired level 

𝑀𝐶𝑇 = 𝑇ℎ𝑒 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒: represents the average delay time of the production process for the 

products from start until completion of the product 

𝑁𝑆𝑃 = 𝑁𝑒𝑤 𝑠𝑡𝑜𝑐𝑘 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟: represents the level of the stock that should be issued 

𝑊𝐶𝑃 = 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑝𝑜𝑙𝑖𝑐𝑦:reprents the share of NOPAT dedicated to the working capital 
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The first objective relates to maximizing EVA and the second objective pertains to 

minimization of CCC. The objective functions are formulated as the mean of performance 

indicators over the simulation period.  

6.3.3. Multi-objective Simulation-based Optimisation 

Simulation models are descriptive tools which solely depict the current state of the studied 

system. On the other hand, optimisation models are prescriptive tools that are able to provide 

recommendations to improve the performance of the system. Therefore, integrating 

optimisation and simulation leads to a consolidated framework which can be both descriptive 

and prescriptive. Such an integrated framework is called simulation-based optimisation (SBO). 

SBO is the process of obtaining optimal values for the decision variables, where the objective 

functions are measured through the simulation model (Ólafsson and Kim, 2002). SBO is an 

iterative process which mostly is launched during the optimisation modeling process by 

generating initial values for input parameters of the simulation model, i.e., supply chain 

decision parameters. The simulation model is then run using inputted values to evaluate system 

performance. Thereafter, the performance measures are fed back into the optimisation model. 

Based on this feedback a new set of decision parameters are generated and inputted into the 

simulation model for evaluation (Aslam, 2013). This iterative process continues until a user-

specified stop criterion has been met. For instance, performing a defined number of evaluations 

(Syberfeldt, 2009).  

Multi-objective optimisation (MOO) is a method is applied to solve problems containing 

conflicting objectives that may not be formulated to a common scale of cost or benefit 

(Tabucanon, 1996). To solve problems with multiple objectives firstly, non-dominated set of 

optimal solutions are obtained. Secondly, the decision maker chooses the optimal solution 

based on its preferences (Deb, 2001). Non-dominated solutions are a set of different points in 

a frontier called Pareto optimal. The solutions which belong to the Pareto optimal do not have 

any superiority over another, however, they dominate all other solutions. A solution 𝑆1 

dominates another solution 𝑆2, if 𝑆1 is significantly better than  𝑆2 in at least one optimisation 

objective, and where 𝑆1 is no worse than 𝑆2 regarding all optimisation objectives (Deb, 2001).  

In this study, the weighted sum method, one of the most widely-used methods for multi-

objective optimisation (Stanimirovic, Zlatanovic and Petkovic, 2011), is utilized to construct 

the Pareto optimal frontier. In this method, multi-objectives are transformed into a single 

objective through multiplying each objective function by a weighting factor and aggregating 
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all weighted objective functions (Marler and Arora, 2010). The weight of an objective is chosen 

in proportion to the relative importance of the objective (Gass and Saaty, 1955). Considering a 

multi-objective optimisation problem with m objectives, where 𝑤𝑖 (𝑖 = 1, … ,𝑚) represents 

the weighting factor for the 𝑖 th objective function. If ∑ 𝑤𝑖
𝑚
𝑖=1 = 1  and 0 ≤ 𝑤𝑖 ≤ 1 , the 

weighted sum is a convex combination of objectives (Kim and De Weck, 2006). Therefore, the 

solution obtained by each single objective optimisation is a point on the Pareto optimal frontier. 

By changing the weighting factors (𝑤𝑖) , the single objective optimisation determines a 

different optimal solution. The obtained optimal solutions form the set of non-dominated 

solutions that might be represented in a two dimensional chart where each point in the Pareto 

optimal frontier implies a combination of inventory and financial decisions parameters. 

As mentioned in chapter 3, GAs are well suited for parameter optimisation and can also be 

extended to multiple objective optimisation (MOO) (Streichert, 2002). Therefore, in this study, 

a GA is employed to specify optimal values to the inventory and financial control parameters 

to minimize cash conversion cycle (CCC), while maximizing economic value added (EVA). 

The fitness function of the GA is defined as: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑤1 × 𝜇𝐸𝑉𝐴 − 𝑤2 × 𝜇𝐶𝐶𝐶         𝑤1 = 𝑤2 = 0.5 (6.32) 

6.4. A case study 

In order to demonstrate the applicability of the proposed model, numerical experiments are 

performed in this section. The data of the case study was introduced in Longinidis and 

Georgiadis (2011) and Longinidis and Georgiadis (2013). A manufacturing supply chain 

including a manufacturer which implements a make-to-stock production strategy is considered. 

In the forward direction, the manufacturer is supplied by raw material suppliers and ships 

finished products to the customer zones. To hedge against unexpected variations in customer’s 

demand, the manufacturer preserves a certain coverage of expected demand as safety stock. 

The suppliers are able to satisfy the entire order of manufacturer. There is no backlog of unfilled 

orders, and in the case the manufacturer is not able to meet the customers’ demand, the orders 

are lost. In the reverse direction, the manufacturer asks the end customers to prepay a fraction 

of their purchasing cost (i.e., collection policy) and also pays a fraction of the procurement cost 

(i.e., payment policy) to the supplier. The problem consists of finding the optimal values to the 

controllable inventory and financial parameters for the manufacturer in order to make a trade-

off between the CCC, and EVA, under all economic scenarios. As the problem is multi-
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objective, the generated Pareto optimal frontier provides a set of optimal controllable 

parameters to be selected based on decision maker’s preferences. 

The initial data for running the simulation model are presented in Tables 6.1 and 6.2. Table 6.1 

shows the five parameters that express into a large extent the economic uncertainty. These 

parameters are in compliance with the scenario tree structure presented in Figure 6.2. The 

balance sheet, at the beginning of the simulation period, is presented in Table 6.2. The original 

value and salvage value of fixed assets are 210,000 and 168,000, relative money units (rmu) 

respectively. Moreover, the administrative constant is considered to be 0.01, the tax rate is 30% 

per year, the beta coefficient equals to unity, and stock value is 7 rmu per stock. 

Table 6.1. Customer demand and financial parameters related to economic scenarios 

Scenario 
Parameter 

𝐶𝐷𝑡=0
[𝑠]

 𝐶𝐷𝑡=53
[𝑠]

 𝑆𝑇𝑅𝑡=0
[𝑠]  𝑆𝑇𝑅𝑡=53

[𝑠]  𝐿𝑇𝑅𝑡=0
[𝑠]  𝐿𝑇𝑅𝑡=53

[𝑠]  𝑟𝑓𝑡=0
[𝑠]

 𝑟𝑓𝑡=53
[𝑠]  𝑟𝑚𝑡=0

[𝑠]  𝑟𝑚𝑡=53
[𝑠]  

𝑆1 10000 15000 7.00 5.60 4.00 3.00 2.50 2.00 5.00 6.00 

𝑆2 10000 10000 7.00 7.00 4.00 4.00 2.50 2.50 5.00 5.00 

𝑆3 10000 5000 7.00 8.40 4.00 5.00 2.50 3.00 5.00 4.00 

Table 6.2. Balance sheet at the beginning of simulation time (t=0) 

Account rmua 

𝐴. 1. 𝐴𝑠𝑠𝑒𝑡𝑠 170,000 

𝐴. 1.1. 𝑇𝑎𝑛𝑔𝑖𝑏𝑙𝑒 𝑎𝑠𝑠𝑒𝑡𝑠 170,000 

𝐴. 1.2. 𝐼𝑛𝑡𝑎𝑛𝑔𝑖𝑏𝑙𝑒 𝑎𝑠𝑠𝑒𝑡𝑠 0 

𝐴. 2. 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑠𝑠𝑒𝑡𝑠 70,000 

𝐴. 2.1. 𝐶𝑎𝑠ℎ 29,968 

𝐴. 2.2. 𝑅𝑒𝑐𝑒𝑖𝑣𝑎𝑏𝑙𝑒 𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 28,000 

𝐴. 2.3. 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 12,032 

𝐴. 𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠 240,000 

𝐵. 1. 𝐸𝑞𝑢𝑖𝑡𝑦 130,000 

𝐵. 1.1. 𝐶𝑜𝑚𝑚𝑜𝑛 𝑠𝑡𝑜𝑐𝑘 80,000 

𝐵. 1.2. 𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑 𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠 50,000 

𝐵. 2. 𝐷𝑒𝑏𝑡 110,000 

𝐵. 2.1. 𝑆ℎ𝑜𝑟𝑡 − 𝑡𝑒𝑟𝑚 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 45,000 

𝐵. 2.2. 𝐿𝑜𝑛𝑔 − 𝑡𝑒𝑟𝑚 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 65,000 

𝐵. 𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑏𝑡 𝑎𝑛𝑑 𝑒𝑞𝑢𝑖𝑡𝑦 240,000 

 aRelative money units 
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6.4.1. Results  

To assess the effect of economic uncertainty on the model performance the SD simulation 

model is required to initialize in a balanced equilibrium. Therefore, all the model stocks 

including the inventories and supply lines are set to be equal to their desired values and the 

expected order rate is set to be equal to the customer order rate. Figures 6.4(a)- 6.4(d) represent 

the inventory, cash to cash cycle, and EVA dynamics for the SC members in scenario 1 

obtained from running the SD simulation model for two years, 104 weeks. The distributor 

increases placed orders to the manufacturer to meet the surge in customer’s demand occurred 

at the week 53 that results in peaking its inventory level at 15000 units of product at week 55. 

The inventory of the distributor levels at its new equilibrium at 12700 unit of products at week 

70. There is a plunge in manufacturer’s inventory after the demand growth as the 

manufacturing cycle time is 5 weeks. At week 58 the inventory of the manufacturer starts to 

rise and reaches to its new equilibrium level, 41600 units of products, at week 80. The cash 

conversion cycle dynamics follows the pattern in the manufacturer’s inventory which holds the 

highest levels of inventory among supply chain members. The cash conversion cycle at the 

start of the second-year plummets as a result of fall in the accumulated inventory in the supply 

chain network and reaches to its new equilibrium level, 87 days, at week 80. The EVA value 

added at the start of the second year increases sharply due to the reduction in inventory levels 

of the manufacturer and rise in sales before levelling off at £51700 at week 100. 

 

 

0 20 40 60 80 100
3,000

5,000

7,000

9,000

11,000

13,000

15,000

Current Reference

Weeks

D
is

tr
ib

u
to

r

in
v
e

n
to

ry

For evaluation purposes only!

0 20 40 60 80 100
0

10,000

20,000

30,000

40,000

Current Reference

Weeks

M
a

n
u

fa
c
tu

re
r

in
v
e

n
to

ry

For evaluation purposes only!

0 20 40 60 80 100
0

20

40

60

80

100

Current Reference

Weeks

M
o

d
if

ie
d

 c
a

s
h

c
o

n
v
e

rs
io

n

c
y
c
le

For evaluation purposes only!

0 20 40 60 80 100
5,000

15,000

25,000

35,000

45,000

55,000

65,000

75,000

Current Reference

Weeks

E
V

A

For evaluation purposes only!

SBO SD (a) (b) 

(c) (d) 

SBO SD 

SBO SD SBO SD 



129 
 

 
 

Figure 6.4. SD and SBO models performances scenario 1 

To implement the presented multi-objective simulation-based optimisation model, a number of 

specific values need to be decided on. The range of values for the decision parameters which 

defined by Eq. (6.31). The parameters for the GA which are set as follows: the population size 

is 300, the crossover and mutation rates are set to be 0.8 and 0.1, respectively. To specify an 

appropriate population size, a number of population sizes were selected and the algorithm was 

run 15 times for each population size. The results are reported in Table 6.3. Increasing the 

population size improves the mean and the standard deviation of the fitness function until 

reaching to the population size that generates the optimal solution, i.e. 300. 

Table 6.3. Impact of population size on fitness function 

Population size 
Fitness value  

Worst (Min) Best (Max) Mean Standard deviation 

150 59615.64 59723.68 59642.37 38.28 

200 59596.38 59684.24 59625.40 25.36 

250 59487.80 59537.51 59514.29 14.62 

300 59422.11 59453.62 59433.72 6.42 

350 59422.11 59448.23 59431.51 6.21 

 

For each scenario using the aforementioned parameters, the SBO is run 15 times and the best 

fitness value is identified. The simulation system is then run using the optimal decision 

parameters obtained from the SBO model that generated the best fitness value. Figures 6.4(a)-

6.4(d) represent the inventory, cash to cash cycle, and EVA dynamics for the SC members in 

scenario 1 after employing the SBO methodology. The inventory level of the distributor 

decreases after applying the SBO methodology. From week 75 onwards the distributor 

inventory remained at 11800 units of products, while before SBO at the same period it levelled 

off at 12700 units. The fluctuation in distributor’s inventory after employing SBO is 

significantly higher than before SBO. The inventory of manufacturer before SBO fluctuates at 

the range of [10000, 15000]. While after using SBO, it is oscillating in the range of [3200, 

23000]. Contrary to the distributor’s inventory, the inventory of manufacturer diminished 

significantly after using the SBO. The manufacturer’s inventory peaked at 20000 units of 

products, while it peaked at 41600 before SBO. Moreover, after SBO the inventory level of the 

manufacturer at week 80 is 18000 and continues to decrease, although before SBO, it remains 

constant at 41600 units from week 80 onwards. The significant reduction in inventory levels 
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of the manufacturer yields the dramatic fall in cash to cash cycle. The cash conversion cycle 

after SBO oscillates in the range of [6, 38] and continues to decrease at week 80 onwards from 

33 days. While before SBO, it fluctuates in the range of [36, 114] and remains stable at 87 days 

from week 80 onwards. The EVA after SBO follows the same pattern as before SBO except 

for more frequent and higher domain oscillations between weeks 53 and 65. Furthermore, after 

SBO the EVA reaches to equilibrium level of £75800, while before SBO its equilibrium level 

is £51700. 

Figures 6.5(a)- 6.5(d) represent the inventory, cash to cash cycle, and EVA dynamics for the 

SC members in scenario 2 obtained from running the SD simulation model for two years, 104 

weeks. As the customer’s demand remains unchanged during the simulation model, the system 

maintains its equilibrium state during the simulation time. The manufacturer inventory and the 

cash conversion cycle follow a goal seeking pattern which is achieved at week 10. The EVA 

decreases linearly as the invested capital increases linearly.  

 

 

Figure 6.5. SD and SBO models performances scenario 2 

Figures 6.5(a)- 6.5(d) represent the inventory, cash to cash cycle, and EVA dynamics for the 

SC members in scenario 2 after employing the SBO methodology. As in experiment 1, the SBO 

methodology reduces the inventory level of the distributor. The distributor’s inventory remains 

at 7613 from week 10 until the end of the simulation. While, in the SD model it remains at 
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10,000 during the simulation time. Similar to the scenario 1, the inventory level of the 

manufacturer diminishes significantly after employing the SBO methodology. Before using the 

SBO, the manufacturer’s inventory reaches to 36600 units of products at week 10 and remains 

stable until the end of the simulation. While, after employing the SBO, from week 10 onwards 

it oscillates in the range of [8500, 17200]. The significant decrease in the manufacturer’s 

inventory level prompts reduction in cash to cash cycle. After using the SBO, the cash 

conversion cycle from week 10 until the end of the simulation fluctuates in the range of [22, 

43] days. Although, in the SD model at the same period it remains stable at 117 days. The EVA 

after using the SBO, from week 10 onwards oscillates in the range of [42300, 47500] which is 

achieved as a result of reduction in the inventory held by the manufacturer. The EVA in the 

SD model is £43300 at the start of the simulation and arrives at £38900 at week 104. 

 Figures 6.6(a)- 6.6(d) represent the inventory, cash to cash cycle, and EVA dynamics for the 

SC members in scenario 3 obtained from running the SD simulation model for two years, 104 

weeks. The inventory of the distributor remains unchanged at 10000 units of products until the 

end of the first year. At the start of the first-year distributor’s inventory surges to 15000 units 

of products and remains stable until the ends of the simulation as a result of slump in customer’s 

demands. The inventory of the manufacturer before the start of the second year shows a goal 

seeking pattern which reaches its goal, which is 36700 units of products, at week 10. At the 

start of the second year it grows significantly and arrives at 50400 units of products at week 

60. Between weeks 60 and 80, there is a plummet in manufacturer’s inventory levels before 

converging to the new equilibrium level at 26600 at week 80. The cash conversion cycle shows 

the similar pattern to the manufacturer inventory. At week 60 the cash to cash cycle peaks at 

364 days and its new equilibrium level is 175 days which is achieved at week 80. The EVA at 

the start of the second-year plunges as a result of slump in customer’s demand and reaches to 

£13569 at the end of the simulation.  
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Figure 6.6. SD and SBO models performances scenario 3 

 Figures 6.6(a)- 6.6(d) represent the inventory, cash to cash cycle, and EVA dynamics for the 

SC members in scenario 3 after employing the SBO methodology. The SBO methodology 

significantly reduces the inventory of the distributors. After employing the SBO, the maximum 

inventory of the distributor is 11227 which is reached at week 53. While in the SD model, 

during the second year the inventory of the distributor remains at 15000. The inventory of the 

manufacture reduces significantly after using the SBO. The inventory of the manufacture after 

employing the SBO peaks at 24524 units of products at week 60. While, in the SD model it 

peaks at 50400 units of products at week 60. The inventory of the manufacturer between weeks 

80 and 100 varies in the range of [2705, 3819] units of products. However, in the SD model it 

remains stable at 26600 units of products at the same period. Using the SBO reduces the cash 

to cash cycle significantly as the cash conversion cycle is a function of the inventories held by 

the supply chain members. After employing the SBO, the cash conversion cycle varies in the 

range of [15, 125] days. While, in the SD model it fluctuates in the range of [48, 364]. In 

congruence to the SD model, the EVA in the SBO model shows a significant reduction at the 

start of the second year caused by the plummet in customer’s demand. While, in the second 

year the EVA values obtained from the SBO model are much higher than the ones attained 

from the SD model. In the second year the EVA in the SBO model varies in the range of [19125, 

2086] GBP. However, in the SD model it varies in the range of [13569, 14768] GBP. 

 Figures 6.7- 6.9 illustrate the Pareto optimal frontier for EVA versus CCC in the scenarios 1-

3. The results are determined by specifying the weighting factors for objective functions which 

could be selected based on the decision maker’s preferences. To achieve non-dominated 

solutions, each single objective optimisation problem is formulated through selecting 

weighting factors (𝑤𝑖) that are in the interval of [0,1] and add up to 1. Each point in this frontier 

corresponds to a different combination of the decision parameters.  

0 20 40 60 80 100
0

50

100

150

200

250

300

350

Current Reference

Weeks

M
o

d
if

ie
d

 c
a

s
h

c
o

n
v
e

rs
io

n

c
y
c
le

For evaluation purposes only!

0 20 40 60 80 100
5,000

15,000

25,000

35,000

45,000

Current Reference

Weeks

E
V

A

For evaluation purposes only!

(c) (d) SBO SD SBO SD 



133 
 

 
 

In order to get a more detailed insight into model’s decision mechanism, two solutions in each 

scenario were selected and their optimal decision parameters are presented in Tables 6.4 - 6.6. 

Solution 1 represents the optimal decision parameters that result in minimum CCC while 

ignoring the added value. On the other hand, Solution 101 represents the optimal decision 

parameters that lead to maximum added value while ignoring cash to cash cycle. 

As shown in Tables 6.4 - 6.6, solution 1 in all scenarios recommends collection of major share 

of the customers’ order value in the form of in advance cash payment, e.g., in scenario 1, 𝑚 =

0.96, and payment of the major share of the purchased material’s value in the form of credit 

payment, e.g., in scenario 1, 𝑛 = 0.08, as decreasing the level of accounts receivable and 

increasing the level of accounts payable yield reduction in the CCC.  

Since diminishing the level of inventories, containing materials, finished and unfinished goods, 

is another common way to decrease the cash to cash cycle, the values for the inventory 

decisions parameters including safety stock coverage  (𝑆𝑆𝐶) , material safety stock 

coverage (𝑀𝑆𝑆𝐶), Minimum order processing time (𝑀𝑂𝑃𝑇), minimum material inventory 

coverage  (𝑀𝑀𝐼𝐶) , inventory adjustment time  (𝐼𝐴𝑇) , material inventory adjustment 

time (𝑀𝐼𝐴𝑇), WIP adjustment time  (𝑊𝐼𝑃𝐴𝑇), and time to average order rate (𝑇𝐴𝑂𝑅) in 

solution 1 are lower than the values recommended in solution 101. 

On the other hand, solution 101 in all scenarios recommends a significant profit margin, e.g., 

in scenario 1 the sales price (𝑆𝑃) is 2.91 times bigger than the unit cost (𝑈𝐶) as it targets at 

maximizing the operating profit. Since decreasing the level of invested capital is another way 

to maximize EVA, solution 101 in all scenarios recommends allocating 100 percent of the 

NOPAT to working capital and dividends, i.e., 𝑊𝐶𝑃 = 0.5 & 𝑃𝐷𝑃 = 0.5.  Both solutions in 

all scenarios have almost the same approach toward the new stock parameter as issuing new 

stocks improves neither EVA nor CCC.  

Regarding the inventory decisions for the distribution centre, solution 1 in all the scenarios 

recommends a lower desired inventory (𝐷𝐶𝐷𝐼) in order to diminish the level of inventory. In 

both scenarios 2 and 3, solution 1 recommends a lower level of desired supply line (DCDSL) 

as setting high level of desired supply line in presence of stability and shrinkage in demand is 

not imperative. Although, in scenario 1, solution 1 recommends a higher level for finished 

products within supply line in order to meet increased demand of end customer. Forecasting 

parameter for inventory adjustment (𝛼) and forecasting parameter for supply line adjustment  

(𝛽) represent the policy of the distribution centre in relation to bridging the gap between the 
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desired and current levels of inventory and supply line, respectively. A high value of 𝛼 

indicates an aggressive policy to bridge the gap between desired and current inventory level. 

In the case of 𝛽, a high value implies that all the orders in the supply line have been taken into 

account, when deciding on the amount of orders to be placed with the upstream member. 

Neglecting minimization of the CCC, i.e., the weight of CCC in objective function equals to 0, 

there is a positive correlation between end customer demand and forecasting parameters for 

supply line adjustments (i.e., 𝛽). Although, the forecasting parameter for inventory adjustment 

(i.e., 𝛼) and the end customer demand move at the same direction. 

Considering the values for the EVA, as expected, scenario 3 results in the lowest value for 

EVA comparing the other scenarios since there is recession in economic condition in the 

second year. Furthermore, the EVA in scenario 2 is lower than scenario 1 as the stagnation in 

the second year leads to stability in the end customer demand.  

 

Figure 6.7. Pareto optimal frontier illustrating the trade-off between EVA and CCC in scenario 1 

Table 6.4. Optimal decision parameters of two non-dominated solutions in Scenario 1 

Parameter 

 

Solution 

𝑊𝐶𝐶𝐶  𝑊𝐸𝑉𝐴 𝑚 𝐼𝐴𝑇 𝐷𝐷𝐼 𝛽 𝑀𝐼𝐴𝑇 𝑀𝑆𝑆𝐶 𝑀𝑀𝐼𝐶 𝑀𝑂𝑃𝑇 𝑁𝑆𝑃 𝑛 

Solution 1 1 0 0.96 13.37 25341 0.27 6.10 4.16 3.94 0.28 0 0.08 
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Solution 101 0 1 0.52 13.39 27028 0.35 8.35 5.25 9.44 9.74 0 0.23 

 

Parameter 

 

Solution 

𝑃𝐷𝑃 𝑆𝑆𝐶 𝑆𝑃 𝑇𝐴𝑂𝑅 𝛼 𝐷𝐷𝑆𝐿 𝑈𝐶 𝑊𝐼𝑃𝐴𝑇 𝑊𝐶𝑃 𝜇𝐶𝐶𝐶  𝜇𝐸𝑉𝐴 

No 

simul

ation 

Solution 1 0.50 0.32 9.29 14.42 0.47 14158 4.08 3.15 0.49 1 33471 2332 

Solution 101 0.50 3.77 11.96 10.42 0.81 7179 3.06 4.42 0.50 362 74243 2411 

 

 

Figure 6.8. Pareto optimal frontier illustrating the trade-off between EVA and CCC in scenario 2 

Table 6.5. Optimal decision parameters of two non-dominated solutions in Scenario 2 

      Parameter 

 

Solution 

𝑊𝐶𝐶𝐶  𝑊𝐸𝑉𝐴 𝑚 𝐼𝐴𝑇 𝐷𝐷𝐼 𝛽 𝑀𝐼𝐴𝑇 𝑀𝑆𝑆𝐶 𝑀𝑀𝐼𝐶 𝑀𝑂𝑃𝑇 𝑁𝑆𝑃 𝑛 

Solution 1 1 0 0.91 8.66 2362 0.31 5.23 5.52 6.97 0.25 0 0.09 

Solution 101 0 1 0.37 12.86 21722 0.14 13.43 6.90 8.92 9.48 0 0.42 

 

    Parameter 

 

Solution 

𝑃𝐷𝑃 𝑆𝑆𝐶 𝑆𝑃 𝑇𝐴𝑂𝑅 𝛼 𝐷𝐷𝑆𝐿 𝑈𝐶 𝑊𝐼𝑃𝐴𝑇 𝑊𝐶𝑃 𝜇𝐶𝐶𝐶  𝜇𝐸𝑉𝐴 

No 

simul

ation 

Solution 1 0.50 0.25 11.31 14.11 0.45 1999 5.93 6.92 0.50 0 21218 2346 
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Solution 101 0.50 8.28 11.28 12.91 0.54 22342 3.01 4.98 0.50 467 41665 2402 

 

 

Figure 6.9. Pareto optimal frontier illustrating the trade-off between EVA and CCC in scenario 3 

Table 6.6. Optimal decision parameters of two non-dominated solutions in Scenario 3 

Parameter 

 

Solution 

𝑊𝐶𝐶𝐶  𝑊𝐸𝑉𝐴 𝑚 𝐼𝐴𝑇 𝐷𝐷𝐼 𝛽 𝑀𝐼𝐴𝑇 𝑀𝑆𝑆𝐶 𝑀𝑀𝐼𝐶 𝑀𝑂𝑃𝑇 𝑁𝑆𝑃 𝑛 

Solution 1 1 0 0.91 10.06 1381 0.48 5.94 5.75 5.24 0.28 0.0005 0.39 

Solution 101 0 1 0.37 12.67 11031 0.08 8.97 6.40 7.75 7.94 0 0.58 

 

Parameter 

 

Solution 

𝑃𝐷𝑃 𝑆𝑆𝐶 𝑆𝑃 𝑇𝐴𝑂𝑅 𝛼 𝐷𝐷𝑆𝐿 𝑈𝐶 𝑊𝐼𝑃𝐴𝑇 𝑊𝐶𝑃 𝜇𝐶𝐶𝐶  𝜇𝐸𝑉𝐴 

No 

simul

ation 

Solution 1 0.44 0.33 10.27 13.94 0.42 3514 5.87 2.48 0.50 2 −4675 2314 

Solution 101 0.50 4.29 11.52 9.99 0.27 5085 3.54 3.23 0.50 291 14215 2486 

 

6.5. Concluding discussion 

Given the importance of incorporating financial flow modelling into supply chain planning 

models, this chapter presents an SBO framework that incorporates the financial flow modelling 
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into the inventory management problem presented by Sterman (2000) under economic 

uncertainty. Economic uncertainty triggers uncertainty in the financial status of a company 

which may in turn results in sustainability risks. Financial and working capital performances 

are two essential pillars of financial status representing the profitability of the supply chain and 

the accessibility of the supply chain members to necessary funds for continuing their operation. 

To assess the financial and working capital performances, in this chapter, the economic value 

added (EVA) and cash conversion cycle (CCC) metrics are used, respectively. These two 

metrics are not moving towards the same direction and business managers should find a balance 

between them. The proposed model integrates system dynamics (SD) and a genetic algorithm 

(GA) to identify the optimal values to the inventory and financial decisions parameters to make 

the trade-off between the EVA and the CCC.  

As discussed in section 2.5.3 in chapter 2 and is presented in Table 6.7, much of the literature 

on the application of the SD modelling for inventory management focuses on evaluating the 

impact of various policies on improving the system’s performance in terms of efficiency and 

responsiveness. The effects of the improvement policies on the system’s performance are 

measured through modifying the values to the decision parameters of the model. In other 

words, by applying SD modelling, the modeller is solely able to compare the effects of varied 

policies, i.e., different values of the controllable parameters, through performing what-if 

analysis which may not be an effective strategy particularly, when the decision parameters are 

continuous such as inventory decisions. Therefore, incorporating optimisation algorithms into 

the SD simulation is inevitable when the modeller aims to identify the optimal values to the 

continuous decision parameters. To fill the gap in inventory management using SD simulation, 

In this chapter, the genetic algorithm which is a metaheuristic and is an effective tool for 

optimisation of the continuous parameters (Mühlenbein and Schlierkamp-Voosen, 1993) is 

applied to identify the optimal values to the inventory decisions parameters such as inventory 

and supply line adjustment parameters. 

Much of the literature on inventory management under trade credit applied mathematical 

modelling approaches, and the simulation-based modelling remains underrepresented. 

Moreover, cost minimization or profit maximization are the dominant objective function in the 

developed models in the literature, while the literature lacks the studies that manage the trade-

off between profitability and liquidity through developing the multi objective models. Finally, 

the literature lacks the studies that consider uncertainties in economic parameters such as 

demand and interest rates.  
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Table 6.7. Literature on inventory management using SD simulation and working capital management 

Current 

literature 

Parameters 

considered 

Finding the 

optimal 

values to 

the 

continuous 

inventory 

parameters 

Managing 

the trade-offs 

between the 

EVA 

maximization 

and the CCC 

minimization 

Considering 

the 

economic 

uncertainty  

Approaches 

(Reyes et al, 

2013; Peng et al., 

2014; Cannella et 

al., 2015; Liao, 

2008; Teng, 

2009; Mahata, 

2012; Huang, 

2007; Huang and 

Hsu, 2008; Teng 

and Chang, 2009; 

Ravichandran, 

2007; Liao, 

2008; Teng, 

2009) 

 

This study 

Inventory 

control 

parameters 

 

 

 

 

 

 

Inventory 

control 

parameters 

Price 

Unit cost 

Collection 

policy 

Payment 

policy 
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System 

dynamics 

 

Mathematical 

modelling 

 

 

 

 

 

 

 

Simulation-

based 

optimisation 

(System 

dynamics and 

genetic 

algorithms) 

 

To fill the gap in the inventory planning under trade credit literature, in this chapter, a 

simulation-based optimisation model which integrates SD simulation and a genetic algorithm 

is developed to manage the trade-off between financial performance and liquidity in a supply 

chain under economic uncertainty. To assess the financial performance and liquidity, the 

economic value added (EVA) and the cash conversion cycle (CCC) metrics are used, 

respectively. These two metrics are not moving towards the same direction and business 
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managers should find a balance between them. This contribution extends the literature on 

supply chain inventory management using system dynamics simulation and supply chain 

working capital management (Reyes et al., 2013; Peng et al., 2014; Cannella et al., 2015; Liao, 

2008; Teng, 2009; Mahata, 2012; Huang, 2007; Huang and Hsu, 2008; Teng and Chang, 2009; 

Ravichandran, 2007; Liao, 2008; Teng, 2009) through incorporating financial parameters 

including price, unit cost, collection policy, and payment policy. Moreover, it considers the 

EVA and the CCC in the multi-objective optimisation formulation of the inventory 

management model developed by Sterman (2000) under economic uncertainty. Finally, it 

introduces a new method for measuring the CCC in which the revceiving and payment of the 

advance payament are taken into account. The proposed model handles economic uncertainty 

through a scenario tree approach. 

The developed simulation-based optimisation model is implemented using the data of a real 

case study introduced in Longinidis and Georgiadis (2013). Firstly, the conflicting objectives 

are given the same level of importance in order to compare the performance of the SBO 

approach, in which a genetic algorithm is incorporated into a SD simulation model, with the 

performance of the SD simulation model under three economic scenarios. The results show the 

superiority of the SBO approach over SD modelling in all three scenarios. Secondly to manage 

the trade-offs between the conflicting objectives, the weighted sum method is used to generate 

the Pareto efficient frontiers which include the non-dominated optimal solutions. These Pareto 

efficient frontiers provide decision makers with a portfolio of alternative optimal inventory and 

financial decisions that could be selected based on market condition and the power of the 

company within supply chain network. 

In the next chapter a hybrid analytical and simulation model that integrates the presented SBO 

model in this chapter and mixed-integer linear programming (MILP) is developed to examine 

whether the hybrid model outperforms the SBO model. 
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7. Chapter 7. Hybrid analytical-SBO approach to integration of 

physical and financial flows in a supply chain under economic 

uncertainty 

7.1. Introduction 

Simulation and optimisation are the most utilized approaches for supply chain modelling. The 

advantage of simulation models lies on their ability in modelling the complexities and dynamic 

behaviour of the supply chains. Although, they do not provide the capability of obtaining 

optimal system configurations (Abo-Hamad and Arisha, 2011). On the other hand, optimisation 

models are not effective tools for incorporating the dynamic behaviour and complexities of the 

supply chains as the real world supply chain problems are too complex to be formulated in the 

form of manageable mathematical equations (Better et al., 2008). While, they are capable of 

determining the optimal values to the decision variables and decision parameters. Therefore, 

in a supply chain planning problem, it would be beneficial to depict the complex supply chain 

system using the simulation modelling and then incorporate an optimisation algorithm into the 

simulation model to attain the optimal decision parameter sets. This integrated usage of the two 

approaches is knowns as simulation-based optimisation (SBO). 

Despite the capability of the SBO in identifying the optimal sets of the decision parameters, it 

is not capable of determining the optimal decision variables. This incapability has motivated 

the development of the hybrid analytical-simulation models in which the decision variables are 

optimised in addition to the decision parameters. Hybrid modelling is an emerging field that 

integrates independent optimisation and simulation models to identify the optimal solutions to 

the complex supply chain problems in acceptable times. 

Considering the financial flow within supply chain planning models is of paramount 

importance as implementing the supply chain decisions relies on the availability of the financial 

resources. For instance, opening a new facility in the supply chain network is impossible unless 

the funding mechanism is explicit. Moreover, the financial and physical flows have a mutual 

effect on one another. For example, inventory optimisation leads to savings in the financial 

resources which can in turn provide the required resources for implementing other operational 

decisions such as production capacity expansion. 
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In this chapter, we propose a hybrid analytical-simulation modelling that integrates planning 

of cash and material flows within the supply chain networks through combining the 

optimisation and the simulation-based optimisation approaches. The hybrid analytical-

simulation model is based on the development of independent mixed integer linear 

programming (MILP) and simulation-based optimisation (SBO) models which are combined 

to address an integrated supply chain planning and supply chain finance problem. The coupling 

of the MILP and SBO models is developed using an iterative process. To demonstrate the 

feasibility of the hybrid approach, it is applied to address an integrated strategic supply chain 

planning and supply chain finance problem that integrates supplier selection, network design, 

and asset-liability management subproblems. 

The rest of the chapter is organised as follows. Firstly, the problem description and the 

proposed hybrid method is given in section 7.2. The framework of the hybrid analytical-SBO 

modelling is presented in section 7.3. Section 7.4 elaborates the developed optimisation, 

simulation-based optimisation, and hybrid analytical-SBO models in detail. Next, the results 

obtained from the various methods are presented and discussed in section 7.5. Finally, 

conclusions are given in section 7.6. 

7.2. Problem Description 

The general structure of the studied supply chain is depicted in Figure 7.1. The supply chain 

includes four stages: (1) suppliers, (2) production centre, (3) distribution centres, and (4) 

retailers. In the forward direction, suppliers are in in charge of providing the raw material to 

the production centre. The products are then manufactured in the production centre and shipped 

to the retailers via distribution centres. The retailers are responsible for meeting end customer 

demands which is uncertain and fluctuates in line with economic environment. In the reverse 

direction, the end customer pays for the products purchased from the retailers. It is assumed 

that the distribution centres and retailers are owned by the production centre and consequently 

share a common profit.  

In the studied supply chain system, one product and multiple time periods are considered. The 

suppliers are able to fulfil the entire order of the production centre, while the capacities of other 

SC members are restricted. The factory is able to secure long-term and short-term loans. The 

receivable accounts from customers and payable accounts to the suppliers are liquidated at the 

end of each period. 
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The decisions to be determined by the proposed model are as follows: 

1. The amount of raw material to be purchased from suppliers 

2. The production rate at production centre 

3. The number of required suppliers and distribution centres 

4. The warehousing capacity at SC facilities 

5. The flow of products in the network 

6. The level of short-term and long-term liabilities 

7. The level of equity 

8. The level of fixed and current assets 

9. The level of cash 

10. Price of the product 

Such that economic value added is maximized with respect to the physical and financial 

constraints. The optimal price of the product and the optimal warehousing capacity of the 

distribution centres are determined by the simulation-based optimisation model, as they can be 

formulated as controllable parameters in the SBO model. The optimal values to the remaining 

decisions are determined by the analytical model, as they are dynamic variables that cannot be 

optimised by the SBO model. The analytical model is a generalization of the SBO model that 

is represented by linear relationships, while the SBO model is applied to take into account 

interrelationships and nonlinearities rooted in supply chain networks. 

 

 

 

 

 

Figure 7.1. The structure of the studied supply chain 

7.3. Hybrid analytical-SBO modelling approach 

The objective of the current study is to apply the hybrid approach to address the supply chain 

planning problem. The approach consists of building independent analytical and SBO models 

and thereafter integrating the solution strategy. The analytical model contains a mixed integer 

 Suppliers 

Production centre 

Distribution centres 

Retailers 

Customers 
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linear programming model (MILP). The SBO model combines genetic algorithm and system 

dynamics simulation modelling. The connection of the two models is illustrated in Figure 7.2.  

Firstly, by setting the initial price, desired cash, profit distribution policy, and stocking 

capacities at the production centre, distributors, and retailers, the MILP model is run to decide 

on the open or close decision on certain distribution centres, select suppliers and the amount of 

raw material which is required to be purchased from each supplier, determine the optimal 

production level of the production centre, and the shipment rates between the supply chain 

entities are identified so as to maximize the economic value added. 

In step 2, the solution suggested by the analytical model is used to construct the system 

dynamics simulation model and genetic algorithm is applied to recommend the optimal price 

per tonne of the product, the optimal desired cash, the optimum profit distribution policy, and 

the optimum stocking capacities at production centre, distributors, and retailers. It is worth 

mentioning that formulating the price of the product as a variable within the analytical model 

converts the MILP model into a non-linear model which increases computational time 

dramatically. The stocking capacities of the SC facilities would be more realistic if obtained 

by the SBO model in which interrelationships, nonlinearities, and inventory dynamics have 

been considered.  

In step 3, the price, the profit distribution policy, the desired cash, and the stocking capacities 

were obtained from the SBO model are inputted into the analytical model in which the new 

optimal production level of the manufacturer, the new storage locations in the network, the new 

suppliers, the new amount of the required raw material, and the new shipment rates between 

the members are determined. Taking the results of the second iteration from the analytical 

model, the SBO model is then run again to obtain a new solution containing the product’s price, 

the desired cash, the profit distribution policy, and stocking capacities at the SC facilities (step 

4).  

At this time, the information gathered from the SBO model is used to examine whether the 

current solution, which is the economic value added of the network, meets the termination 

criteria which is set to be zero to five percent discrepancy between the current EVA and the 

ideal EVA given by the analytical model. If the termination criteria is satisfied, the solution 

suggested by the hybrid approach is accepted, otherwise, the results are used to revise the 

problem to be resolved by the hybrid approach in the third iteration, and so on. The revision of 

the problem contains the revision of the feasible intervals of the controllable parameters 
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including price and warehousing capacities and/or modifying the initial population of the 

genetic algorithm. The termination criteria offers a control mechanism to ensure that the 

solution obtained by the SBO model honours the set of constraints described in the analytical 

model. 

 

Figure 7.2. The hybrid framework 

7.4. Model formulation 

7.4.1. Analytical model 

7.4.1.1. Objective function 

To optimise the financial flow, in addition to the product flow, through the supply chain the 

financial performance evaluation should be incorporated into the objective function of the 

supply chain planning models. Economic value added (Stewart Iii, 1994) is a widely used index 

which integrates financial and economic performance indicators. This indicator rectifies the 

optimistic interpretation of how well the company performed through deducting the cost of 

capital employed from its net income. In this study, economic value added (𝐸𝑉𝐴) is applied as 

the objective function. The formulation of the EVA is given in Eq. (7.1), where NOPAT is the 

net operating profit after tax reported in the income statement and WACC is the weighted 

average cost of capital, a figure representing the real costs concerned with the sources of capital 

employed by the company (Ogier, Rugman and Spicer, 2004).  
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𝐸𝑉𝐴𝑡 =∑[𝑁𝑂𝑃𝐴𝑇𝑡

𝑇

𝑡=1

− (𝑊𝐴𝐶𝐶𝑡)𝐼𝐶𝑡] (7.1) 

 

The WACC (7.2) is the return needed to compensate capital providers, i.e. creditors and 

stakeholders and is obtained via multiplying cost of debt (𝐶𝐷) and cost of equity (𝐶𝐸) by their 

proportional weight and take the sum of the results. The cost of debt is the weighted average 

of short-term and long-term liabilities. The cost of equity is measured by capital asset pricing 

model (CAPM) which contains three elements. The first element risk-free rate of interest (𝑟𝑓𝑡) 

is the reward for placing capitals in a risk-free asset such as government bonds. The second 

element, the difference between the expected return of the market (𝑟𝑚𝑡) and (𝑟𝑓𝑡) is the reward 

for placing capitals in an investment which requires taking risks such as stock market bonds. 

The third element, the risk measure (𝛽) is the amount of systematic risk present in an asset. 

Invested capital (𝐼𝐶) (7.3) accumulates the amount of financing from debt and equity. 

𝑊𝐴𝐶𝐶 =
𝐸𝑡
𝐼𝐶𝑡
𝐶𝐸𝑡 +

𝑆𝑇𝐿𝑡 + 𝐿𝑇𝐿𝑡
𝐼𝐶𝑡

𝐶𝐷𝑡 (7.2) 

𝐼𝐶𝑡 = 𝑆𝑇𝐿𝑡 + 𝐿𝑇𝐿𝑡 + 𝐸𝑡      ∀𝑡. (7.3) 

 

To calculate the NOPAT (7.4), the taxable income (𝑇𝐼) is multiplied by tax rate (𝑡𝑟). The TI 

(7.5) is determined by subtracting the interest paid (𝐼𝑃) from the earnings before interest and 

taxes (𝐸𝐵𝐼𝑇). The IP (7.6) is the interest paid for both short-term and long-term financing 

received from credit institutions. The IP is calculated by multiplying short term liabilities (𝑆𝑇𝐿) 

and long term liabilities (𝐿𝑇𝐿) by short term interest rate (𝑆𝑇𝑅) and long term interest rate 

(𝐿𝑇𝑅), respectively and take the sum of the results. The EBIT (7.7) which is the gross income 

of a company is calculated by subtracting the total cost (𝑇𝐶) from the net sales (𝑁𝑇𝑆). The 

revenue of the chain (7.8) is obtained by multiplying the sales amounts of each customer by its 

price and aggregating the results. 

𝑁𝑂𝑃𝐴𝑇𝑡 = 𝑇𝐼𝑡(1 − 𝑡𝑟𝑡)     ∀𝑡.      (7.4) 

𝑇𝐼𝑡 = 𝐸𝐵𝐼𝑇𝑡 − 𝐼𝑃𝑡      ∀𝑡. (7.5) 

𝐼𝑃𝑡 = 𝑆𝑇𝐿𝑡𝑆𝑇𝑅𝑡 + 𝐿𝑇𝐿𝑡𝐿𝑇𝑅𝑡      ∀𝑡. (7.6) 

𝐸𝐵𝐼𝑇𝑡 = 𝑁𝑇𝑆𝑡 − 𝑇𝐶𝑡      ∀𝑡. (7.7) 

𝑁𝑇𝑆𝑡 =∑𝑆𝑅𝑟𝑡𝑝𝑟𝑖𝑡

𝑅

𝑟=1

     ∀𝑡. (7.8) 
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The total cost (7.9) of the chain contains the production cost at the production centre (𝑃𝐶), the 

transportation cost between centres (𝑇𝑅𝐶), the inventory holding cost at the centres (𝐻𝐶), fixed 

costs of the centres (𝐹𝐶), cash holding cost (𝐶𝐶), and the cost of raw material purchased from 

the suppliers (𝑅𝑀𝐶). Eq. (7.10) shows the operating cost at the production centre which is 

obtained via multiplying production rate (𝑃𝑅) and unit production cost (𝑢𝑝𝑐). The operating 

costs are the costs associated with the required activities to produce final products. The 

transportation cost (𝑇𝑅𝐶 ) (7.11) includes the transportation cost from the supplier to the 

manufacturer (𝑡𝑐), the manufacturer to the distributor (𝑡𝑐𝑐), and the distributor to the retailer 

(𝑡𝑐𝑑 ). Eq. (7.12) represents the holding cost of products incurred by the manufacturer, 

distribution centres, and retailers. This cost encompasses the holding cost of the raw materials 

(ℎ𝑟) and the holding cost of the product (ℎ𝑝) at the production centre, in addition to the holding 

cost of safety stock at the distribution centres and retailers. 

𝑇𝐶𝑡 = 𝑃𝐶𝑡 + 𝑇𝑅𝐶𝑡 + 𝐻𝐶𝑡 + 𝑇𝐹𝐶𝑡 + 𝐶𝐻𝐶𝑡 + 𝑅𝑀𝐶𝑡      ∀𝑡. (7.9) 

𝑃𝐶𝑡 = 𝑢𝑝𝑐𝑡𝑃𝑅𝑡      ∀𝑡. (7.10) 

𝑇𝑅𝐶𝑡 =∑𝑡𝑐𝑠𝑡𝑋𝑠𝑡 +∑𝑡𝑐𝑐𝑑𝑡𝑆𝐶𝑑𝑡 +∑∑𝑡𝑐𝑑𝑑𝑟𝑡𝑆𝐷𝐼𝑑𝑟𝑡

𝐷

𝑑=1

𝑅

𝑟=1

𝐷

𝑑=1

𝑆

𝑠=1

     ∀𝑡. (7.11) 

𝐻𝐶𝑡 = ℎ𝑟𝑡  (
𝐹𝐼𝑅𝑡 + 𝐹𝐼𝑅𝑡−1

2
) + ℎ𝑝𝑡  (

𝐹𝐼𝑃𝑡 + 𝐹𝐼𝑃𝑡−1
2

) +∑ℎ𝑜𝑑𝑡

𝐷

𝑑=1

 (
𝐹𝐼𝑂𝑑𝑡 + 𝐹𝐼𝑂𝑑𝑡−1

2
) 

+∑ℎ𝑠𝑟𝑡

𝑅

𝑟=1

(
𝐹𝐼𝑆𝑡 + 𝐹𝐼𝑆𝑡−1

2
)     ∀𝑡. 

(7.12) 

 

The fixed cost (7.13) contains all the expenses incurred by a SC member such as employee 

salaries that do not depend on the number of goods and services provided by the member. This 

cost is obtained for the distribution centres by multiplying the fixed cost (𝑓𝑐𝑑) by a binary 

variable that indicates the activity of the distribution centre. The fixed costs of the production 

canter (𝑓𝑐𝑝) and retailers (𝑓𝑐𝑟) are not multiplied by the binary variable as it is assumed that 

they are situated fixed locations. Companies hold cash in order to pay to their suppliers for 

their services also cover unexpected expenses which may arise. Cash holding cost (7.14) is the 

opportunity cost of choosing to hold cash rather than investing in more profitable options such 

as buying stocks. This cost in each period is calculated via multiplying unit cash cost (𝑢𝑐𝑐) by 

the average amount of cash during the period. The raw material cost (7.15) is the cost of 

purchasing raw material from different suppliers which is determined through multiplying the 

amount purchased (𝑋) by the price of each unit (𝑟𝑚𝑐). 
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𝑇𝐹𝐶𝑡 = ∑𝑓𝑐𝑑𝑑𝑡𝑌𝑑𝑡

𝐷

𝑑=1

+ 𝑓𝑐𝑝𝑡 +∑𝑓𝑐𝑟𝑟𝑡

𝑅

𝑟=1

     ∀𝑡. (7.13) 

𝐶𝐻𝐶𝑡 = 𝑢𝑐𝑐𝑡 (
𝐶𝑆𝑡 + 𝐶𝑆𝑡−1

2
)     ∀𝑡. (7.14) 

𝑅𝑀𝐶𝑡 =∑𝑋𝑠𝑡𝑟𝑚𝑐𝑠𝑡

𝑆

𝑠=1

     ∀𝑡. (7.15) 

 

7.4.1.2. Constraints 

In this section, the constraints of the model which were categorised into physical flow 

constraints and financial flow constrains are presented. 

7.4.1.2.1. Physical flow constraints 

Constraints (7.16) shows the inventory level of raw materials held in production centre at each 

time period is equal to the inventory left at the end of previous period plus the amount of the 

purchased material from the suppliers minus the amount consumed for producing the final 

products. The available inventory of products held in production centre at the end of period 

𝑡 (7.17) equals to the inventory held at the end of period 𝑡 − 1 plus production rate during the 

period, minus products transported from the plant to distribution centres during the same 

period. 

𝐹𝐼𝑅𝑡 =∑𝑋𝑠𝑡

𝑆

𝑠=1

− 𝑃𝑅𝑡𝑜𝑡 + 𝐹𝐼𝑅𝑡−1    ∀𝑡. (7.16) 

𝐹𝐼𝑃𝑡 = 𝑃𝑅𝑡 −∑𝑆𝐶𝑑𝑡

𝐷

𝑑=1

+ 𝐹𝐼𝑃𝑡−1     ∀𝑡. (7.17) 

 

Constraints (7.18) and (7.19) state that the inventory level at each distributor and retailer 

member is equal to the amount of product that flows into the member inventory from the 

upstream echelon plus the inventory that is left over from the previous time, minus the amount 

of product that flows out of the member to the downstream echelon. 

𝐹𝐼𝑂𝑑𝑡 = 𝑆𝐶𝑑𝑡 −∑𝑆𝐷𝐼𝑑𝑟𝑡

𝑅

𝑟=1

+ 𝐹𝐼𝑂𝑑𝑡−1     ∀𝑑, 𝑡. (7.18) 

𝐹𝐼𝑆𝑟𝑡 =∑𝑆𝐷𝐼𝑑𝑟𝑡

𝐷

𝑑=1

− 𝑆𝑅𝑟𝑡 + 𝐹𝐼𝑆𝑟𝑡−1     ∀𝑟, 𝑡. (7.19) 
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Constraints (7.20) enforces the amount of products shipped from each retailer to be less or 

equal to the end customer demand. 

𝑆𝑅𝑟𝑡 ≤ 𝑑𝑟𝑡      ∀𝑟, 𝑡. (7.20) 

 

Constraint (7.21) enforces the sum of products sold to end customers to be equal to the sum of 

the products sent to the retailers. Constraint (7.22) states that the sum of products shipped to 

the retailers should be equal to the products sent to the distribution centres. 

𝑆𝑅𝑟𝑡 =∑𝑆𝐷𝐼𝑑𝑟𝑡

𝐷

𝑑=1

    ∀𝑟, 𝑡. (7.21) 

∑𝑆𝐷𝐼𝑑𝑟𝑡 = 𝑆𝐶𝑑𝑡

𝑅

𝑟=1

     ∀𝑑, 𝑡. (7.22) 

 

Constraints (7.23) and (7.24) enforce that at least one of the supply and distribution centres 

are open at each time period. 

∑𝑍𝑠𝑡 ≥ 1

𝑆

𝑠=1

     ∀𝑡. (7.23) 

∑𝑌𝑑𝑡 ≥ 1

𝐷

𝑑=1

     ∀𝑡. (7.24) 

 

Constraints (7.25)-(7.28) state that the inventory level of the production centre, distribution 

centres and retailers at any time period must be greater than their specified safety stock levels 

known as the desired inventories (𝐷𝐼) which are determined by the simulation-based 

optimisation model. 

𝐷𝐼𝑅𝑀 ≤ 𝐹𝐼𝑅𝑡 ≤ 𝑐𝑎𝑝𝑟𝑚𝑡      ∀𝑡. (7.25) 

𝑃𝐷𝐼 ≤ 𝐹𝐼𝑃𝑡 ≤ 𝑐𝑎𝑝𝑡      ∀𝑡. (7.26) 

𝑌𝑑𝑡𝐷𝐷𝐼𝑑 ≤ 𝐹𝐼𝑂𝑑𝑡 ≤ 𝑌𝑑𝑡𝑐𝑎𝑝𝑑𝑑𝑡      ∀𝑡, 𝑑. (7.27) 

𝑅𝐷𝐼𝑟 ≤ 𝐹𝐼𝑆𝑟𝑡 ≤ 𝑐𝑎𝑝𝑟𝑟𝑡      ∀𝑡, 𝑟. (7.28) 
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Constraint (7.29) controls the production rate of the production centre not to exceed the 

available production capacity and not to be lower than zero. 

0 ≤ 𝑃𝑅𝑡 ≤ 𝑝𝑟𝑐𝑎𝑝𝑡      ∀𝑡. (7.29) 

 

7.4.1.2.2. Financial flow constraints 

Constraint (7.30) formulates the basic equation of the balance sheet. This equation illustrates 

the equality of the assets to equity (𝐸) and debts. The assets comprises of fixed assets (𝐹𝐴) and 

current assets (𝐶𝐴) while the debts includes short-term liabilities (𝑆𝑇𝐿) and long-term liabilities 

(𝐿𝑇𝐿). Depreciation (𝐷𝑃𝑅) is calculated in constraint (7.31) by multiplying fixed assets and 

depreciation rate. 

𝐹𝐴𝑡 + 𝐶𝐴𝑡 = 𝐸𝑡 + 𝑆𝑇𝐿𝑡 + 𝐿𝑇𝐿𝑡      ∀𝑡. (7.30) 

𝐷𝑃𝑅𝑡 = 𝑑𝑟𝑡𝐹𝐴𝑡      ∀𝑡. (7.31) 

 

The fixed assets (𝐹𝐴) value (7.32) at each time period is determined through aggregating the 

fixed assets of the SC members and then deducting the depreciation rate. 

𝐹𝐴𝑡 =∑𝐷𝑑𝐶𝐷𝑑

𝐷

𝑑=1

𝑌𝑑𝑡 + 𝑃𝐶𝐹𝐴𝑉𝑡 +∑𝑅𝐹𝐴𝑉𝑟𝑡

𝑅

𝑟=1

     ∀𝑡. (7.32) 

 

Constraint (7.33) formulates the current assets (𝐶𝐴) which is composed of cash (𝐶𝑆), receivable 

accounts (𝑅𝐴), and inventory value (𝐼𝑁𝑅). 

𝐶𝐴𝑡 = 𝐶𝑆𝑡 + 𝑅𝐴𝑡 + 𝐼𝑁𝑅𝑡 + 𝐶𝐴𝑡−1    ∀𝑡. (7.33) 

 

Constraint (7.34) shows the amount of cash available which is obtained by aggregating total 

amount of loans (𝑆𝑇𝐿 + 𝐿𝑇𝐿), new issued stocks, and the operating profit which is accessible 

in the form of cash. The amount of investment in fixed assets (𝐹𝐴) diminishes the cash level. 

The portion of the operating profit that is not accessible in the form of cash is accumulated in 

the receivable accounts (𝑅𝐴) (7.35). 

𝐶𝑆𝑡 = 𝑐𝑠𝑠𝑁𝑂𝑃𝐴𝑇𝑡 + 𝑆𝑇𝐿𝑡 + 𝐿𝑇𝐿𝑡 + 𝑁𝐼𝑆𝑡 − 𝐹𝐴𝐼𝑡      ∀𝑡. (7.34) 
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𝑅𝐴𝑡 = (1 − 𝑐𝑠𝑠) 𝑁𝑂𝑃𝐴𝑇𝑡     ∀𝑡. (7.35) 

 

Constraint (7.36) indicates the inventory value which is determined via multiplying sales price 

of each member in their corresponding inventory and then taking the sum of the results. 

𝐼𝑁𝑅𝑡 = 𝐹𝐼𝑅𝑡  𝑟𝑚𝑝 + (𝐹𝐼𝑃𝑡 +∑𝐹𝐼𝑂𝑑𝑡𝑌𝑑𝑡

𝐷

𝑑=1

+∑𝐹𝐼𝑆𝑟𝑡

𝑅

𝑟=1

)𝑝𝑟𝑖    ∀𝑡. (7.36) 

 

The equity value (𝐸) at any time period is calculated in constraint (7.37) through aggregating 

the accumulated equity from the previous period, operating profit (𝑁𝑂𝑃𝐴𝑇), and the profit 

obtained from issuing new stocks in the market (𝑁𝐼𝑆). 

𝐸𝑡 = 𝑁𝑂𝑃𝐴𝑇𝑡 + 𝐸𝑡−1 + 𝑁𝐼𝑆𝑡      ∀𝑡. (7.37) 

 

Constraint (7.38) ensures that the cash level at any time period does not exceed the desired cash 

level determined by the SBO model. 

𝐶𝑆𝑡 ≤ 𝐷𝐶𝑆     ∀𝑡. (7.38) 

 

7.4.2. Simulation-based optimisation model 

In this study, the inventory management simulation and genetic algorithm optimisation 

constitute the simulation-based optimisation model. The inventory management model is 

developed based on the stock management structure (Sterman, 2000) which relates to the issue 

of controlling a system state or stock to meet some system objectives. For instance, all supply 

chain members manage their inventory to meet the demand of their customers. Stocks are solely 

modified through altering their inflow and outflow rates, therefore necessitates a decision 

maker to not only balance the inflow of the stock with its outflow, but also eliminate any 

discrepancy between the current and the desired state of the stock (Sterman, 2000). 

Furthermore, there is a delay between a decision maker control actions and its effect on the 

system state (stock) which is required to be formulated. For instance, a distributor seeking to 

increase its inventory is not able to access new units immediately but must await delivery of 

the orders by its supplier. The control of the stock management problem is divided into two 

parts, where the first part relates to constructing the stock and flow structure of the stock 
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management system, and the second part pertains to the decision rules applied by the decision 

maker to control the inflow rate of the stock (Sterman, 2000). 

The stock and flow structure of the inventory management model is illustrated in Figure 7.3. 

The raw material’s inventory (7.39) is replenished by the delivery of placed orders and depleted 

by the material usage rate. The suppliers are able to fulfil the entire order of the production 

centre. Therefore, the delivery rate of the raw material (7.40) is equal to the desired delivery 

rate of the manufacturer. The current material inventory level either meets the demand for 

required raw material for production or is able to fulfil part of the demand (7.41). 

𝑑(𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦)

𝑑(𝑡)
= 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 − 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑢𝑠𝑎𝑔𝑒 𝑟𝑎𝑡𝑒 (7.39) 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 = 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 (7.40) 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑢𝑠𝑎𝑔𝑒 𝑟𝑎𝑡𝑒 

=𝑀𝑖𝑛(𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 × 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑢𝑠𝑎𝑔𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡,𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦) 
(7.41) 

 

The production start rate (7.42) is determined by the desired production rate and the feasible 

production from material inventory. The unfinished products are aggregated in work in process 

(WIP) inventory (7.43) and are converted into finished goods (FG) (7.44) after elapsing the 

production lead time (𝐿2). The inventory of the finished products (7.45) is replenished by the 

production rate and depleted by the shipment to the suppliers. 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑟𝑡 𝑟𝑎𝑡𝑒

= 𝑀𝑖𝑛(𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑟𝑡 𝑟𝑎𝑡𝑒, 𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠) 
(7.42) 

𝑑(𝑊𝐼𝑃 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦)

𝑑(𝑡)
= 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 − 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (7.43) 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 𝐷𝑒𝑙𝑎𝑦(𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑟𝑡 𝑟𝑎𝑡𝑒, 𝐿2, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒) (7.44) 

𝑑(𝐹𝐺 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦)

𝑑(𝑡)
= 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 − 𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 (7.45) 
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Figure 7.3. Stock and flow structure of extended inventory management model 
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The amount of products which are shipped to each distribution centre (𝑀𝑆𝑅𝑑) (7.46) is a 

function of desired shipment rate determined by the desired shipment rate of each distributor 

which is equal to the distributor’s order and the maximum shipment rate (7.47) that is calculated 

via dividing the on hand inventory of finished goods by a fixed minimum order processing time 

(𝑀𝑀𝑂𝑃𝑇) for the manufacturer. The on hand inventory of finished goods (7.48) is calculated 

by subtracting the shipped products from the finished goods inventory, and its value must 

always be positive. It is assumed that distributor 1 precedes distributor 2 and distributor 2 

precedes distributor 3 when the manufacturer allocates the inventory of finished goods to the 

distributors. 

𝑀𝑆𝑅𝑑 = 𝑀𝑖𝑛(𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒𝑑 , 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒𝑑)     ∀𝑑. (7.46) 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒𝑑 =
𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟 𝐹𝐺 𝑜𝑛 ℎ𝑎𝑛𝑑 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦

𝑀𝑀𝑂𝑃𝑇
     ∀𝑑. (7.47) 

𝐹𝐺 𝑜𝑛 ℎ𝑎𝑛𝑑 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 = 𝑀𝑎𝑥 (0,𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟 𝐹𝐺 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 −∑𝑀𝑆𝑅𝑑

𝑑−1

𝑑=1

)     ∀𝑑. (7.48) 

 

The shipped products by the manufacturer to each distribution centre are accumulated in 

distributors supply lines (7.49) and arrive after a fixed lead time (𝐿d) (7.50) that represents the 

transportation time from manufacturer to each distribution centre. The inventory of each 

distributor (7.51) is replenished by arrival of the shipped products and depleted by shipment to 

the retailers. 

𝑑(𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟𝑑  𝑆𝐿)

𝑑(𝑡)
= 𝑀𝑆𝑅𝑑 − 𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑑      ∀𝑑.      (7.49) 

𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑑 = 𝐷𝑒𝑙𝑎𝑦(𝑀𝑆𝑅𝑑, 𝐿𝑑, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)     ∀𝑑. (7.50) 

𝑑(𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟𝑑  𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦)

𝑑(𝑡)
= 𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑑 − 𝐷𝑆𝑅𝑑      ∀𝑑. (7.51) 

 

The amount of products which are shipped from each distribution centre to each retailer 

(𝐷𝑆𝑅𝑑𝑟) (7.52) is a function of the distributor on-hand inventory and the retailer order. The on-

hand inventory of finished goods (7.53) for each distributor is calculated by subtracting the 

shipped products from its inventory, and its value must always be positive. It is assumed that 

retailer 1 precedes retailer 2 and retailer 2 precedes retailer 3 when the manufacturer ships the 

inventory to the distributors. 
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𝐷𝑆𝑅𝑑𝑟 = 𝑀𝑖𝑛(𝑅𝑒𝑡𝑎𝑖𝑙𝑒𝑟 𝑜𝑟𝑑𝑒𝑟𝑟 , 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟 𝑜𝑛 ℎ𝑎𝑛𝑑 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑑)     ∀𝑟, 𝑑. (7.52) 

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟 𝑜𝑛 ℎ𝑎𝑛𝑑 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑑 = 𝑀𝑎𝑥 (0, 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑑 −∑𝐷𝑆𝑅𝑑𝑟

𝑟−1

𝑟=1

) ∀𝑑. (7.53) 

 

The shipped products by the distributors to each retailer are aggregated in retailers supply lines 

(7.54) and arrive after a fixed lead time (𝐿dr) (7.55) which relates to the transportation time 

from each distributor to any retailer. The inventory of each retailer (7.56) is replenished by 

arrival of the shipped products and depleted by shipment to the end customers. Finally, each 

retailer either meets the demand of its end customer or is able to fulfil part of the demand by 

its current inventory level (7.57). 

𝑑(𝑅𝑒𝑡𝑎𝑖𝑙𝑒𝑟𝑟  𝑆𝐿)

𝑑(𝑡)
= ∑𝐷𝑆𝑅𝑑𝑟

𝐷

𝑑=1

− 𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑟      ∀𝑟.      (7.54) 

𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑟 = 𝐷𝑒𝑙𝑎𝑦(𝐷𝑆𝑅𝑑𝑟 , 𝐿𝑑𝑟, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)     ∀𝑟. (7.55) 

𝑑(𝑅𝑒𝑡𝑎𝑖𝑙𝑒𝑟𝑟  𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦)

𝑑(𝑡)
= 𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑟 − 𝑅𝑆𝑅𝑟     ∀𝑟. (7.56) 

𝑅𝑆𝑅𝑟 = 𝑀𝑖𝑛(𝐸𝐶𝐷𝑟 , 𝑅𝑒𝑡𝑎𝑖𝑙𝑒𝑟 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑟)     ∀𝑟. (7.57) 

 

The proposed inventory management model is extended through incorporating financial flow 

modelling in addition to the physical flow modelling. The financial stock and flow structure is 

depicted in Figure 7.4. The inventory of cash (7.58) is replenished by receiving cash from end 

customers and is depleted by cash payment to the suppliers and the third-party creditors. The 

initial value of the cash level is the sum of Short-term and long-term liabilities. Retailers collect 

part of customers’ order values in cash, while the remaining part of the customer debt is  
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Figure 7.4. Stock and flow structure of financial flow 
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accumulated in receivable accounts (RA) and is paid after 𝑑c weeks. The cash inflow (7.59) is 

calculated by aggregating the customers’ cash payment and receivable accounts (7.60) from 𝑑c 

weeks ago. The updated collection policy (um) (7.61) which is a parameter between 0 and 1 

indicates the amount of customers’ order value that must be collected in cash and is calculated 

by adding the cash adjustment to the original collection policy. The updated cash collection 

policy cannot exceed 1. Adjustment for cash (7.62) is calculated via multiplying cash gap 

percentage and the forecasting parameter for cash adjustment (𝛾) which represents the 

aggressiveness of the decision maker in bridging the gap between the desired and current cash 

levels. The outflow of cash (7.63) is prompted by payment to the suppliers, repayment for 

short-term and long-term liabilities, investment for fixed assets, and the total cost. When the 

manufacturer places an order to his suppliers, he pays part of the order value in cash and the 

outstanding debt is paid after 𝑑1 weeks. The payment policy (n) that is a parameter between 0 

and 1 shows the amount of manufacturer’s order value that must be paid in cash. The remaining 

part of the manufacturer’s debt is accumulated in payable accounts (PA) and is paid after 𝑑1 

weeks (7.64). 

𝑑(𝐶𝑎𝑠ℎ)

𝑑(𝑡)
= 𝐶𝑎𝑠ℎ 𝑖𝑛𝑓𝑙𝑜𝑤 − 𝐶𝑎𝑠ℎ 𝑜𝑢𝑡𝑓𝑙𝑜𝑤    (7.58) 

𝐶𝑎𝑠ℎ 𝑖𝑛𝑓𝑙𝑜𝑤 =∑𝑢𝑚 𝑆𝑅𝑟

𝑅

𝑟=1

𝑝𝑟𝑖 + 𝑅𝐴 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 (7.59) 

𝑅𝐴 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 𝐷𝑒𝑙𝑎𝑦(𝑅𝐴 𝑖𝑛𝑓𝑙𝑜𝑤,𝑑c , 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒) (7.60) 

𝑢𝑚 = 𝑀𝑖𝑛(𝑚 + 𝐶𝑆 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡, 1) (7.61) 

𝐶𝑆 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 = 𝛾 (
𝐷𝐶𝑆 − 𝐶𝑆

𝐶𝑆
) (7.62) 

𝐶𝑎𝑠ℎ 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 =∑𝑛 𝑋𝑠

𝑆

𝑠=1

𝑆𝑝𝑟𝑖𝑠 − 𝑃𝐴 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 − 𝑆𝑇𝐿 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 − 𝐿𝑇𝐿 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 

−𝐹𝐴 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 − 𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑟𝑎𝑡𝑒 

(7.63) 

𝑃𝐴 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = 𝐷𝑒𝑙𝑎𝑦(𝑃𝐴 𝑖𝑛𝑓𝑙𝑜𝑤,𝑑1, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒) (7.64) 

 

The total cost comprises the elements presented in Eq. (7.9), although they are not congruent 

in terms of formulation. The production cost (7.65) is calculated via multiplying unit 

production cost (𝑢𝑝𝑐) by production start rate which might not be equal to the production rate 

recommended by the optimisation model. The transportation cost (7.66) contains the shipment 

rates which are constrained by the maximum shipment capacity of each SC member. The 
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inventory dynamics and cash dynamics are considered for measuring the inventory holding 

cost (7.67) and cash holding cost (7.68), respectively. While the optimisation model solely 

takes into account the inventory and cash levels at the start and the end of each time period. 

The fixed cost is determined by the optimisation model and inputted to the SBO model as an 

exogenous constant. The material order rate within the SBO model is recommended by the 

MILP model, therefore, the raw material costs determined by the simulation and optimisation 

models are identical. 

𝑃𝐶 = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 × 𝑢𝑝𝑐 (7.65) 

𝑇𝐶𝑅 =∑𝑡𝑐𝑠𝑋𝑠 +∑𝑡𝑐𝑐𝑑𝑀𝑆𝑅𝑑 +∑∑𝑡𝑐𝑑𝑑𝑟𝐷𝑆𝑅𝑑𝑟

𝐷

𝑑=1

𝑅

𝑟=1

𝐷

𝑑=1

𝑆

𝑠=1

 (7.66) 

𝐻𝐶 = ℎ𝑟 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐹𝐼𝑅) + ℎ𝑝 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐹𝐼𝑃) + ℎ𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐹𝐼𝑂) + ℎ𝑠 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐹𝐼𝑆) (7.67) 

𝐶𝐻𝐶 = 𝑢𝑐𝑐 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐶𝑆) (7.68) 

 

The payment to the third-party creditors depletes the levels of short-term (7.69) and long-term 

liabilities (7.70) with a fixed rate. The initial levels of the short-term and long-term liabilities 

is determined by the optimisation model. In each time period the equity level rises by NOPAT 

rate (7.71). The WACC (7.72) is determined by including the elements of the cost of equity 

and cost of debt that were elaborated in Eq. (7.2). 

𝑑(𝑆ℎ𝑜𝑟𝑡 − 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠)

𝑑(𝑡)
= −𝑆ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 (7.69) 

𝑑(𝐿𝑜𝑛𝑔 − 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠)

𝑑(𝑡)
= −𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 (7.70) 

𝑑(𝐸𝑞𝑢𝑖𝑡𝑦)

𝑑(𝑡)
= 𝑁𝑂𝑃𝐴𝑇 (7.71) 

𝑊𝐴𝐶𝐶𝑡 = (
𝐸𝑡
𝐼𝐶𝑡
(𝑟𝑓𝑡 + (𝑟𝑚𝑡 − 𝑟𝑓𝑡)𝛽)⏟            

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑒𝑞𝑢𝑖𝑡𝑦

) +

(

 
 𝑆𝑇𝐿𝑡 + 𝐿𝑇𝐿𝑡

𝐼𝐶𝑡
(
𝑆𝑇𝐿𝑡
𝑇𝐿𝑡

𝑆𝑇𝑅𝑡 +
𝐿𝑇𝐿𝑡
𝑇𝐿𝑡

𝐿𝑇𝑅𝑡)
⏟                

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑑𝑒𝑏𝑡

(1 − 𝑡𝑟𝑡)

)

 
 

 (7.72) 

 

The other constituent of the SBO model is genetic algorithm that is responsible for determining 

the optimal values to the exogenous parameters of the simulation model known as controllable 

parameters. Desired inventory (DI), desired supply line (DSL), forecasting parameter for 

inventory adjustment (α), and forecasting parameter for supply line adjustment (β) constitute 

the controllable parameters of the distributors and retailers. Service level or safety stock 
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coverage, minimum order processing time, manufacturing cycle time, WIP adjustment time, 

and inventory adjustment time comprise the controllable parameters of the manufacturer. 

In this study, a GA is employed to specify optimal values to the simulation controllable 

parameters so as to maximize the economic value added (EVA). To determine the optimal 

values of the decision parameters, an optimisation problem which encompasses the objective 

function and the constraints on the controllable parameters is formulated as follows: 

Objective function: 𝑀𝑎𝑥 𝐸𝑉𝐴 = 𝑀𝑎𝑥 𝜇𝐸𝑉𝐴                Where   𝜇𝐸𝑉𝐴 =
∑ 𝐸𝑉𝐴𝑇
𝑡=0

𝑇
 

Decision parameters:  

𝛼𝐷 , 𝛼𝑅1 , 𝛼𝑅2, 𝛼𝑅3, 𝛽𝐷 , 𝛽𝑅1, 𝛽𝑅2, 𝛽𝑅3, 𝑚, 𝑛, 𝐷𝐷𝐼, 𝐷𝐷𝑆𝐿, 𝐷𝐼𝐶, 𝐼𝐴𝑇,𝑀𝐼𝐴𝑇,𝑀𝑆𝑆𝐶,𝑀𝑀𝐼𝐶,𝑀𝑂𝑃𝑇, 𝑃𝐷𝑃, 𝑅1𝐷𝐼, 𝑅1𝐷𝑆𝐿 

𝑅2𝐷𝐼, 𝑅2𝐷𝑆𝐿, 𝑅3𝐷𝐼, 𝑅3𝐷𝑆𝐿, 𝑆𝑃, 𝑇𝐴𝑂𝑅, 𝑈𝑃𝐶,𝑊𝐼𝑃𝐴𝑇 

Subject to:  

0 ≤ 𝛼𝐷, 𝛼𝑅1 , 𝛼𝑅2, 𝛼𝑅3 ≤ 1;  0 ≤ 𝛽𝐷 , 𝛽𝑅1, 𝛽𝑅2, 𝛽𝑅3 ≤ 1;  0 ≤ 𝑚, 𝑛 ≤ 1; 0 ≤ 𝐷𝐷𝐼 ≤ 60;  0 ≤ 𝑅1𝐷𝐼, 𝑅2𝐷𝐼, 𝑅3𝐷𝐼 

≤ 30;   0 ≤ 𝐷𝐷𝑆𝐿 ≤ 60; 0 ≤ 𝑅1𝐷𝑆𝐿, 𝑅2𝐷𝑆𝐿, 𝑅3𝐷𝑆𝐿 ≤ 30; 1 ≤ 𝐼𝐴𝑇 ≤ 5; 1 ≤ 𝑀𝐼𝐴𝑇 ≤ 5; 

 0 ≤ 𝑀𝑆𝑆𝐶 ≤ 2; 0 ≤ 𝑆𝑆𝐶 ≤ 2;  0 ≤ 𝑀𝑀𝐼𝐶 ≤ 5; 1 ≤ 𝑀𝑂𝑃𝑇 ≤ 3; 0 ≤ 𝑃𝐷𝑃 ≤ 1; 200 ≤ 𝑆𝑃 ≤ 250; 

5 ≤ 𝑇𝐴𝑂𝑅 ≤ 10; 80 ≤ 𝑈𝑃𝐶 ≤ 120;   1 ≤ 𝑊𝐼𝑃𝐴𝑇 ≤ 5; 0 ≤ 𝐷𝐶 ≤ 2000;  1 ≤ 𝑀𝐶𝑇 ≤ 3 

𝛼𝐷 , 𝛼𝑅1 , 𝛼𝑅2, 𝛼𝑅3: denote the aggressiveness of the members in bridging the gap between the desired and current 

inventory. 

𝛽𝐷 , 𝛽𝑅1, 𝛽𝑅2, 𝛽𝑅3: denote the level of consideration to the inventory on-orders at the time of order placement 

𝑚 = 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑖𝑐𝑦: denotes the share of the sales is required to be collected in cash 

𝑛 = 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 𝑝𝑜𝑙𝑖𝑐𝑦: denotes the share of the raw material purchase is required to be paid in cash 

𝐷𝐷𝐼, 𝑅1𝐷𝐼, 𝑅2𝐷𝐼, 𝑅3𝐷𝐼: denote the desired inventory by distributor and retailers 

𝐷𝐷𝑆𝐿, 𝑅1𝐷𝑆𝐿, 𝑅2𝐷𝑆𝐿, 𝑅3𝐷𝑆𝐿: represent the desired inventory on order by distributor and retailers  

𝐼𝐴𝑇 = 𝑇ℎ𝑒 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 : represents the time period over which the manufacturer seeks to 

bridge the gap between the desired and current inventory of finished products 

𝑀𝐼𝐴𝑇 = 𝑇ℎ𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒: represents the time period over which the manufacturer 

seeks to bridge the gap between desired and current inventory of the raw material 

𝑀𝑆𝑆𝐶 = 𝑇ℎ𝑒 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟 𝑠𝑎𝑓𝑒𝑡𝑦 𝑠𝑡𝑜𝑐𝑘 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒: represents the time period over which the manufacturer 

would like to maintain a safety stock coverage to hedge against volatility in distributor’s demand 
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𝑆𝑆𝐶 = 𝑇ℎ𝑒 𝑠𝑎𝑓𝑒𝑡𝑦 𝑠𝑡𝑜𝑐𝑘 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒: represents the time period over which the distributor would like to maintain 

a safety stock coverage in order to meet any variations in retailers’ demands 

𝑀𝑀𝐼𝐶 = 𝑇ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒: represent the minimum material inventory required 

by the manufacturer 

𝑀𝑂𝑃𝑇 = 𝑇ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑟𝑑𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑛𝑔 𝑡𝑖𝑚𝑒: denotes the minimum time required by the manufacturer to 

process and ship a distributor order 

𝑃𝐷𝑃 = 𝑇ℎ𝑒 𝑝𝑟𝑜𝑓𝑖𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑖𝑐𝑦: denotes the dividends that is required to be paid to the shareholders 

𝑆𝑃 = 𝑇ℎ𝑒 𝑠𝑎𝑙𝑒𝑠 𝑝𝑟𝑖𝑐𝑒: The price per tonne of product which is paid to the retailers by the customers 

𝑇𝐴𝑂𝑅 = 𝑇ℎ𝑒 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑟𝑑𝑒𝑟 𝑟𝑎𝑡𝑒: denotes the time period over which the distributor demand forecast 

is adjusted to actual retailers’ orders 

𝑈𝑃𝐶 = 𝑇ℎ𝑒 𝑢𝑛𝑖𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡: denotes the production cost per tonne of product at the manufacturer 

𝑊𝐼𝑃𝐴𝑇 = 𝑇ℎ𝑒 𝑊𝐼𝑃 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 : represents the time required for the manufacturer to adjust its WIP 

inventory to its desired level 

𝐷𝐶 = 𝑇ℎ𝑒 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑐𝑎𝑠ℎ: denotes the level of cash desired to be held by the manufacturer  

𝑀𝐶𝑇 = 𝑇ℎ𝑒 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒: represents the average delay time of the production process for the 

products from start until completion of the product 

7.4.3. Hybrid analytical-SBO model 

The hybrid MILP-SBO approach seeks to utilize the advantages of the both the MILP and SBO 

models. In the hybrid model, the decisions recommended by the MILP model and the decisions 

which are obtained by the balancing loops in the simulation model are integrated to determine 

the amount of the raw material to be purchased, the production start rate, and the shipment rates 

across the network. The material delivery rate (7.73) in this model is a function of the desired 

delivery rate from the SBO model and the material order rate from the MILP model. The 

production start rate (7.74) is determined by the desired production rate and the feasible 

production from the material determined by the inventory management model and the 

production rate recommended by the MILP model. The shipment rate of the manufacturer 

(7.75) is determined by the maximum shipment rate to each distributor, the desired shipment 

rate of each distributor, and the shipment rate suggested by the MILP model. The amount of 

products which are shipped from each distribution centre to each retailer (𝐷𝑆𝑅𝑑𝑟) (7.76) is a 

function of desired shipment rate of the distributor determined by the MILP model and the 

maximum shipment rate and the inventory of the distributor which are obtained from the SBO 
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model. The shipment rate of each retailer (7.77) is calculated by its customer inventory, its 

inventory level, and the shipment rate obtained from the MILP model. 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 = 𝑀𝑖𝑛 (𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒,∑𝑋𝑠

𝑆

𝑠=1

) (7.73) 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑟𝑡 𝑟𝑎𝑡𝑒

= 𝑀𝑖𝑛(𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑟𝑡 𝑟𝑎𝑡𝑒, 𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚  𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝑃𝑅) 
(7.74) 

𝑀𝑆𝑅𝑑 = 𝑀𝑖𝑛(𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒𝑑 , 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑠ℎ𝑖𝑝𝑒𝑚𝑛𝑡 𝑟𝑎𝑡𝑒𝑑 , 𝑆𝐶𝑑)     ∀𝑑. (7.75) 

𝐷𝑆𝑅𝑑𝑟 = 𝑀𝑖𝑛(𝑅𝑒𝑡𝑎𝑖𝑙𝑒𝑟 𝑜𝑟𝑑𝑒𝑟𝑟 , 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑑 , 𝑆𝐷𝐼𝑑𝑟)     ∀𝑟, 𝑑. (7.76) 

𝑅𝑆𝑅𝑟 = 𝑀𝑖𝑛(𝐸𝐶𝐷𝑟 , 𝑅𝑒𝑡𝑎𝑖𝑙𝑒𝑟 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑟 , 𝑆𝑅𝑟)     ∀𝑟. (7.77) 

 

7.5. Results and discussion 

The advantages of the hybrid analytical-SBO modelling is investigated by comparing with 

individual optimisation and SBO methods through conducting the empirical tests. The data of 

the case study including the inventory holding, production, and transportation costs introduced 

in Longinidis and Georgiadis (2011) and Longinidis and Georgiadis (2013) is used to provide 

the data on the parameters which represent the economic uncertainty. The range of parameters 

values expressed in  Longinidis and Georgiadis (2011) is extended to ensure that the optimal 

parameter values lie in the searching boundary.  

The numerical experiment is scaled as follows: the number of customer zones, retailers, and 

distributors is three; the number of production centre is one; the number of suppliers is two, 

and the number of time periods is two one-year period. Tables 7.1 and 7.2 present the 

production, inventory holding, and cash holding costs in each time period. The transportation 

costs from suppliers to production centre, from production centre to distributors, and from 

distribution centres to the retailers are given in Tables 7.3-7.5, respectively. Table 7.6 shows 

the values to the four of the uncertain parameters that represent the economic uncertainty in 

each scenario. The fifth uncertain parameter which is demand of the customers in each scenario 

is represented in Table 7.7. The sales price of the product and the production capacity are 

presented in Table 7.8. Three models are developed based on analytical, SBO, and hybrid 

analytical-SBO methods. Results of each model are analysed and presented as follows. 
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Table 7.1. Production and cash holding cost 

Production cost Cash holding cost 

𝑡 = 1 𝑡 = 2 𝑡 = 1 𝑡 = 2 

58.6 60.9 1.06 1.10 

t = Time period 

 

Table 7.2. Inventory holding cost 

Production centre Distributors Retailers 

𝑡 = 1 𝑡 = 2 𝑡 = 1 𝑡 = 2 𝑡 = 1 𝑡 = 2 

58.6 60.9 8.2 8.9 8.2 8.9 

 

Table 7.3. Transportation cost from suppliers to production centre 

                             To 

From                 

Production centre 

𝑡 = 1 𝑡 = 2 

Supplier 1 15.2 19.4 

Supplier 2 18.6 20.7 

 

Table 7.4. Transportation cost from production centre to distribution centres 

            To 

From           

Distribution centre 1 Distribution centre 2 Distribution centre 3 

𝑡 = 1 𝑡 = 2 𝑡 = 1 𝑡 = 2 𝑡 = 1 𝑡 = 2 

Production centre 20.2 23.4 25.2 61.4 65.8 72.3 

 

Table 7.5. Transportation cost from production centre to distribution centre 

               To 

From           

Retailer 1 Retailer 2 Retailer 3 

𝑡 = 1 𝑡 = 2 𝑡 = 1 𝑡 = 2 𝑡 = 1 𝑡 = 2 

Distribution centre 1 25.7 34.3 52.6 54.5 95.4 79.8 

Distribution centre 2 32.5 50.4 12.5 15.2 15.3 17.6 

Distribution centre 3 89.1 68.9 69.4 63.1 29.3 33.6 
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Table 7.6. Uncertain parameters in each scenario 

Scenario 
Parameter 

𝑆𝑇𝑅𝑡=0
[𝑠]  𝑆𝑇𝑅𝑡=53

[𝑠]  𝐿𝑇𝑅𝑡=0
[𝑠]  𝐿𝑇𝑅𝑡=53

[𝑠]  𝑟𝑓𝑡=0
[𝑠]

 𝑟𝑓𝑡=53
[𝑠]  𝑟𝑚𝑡=0

[𝑠]  𝑟𝑚𝑡=53
[𝑠]  

𝑆1 7.00 5.60 4.00 3.00 2.50 2.00 5.00 6.00 

𝑆2 7.00 7.00 4.00 4.00 2.50 2.50 5.00 5.00 

𝑆3 7.00 8.40 4.00 5.00 2.50 3.00 5.00 4.00 

 

 

Table 7.7. Demand of the customer in each scenario 

Scenario 
Customer 1 Customer 2 Customer 3 

𝑡 = 1 𝑡 = 2 𝑡 = 1 𝑡 = 2 𝑡 = 1 𝑡 = 2 

𝑆1 750 1125 730 1095 570 855 

𝑆2 750 750 730 730 570 570 

𝑆3 750 500 730 487 570 380 

 

Table 7.8. Sales price and production capacity 

pri prcap 

𝑡 = 1 𝑡 = 2 𝑡 = 1 𝑡 = 2 

235.6 270.94 2500 2500 

 

7.5.1. Analytical model 

The analytical model solely considers the economic uncertainty through scenario analysis and 

ignores the lead times rooted in material delivery and cash payment. The values of the 

parameters in the MILP model are randomly generated in the feasible interval of the 

parameters’ values using MATLAB software. For instance, to determine the unit production 

cost of the product in each time period, two random data in the interval of [58-62] were 

generated. To simplify the model formulation and also diminish the number of solving periods, 

the material delivery and cash payment lead times are assumed to be zero; otherwise, the 

solving period must be subdivided into shorter time periods, in this model weeks, in order to 

accommodate the lead times. Neglecting the material delivery and cash payment lead times 

and assuming zero safety stock, the model recommends keeping no inventory at all the SC 

members that results in a higher NOPAT comparing both SBO and hybrid MILP-SBO in which 

inventory, including finished goods and raw materials are held. To establish a meaningful 
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contrast between the analytical model and the other two models, it is assumed that the SC 

members hold safety stock to hedge against the demand uncertainty. The safety stocks values 

are set to be equal to the desired inventory values obtained from the SBO model.  The analytical 

model is then used to determine the optimal network design and the production rates at the 

plant. Table 7.9 shows the storage locations and the supplier determined by the analytical 

model for the three scenarios. Considering the possible economic conditions at the start of the 

second year, the analytical model suggests purchasing the raw material from the supplier no. 1 

and to open the Distribution centre no. 2.  

Table 7.10 illustrates the analytical model results for some physical and financial variables in 

each scenario. Demand variability which is caused by the economic uncertainty drives the 

production rate. Demand growth in scenario 1, is responded by increasing the production rate, 

while the demand shrinkage in scenario 3 is dealt through decreasing the production rate. In 

scenario 2, the model recommends diminishing the production rate at the year two, although 

the customer’s demand has remained unchanged. The reason is that the demand is partially met 

by the safety stock.  

The equality of the right and left sides of the balance sheet in each time period shows the 

accuracy of the financial modelling. The profitability, NOPAT, and the economic performance, 

EVA, of the chain decrease when the economy diminishes in size as increasing cost of goods 

sold is not offset by neither demand growth nor reduction in financing expenses, i.e., cost of 

equity and cost of debt. 

The structure of the current assets in each year for the three scenarios is illustrated in Figure 

7.5. In all the scenarios at the end of the second year the highest and lowest shares of the current 

assets belong to cash and inventory value, respectively. The inventory level at the end of the 

second year for all scenarios is similar and is equal to the safety stock, despite the demand 

differences. The structure of the capital in each year for all scenarios is depicted in Figure 7.6. 

The analytical model in all three scenarios recommends using long-term liabilities as the source 

of financing rather than short-term liabilities and issuing new stocks due to its lower interest 

rates. The growth of the equity at the second year for all scenarios is triggered by the addition 

to retained earning which is set to be 45 percent of the NOPAT. 
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Table 7.9. Optimal storage locations and supplier selection by the analytical model under scenario 1, 2, and 3 

Decision 

variables 

Suppliers Distribution centres 

S1 S2 DC 1 DC 2 DC 3 

Open/Close 

Open=1 

Close=0 

𝑡 = 1 𝑡 = 2 𝑡 = 1 𝑡 = 2 𝑡 = 1 𝑡 = 2 𝑡 = 1 𝑡 = 2 𝑡 = 1 𝑡 = 2 

1 1 0 0 0 0 1 1 0 0 

 

Table 7.10. the optimal decision variables in each scenario 

Decision 

variables 

Scenario 1 Scenario 2 Scenario 3 

𝑡 = 1 𝑡 = 2 𝑡 = 1 𝑡 = 2 𝑡 = 1 𝑡 = 2 

PR 2227.2 2500 2227.2 1890 2227.2 1207 

SC 2027.2 2660 2027.2 2050 2027.2 1367 

SDI 2007.2 2660 2007.2 2050 2027.2 1367 

SR 2007.2 2660 2007.2 2050 2027.2 1367 

𝐹𝐴 + 𝐶𝐴 720,200 768,971 720,200 743,099 720,200 720,261 

𝐿𝑇𝐿 + 𝑆𝑇𝐿 + 𝐸 720,200 768,971 720,200 743,099 720,200 720,261 

𝑁𝑂𝑃𝐴𝑇 22222 87475 22222 58999 22222 33623 

𝐸𝑉𝐴 43199 8056 -23380 

 

 

Figure 7.5. Current assets structure 
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Figure 7.6. Capital structure 

7.5.2. System dynamics and Simulation-based optimisation models 

The system dynamics simulation model formulates the lead times rooted in distribution and 

payment, the collection and payment policies, feedback loops, and nonlinearities exist in the 

supply chain network in addition to the economic uncertainty which is taken into account 

through scenario analysis. The values of the model parameters such as transportation unit cost 

are set to be equal to the ones used in the analytical model. To test the response of the system 

to the changes in economic uncertainty parameters, the system is required to initialize in a 

balanced equilibrium. Therefore, the initial values to the inventory, and supply line for all the 

members and cash are set to be equal to their desired level. The expected order rate is also set 

to be equal to the customers’ orders. 

The simulation-based optimisation model is constructed through incorporating genetic 

algorithm into the SD simulation model. The SBO model enables the modeller to identify the 

optimal values to the controllable parameters such as the desired inventory levels at entities to 

maximize the objective function, EVA. In order to make a meaningful comparison between the 

SD, SBO, and MILP models, the structure of the supply chain network is set to be equal to the 

one recommended by the MILP model.  

Figures 7.7(a) -7.7(d) represent the inventory and cash dynamics for the SC members in 

scenario 1 obtained from running the SD simulation model for two years, 104 weeks. As seen 

in Figures 7.7(a) and 7.7(b) the inventory levels for the retailers and distributor plummet at the 

start of the second year, week 53, as a result of the 50 percent increase in the customers’ 

demands prompted by the boom in economy. The system is then endeavours to reach to the 

new equilibrium inventory levels. The inventory of manufacturer, Figure 7.7(c), rises at the 
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first 20 weeks due to the delay time of the production process known as manufacturing cycle 

time. It falls at the start of the second year as a result of demand increase and stabilizes at the 

new equilibrium level at 230 tonnes. Figure 7.7(d) shows the inflow and outflow of cash. The 

cash inflow is higher than the cash outflow excepting the first 9 weeks in which the material 

delivery rate is high and the start of the second year for 6 weeks as a result of growing material 

order rate to meet the surge in customer’s demands.  

 

 

Figure 7.7. Inventory and cash dynamics for the SC members in scenario 1 obtained from the SD model 

Figures 7.8(a)- 7.8(d) represent the inventory and cash dynamics for the members in scenario 

1 obtained from the SBO model. The GA reduces the oscillations in the inventory levels, 

particularly for the distributor. The inventory peak for the manufacturer diminishes to 124 

tonnes of product from 230 tonnes before applying the SBO. As the excess cash is penalized 

in the SBO model, the GA aims to minimize the gap between the cash inflow and outflow so 

as to minimize the total cost which consequently maximizes the EVA. 
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Figure 7.8. Inventory and cash dynamics for the SC members in scenario 1 obtained from the SBO model 

Figures 7.9(a)-7.9(d) show the inventory and cash dynamics for the SC members in scenario 2 

obtained from the SD model. There are no oscillations in the inventory levels as the customers’ 

demands remains stable during the simulation time, therefore, the inventory levels indicate a 

goal seeking pattern except the inventory level of the distributor which remains unchanged 

during the simulation time. The cash dynamics is illustrated in Figure 7.9(d). The cash inflow 

exceeds the cash outflow excepting the first 9 weeks in which the material shipment rate from 

the supplier is high which causes higher payment.  
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Figure 7.9. Inventory and cash dynamics for the SC members in scenario 2 obtained from the SD model 

Figure 7.10(a)-7.10(d) represent the inventory and cash dynamics in scenario 2 after employing 

the SBO technique. The inventory levels of the retailer 1, retailer 2, and retailer 3 arrive at their 

customer order at weeks 15, 30, and 45, respectively as the retailer 1 precedes the retailer 2 and 

the retailer 2 precedes the retailer 3 in shipment of the product from the distribution centre. The 

inventory levels for the distribution centre reaches to the retailers’ order, 39.3 tonnes of 

product, at week 40. The SBO model significantly reduces the inventory level held by the 

manufacturer. The inventory peak for the manufacturer after applying SBO is 140 tonnes of 

products, which lasted for a week, while before applying the SBO, the manufacturer was 

holding the 200 tonnes of product from week 10 onwards. As shown in Figure 7.10(d) the SBO 

model seeks to minimize the difference between the cash inflow and outflow in order to 

minimize the cash cost. 
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Figure 7.10. Inventory and cash dynamics for the SC members in scenario 2 obtained from the SBO model 

Figures 7.11(a)-7.11(d) show the inventory and cash dynamics in scenario 3 using the SD 

model. The inventory level of the retailers and the distributor rise as a result of 50 percent 

decrease in the customers’ demands. The inventory of manufacturer, Figure 7.11(c), rises at 

the first 20 weeks due to the delay time of the production process known as manufacturing 

cycle time. It rises at the start of the second year as a result of plummet in demand and stabilizes 

at the new equilibrium level at 175 tonnes. The inflow of cash is higher than its outflow at the 

first 9 weeks due to the significant delivery of the raw material from the supplier. The cash 

inflow supersedes the cash outflow between week 10 and week 52. From the start of the 

recession period, week 53, until the end of the simulation, the outflow of cash exceeds its inflow 

as a results of demand fall. 

 

 

Figure 7.11. Inventory and cash dynamics for the SC members in scenario 3 obtained from the SD model 

Figures 7.12(a)-7.12(d) illustrate the inventory and cash dynamics in scenario 3 after using the 

SBO in the case of economic recession at the start of the second year. Applying the SBO 

diminishes the inventory levels for the SC members. The impact of the SBO methodology on 

inventory reduction grows as we move toward the upstream members. The inventory of the 

manufacturer before using the SBO fluctuates in the range of [100, 227], while after using the 

SBO, the inventory level of the manufacturer varies in the range of [50, 120]. The SBO strives 
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to mitigate the gap between the cash inflow and outflow to minimize the cash cost, although 

after plunge in demand the cash outflow outstrips the cash inflow which leads to a zero cost of 

cash. 

 

 

Figure 7.12. Inventory and cash dynamics for the SC members in scenario 3 obtained from the SBO model 

Table 7.11 shows the values of the EVA obtained from the SD and SBO models in each 

scenario. The values of the EVA in all scenarios show the superiority of the SBO modelling, 

in which the GA is incorporated into the SD model, over the SD simulation modelling which 

lacks the GA. Moreover, as expected, it is observed that in all scenarios the EVA obtained from 

the SBO model is significantly lower than the one determined by the analytical model due to 

the assumption that the analytical model does not consider the distribution and payment lead 

times.  

Table 7.11. EVA obtained from the SD and SBO models in each scenario 

Scenarios 
EVA (GBP) Percentage difference 

between the SBO model 
and the SD model 

Percentage difference 
between the SBO model 
and the analytical model 

SD SBO 

Scenario 1 26452 32840 +24.15% -23.98% 

Scenario 2 4636 6008 +29.59% -25.45% 

Scenario 3 -35924 -28414 +20.91% -21.53% 
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7.5.3. Hybrid Analytical-SBO 

The hybrid analytical-SBO approach integrates the advantages of the both SBO and MILP 

models. The hybrid approach not only formulates the distribution and payment lead times, the 

collection and payment policies, feedback loops, and nonlinearities, but also uses the optimal 

decision variables determined by the MILP model to decide on the quantity of the order to be 

placed to the suppliers, production rate at the manufacturing site, and the shipment rates in the 

supply chain network. Figures 7.13(a)-7.13(d) represent the inventory and cash dynamics for 

the SC members in scenario 1 after using the hybrid approach. The hybrid approach is more 

efficient than the SBO approach in managing the inventory of the SC members. Both the 

inventory peaks and the oscillation in inventory ranges fall after using the hybrid approach. 

The inflow and outflow of cash in the hybrid model are lower than the ones from the SBO 

model as the optimal shipment rates between the SC members are used in the shipment rates 

equation. Lower inventory and cash levels in the hybrid approach yield lower inventory and 

cash costs comparing the SBO model.  

 

 

Figure 7.13. Inventory and cash dynamics for the SC members in scenario 1 obtained from the hybrid model 

Figures 7.14(a)-7.14(d) illustrate the inventory and cash dynamics for the SC members in 

scenario 2 after using the hybrid approach. Although the performance of the hybrid approach 
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the SBO performance, using the hybrid approach leads to a significant reduction in the 

inventory levels for the manufacturer. The inventory of the manufacturer in the hybrid model 

from week 30 until the end of the simulation fluctuates in the range of [30, 60] tonnes of 

product, while the inventory value at the same period in the SBO model remains stable at the 

level of 92 tonnes of product. Although the gap between the cash inflow and cash outflow in 

the SBO model is narrower than the one in the hybrid model, the number of weeks in which 

the cash outflow outstrips the cash inflow in the hybrid model are 40 weeks, week 20 to 60, 

more than the SBO model that results in the lower cash costs in the hybrid model compared to 

the SBO model. 

 

  

Figure 7.14. Inventory and cash dynamics for the SC members in scenario 2 obtained from the hybrid model 

Figures 7.15(a)-7.15(d) illustrate the inventory and cash dynamics for the SC members in 

scenario 3 after using the hybrid approach. Comparing the SBO model, although applying the 

hybrid approach does not considerably diminish the inventory levels for the SC members, it 

reduces the oscillations in the inventory levels of the members. As in scenario 2, the gap 

between the cash inflow and cash outflow in the SBO model is narrower than the one in the 

hybrid model, while the number of weeks in which the cash outflow outstrips the cash inflow 

in the hybrid model are 30 weeks, weeks 20 to 50, more than the SBO model that results in the 

lower cash costs in the hybrid model compared to the SBO model. 
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Figure 7.15. Inventory and cash dynamics for the SC members in scenario 3 obtained from the hybrid model 

Table 7.12 shows the values of the EVA obtained from the hybrid model and the number of 

iterations performed to meet the stopping criterion, which set to be 5% difference between the 

EVA determined by the analytical and hybrid models, in each scenario. The results indicate the 

maximum stopping iterations of two in all scenarios. Although, it is not feasible to prove the 

fast convergence for all the test results as the GA is a stochastic search algorithm. The hybrid 

approach outperforms the SBO approach as it noticeably decreases the gap between the EVA 

obtained from the MILP and SBO models. 

Table 7.12. EVA obtained from the hybrid model in each scenario 

Scenarios EVA (GBP) 
Number of 

iterations 

Percentage difference between 

the hybrid approach and the 

analytical model 

Percentage difference 

between the hybrid 

approach and the SBO 

model 

Scenario 1 38045 2 -11.93%  +15.85% 

Scenario 2 6849 2 -14.98% +14.42% 

Scenario 3 -26657 2 -14.02% +6.18% 
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The performance of the MILP-SBO model in maximizing the EVA is compared with the 

performances of the SBO model under three economic scenarios. The first scenario assumes 

boom at the second year of the simulation that results in increase in customer demand and 

expected return of the market and decrease in risk-free rate of interest, short-term interest rate 

and long- term interest rate. The MILP-SBO significantly reduced the inventory levels for the 

supply chain members and the cash held in the supply chain. Moreover, the EVA of the supply 

chain increased by almost 16% from £32840 to £38045. The second scenario assumes 

stagnation at the second year of the simulation that results in stability in customer demand, 

expected return of the market, risk-free rate of interest, short-term and long-term interest rates. 

The MILP-SBO significantly reduced the inventory levels at the manufacturer and the cash 

held in the supply chain. The EVA of the supply chain increased by 14% from £6008 to £6849. 

The third scenario assumes recession at the second year of the simulation that results in 

decrease in customer demand and expected return of the market and increase in risk-free rate 

of interest, short-term and long-term interest rate. The differences between inventory levels of 

the supply chain members in SBO and MILP-SBO models are negligible as 50% reduction in 

customers’ demand at the second year makes holding high inventory levels unnecessary. 

Although, the MILP-SBO model reduces the oscillations in the inventory levels of the 

members. The EVA of the supply chain increased by 6.18% from £-28414 to £-26657. 

7.6. Conclusions 

strategic supply chain planning models, in which the strategic decisions such as network design 

and the tactical decisions such as inventory planning are integrated, show more realistic 

viewpoint of supply chain decisions; as different decisions in the supply chain are related to 

each other and deciding on them in an integrated manner results in better performance (Laínez 

et al., 2008; Gupta and Dutta, 2011). Moreover, incorporating flow of cash into the strategic 

supply chain planning models is of paramount importance as implementing the supply chain 

decisions relies on the availability of the financial resources.  

As discussed in section 2.5.4 in chapter 2 and is presented in Table 7.13, Previous research on 

integrated strategic supply chain planning and supply chain finance mostly applied MILP 

modelling, while the hybrid analytical-simulation approach which are more efficient than the 

analytical approaches in capturing the nonlinearities, delays, and feedback loops exist in such 

problems have remained underrepresented. Previous studies take into account a limited number 

of uncertainties, mostly uncertainty in demand, while there is lack of studies that consider a 
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wide range of uncertainties in the economic parameters. To fill the gap in the literature, in this 

chapter, a hybrid analytical-simulation model is developed to address an integrated strategic 

supply chain planning and supply chain finance problem under economic uncertainty. The 

strategic supply chain planning problem includes supplier selection, network design, inventory 

planning, and the supply chain finance problem includes asset-liability optimisation. The 

proposed hybrid model integrates a mixed integer linear programming model and an SBO 

model to maximize the EVA generated in a supply chain network in presence of uncertainty in 

economic parameters. This contribution extends the previous research on strategic supply chain 

planning and supply chain finance (Yousefi and Pishvaee, 2018; Melo et al., 2006; Ramezani 

et al., 2014; Cardoso, et al., 2016; Zhang et al., 2017; Melo et al., 2006; Naraharisetti  et al., 

2008; Ramezani et al., 2014; Zhang et al., 2017) by applying the hybrid modelling and 

considering the economic uncertainty. The developed hybrid model identifies the optimal 

values to the decision parameters such as inventory control parameters and optimal values to 

the decision variables such as the flow of products between supply chain entities. 

Table 7.13. Strategic supply chain planning and supply chain finance literature 

Current 

literature 

Parameters 

considered 

Hybrid 

modelling 

Considering 

the economic 

uncertainty  

Approaches 

(Yousefi and 

Pishvaee, 2018; 

Melo et al., 2006; 

Ramezani et al., 

2014; Cardoso, et 

al., 2016; Zhang et 

al., 2017; Melo et 

al., 2006; 

Naraharisetti  et 

al., 2008; 

Ramezani et al., 

2014; Zhang et al., 

2017) 
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The hybrid approach is initialized by solving the MILP model to determine the optimal values 

to the raw materials required to be purchased from the suppliers, the production rate at the 

manufacturing site, and the flow of finished products between the SC members considering the 

existing constraints in the financial and physical flows. The solution suggested by the MILP 

model is then used to construct the SBO model in which the distribution and payment lead 

times, the feedback loops, and nonlinearities rooted in a SC networks are formulated through 

applying an SD simulation approach. Thereafter, the embedded GA in the SBO model is run 

to identify the optimal values to the price per tonne of the product, the desired cash, the profit 

distribution policy, and the stocking capacities at the SC members. In the next stage, the 

constraints of the optimisation problem are revised in accordance with the optimal parameter 

values recommended by the SBO model and the optimisation model is run to generate a new 

set of parameter values to be inputted into the SBO model. The iterative process between 

optimisation and SBO models continues until the stopping criterion which is 5% difference 

between the EVAs obtained from the models is met.  

The hybrid approach enables the modeller to not only take into account the lead times, feedback 

loops, and nonlinearities which exist in the supply chain networks, but also dramatically bridge 

the gap between the desired EVA, the EVA obtained from the analytical model, and the real 

EVA, the EVA gained from the simulation optimisation model. To demonstrate the efficiency 

of the proposed model, the performance of the proposed model in solving a test problem from 

the recent literature is compared with the performance of the conventional simulation-based 

optimisation approach. The results of the comparison show that the developed hybrid 
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analytical-simulation model outperforms the simulation-based optimisation model in all the 

predicted scenarios. 
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8. Chapter 8. Conclusions and future work 

8.1. Introduction 

This chapter presents the overall conclusions and key contributions of the thesis as well as 

managerial implications that this work has provided. Finally, some directions for future work 

are provided based on the research conducted in this thesis. 

8.2. Overall conclusions 

Supply chains are composed of suppliers, manufacturers, distributors, and retailers that are 

integrated with regard to the physical, financial, and information flows across the supply chain 

networks. Considering the financial flow within supply chain models is of paramount 

importance as implementing supply chain decisions relies on the availability of the financial 

resources. For instance, opening a new facility in the supply chain network is impossible unless 

the funding mechanism is explicit. Moreover, the financial and physical flows have a mutual 

effect on one another. For example, inventory optimisation leads to savings in the financial 

resources which can in turn provide the required resources for implementing other operational 

decisions such as production capacity expansion. 

Research regarding the management of supply chain has been performed for a long time. 

However, most of the studies focus on addressing the problems such as inventory planning 

which are related to the planning of physical flow and overlook the planning of the financial 

flow. It is only in the last decade that the research community has started to incorporate 

financial flow planning into the supply chain models. Therefore, more research in this area is 

required to be performed. To contribute to the literature of the financial flow planning in supply 

chains, this research incorporates financial flow planning into the supply chain models to 

ensure that the financial resources are available to the supply chain members at the right time 

while the profitability of the supply chain is maximized. It also provides a more realistic view 

to supply chain total cost by considering the cash holding cost as a constituent of the total cost. 

In general, supply chains are complex networks composed of various entities where uncertain 

external factors, conflicting objectives related to responsiveness and efficiency, and delays in 

the flows including product, information, and cash have to be taken into account. Therefore, 

effective tools should be applied to analyse and optimise the performance of the supply chain 

networks.  In order to study supply chain networks, analytical approaches such as optimisation 
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models have been frequently utilized to provide optimal values to the decision variables for 

supply chain members (Wu, 2006; Torabi and Hassini, 2008; Govindan et al., 2014; Hamta et 

al., 2015). Although pure mathematical models are useful in many cases, they may not be able 

to depict complex relationships, including feedback loops and delay functions, between supply 

chain entities existing in real-world problems (Mele et al., 2006).  

On the other hand, simulation has been proved to be an efficient tool to describe and analyse 

inherent dynamic behaviour of complex systems such as supply chains (Dominguez, Cannella 

and Framinan, 2015; Macdonald et al., 2018). Although, it is not able to determine the optimal 

values to the decision parameters and decision variables in the supply chains. The SBO and 

hybrid analytical-SBO modelling that integrate simulation and optimisation are effective tools 

for analysing and optimizing the performance of the supply chain networks as they integrate 

the benefits of the simulation and optimisation modelling. 

This work applies SBO and hybrid analytical-SBO frameworks to address four integrated 

physical and financial flows planning problems. A comprehensive literature review has shown 

that most of the studies that considered financial flow planning within supply chain networks 

presented a deterministic single objective mathematical model to represent the supply chain 

systems. However, the supply chains need to be depicted through multi-objective stochastic 

models that consider uncertainties in the exogenous parameters such as customer demand and 

manage the trade-offs between conflicting objectives such as bullwhip effect minimization and 

total cost minimization. Simulation and optimisation are effective tools for modelling the 

stochasticity in the supply chain networks and managing the trade-offs between conflicting 

supply chain objectives, respectively. Therefore, to represent the supply chain networks by 

multi-objective stochastic models, the simulation and optimisation modelling are required to 

be integrated. This integrated framework is called SBO modelling when a simulation model 

and an optimisation algorithm are integrated and is called hybrid analytical-SBO modelling 

when a simulation model and an optimisation model are paired.  

The literature review on the application of the SBO for supply chain optimisation revealed that 

employing the system dynamics simulation within the SBO framework is far from adequate. 

Moreover, the literature on the hybrid analytical-simulation for supply chain optimisation 

showed that research on applying the hybrid analytical-SBO approach for supply chain 

optimisation is still in its infancy. In this study, system dynamics is used as the simulation 
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methodology within the SBO framework and an integrated physical and financial flows 

planning problem is also addressed using the hybrid analytical-SBO approach. 

The developed SBO framework in this study integrates the system dynamics simulation and 

the genetic algorithm and is implemented through two academic case studies related to the beer 

distribution game and one real-world application extracted from the literature. The first SBO 

framework for the beer game case study aims to manage the trade-offs between conflicting 

cash conversion cycle (CCC) minimizations for the supply chain members and minimize the 

collaborative CCC of the supply chain. While, the second developed SBO framework for the 

beer game case study aims to minimize the bullwhip effect, cash flow bullwhip, and the total 

cost of the supply chain. The developed SBO framework for the real-world case study aims to 

manage the trade-off between the economic valued added and cash conversion cycle which 

represent profitability and liquidity indexes, respectively. 

The proposed analytical-SBO framework in this study integrates mixed integer linear 

programming and the SBO and is implemented through one real-world case study extracted 

from the literature. The developed analytical-SBO framework aims to integrate the planning of 

cash and material flows within supply chain networks through addressing an integrated 

strategic supply chain planning and supply chain finance problem that integrates supplier 

selection, network design, and asset-liability management subproblems. In this problem, the 

profitability of the supply chain network is maximized while considering the uncertain external 

factors and delays exist in the supply chain network. 

8.3. Summary of contributions 

The main contributions of this research are discussed as follows: 

The first contribution of this thesis that was presented in chapter 4 is the development of an 

SBO model for working capital management in a supply chain. In this model financial flow 

modelling is incorporated into the system dynamics simulation of the beer distribution game 

and minimizing the cash conversion cycle for supply chain members and minimizing the 

collaborative CCC of the supply chain are considered as optimisation objectives. This 

contribution extends the previous research on working capital and supply chain management 

by using the SBO modelling for managing the trade-offs between conflicting CCCs 

minimization for supply chain members and minimizing the collaborative CCC of the supply 

chain (Theodore Farris and Hutchison, 2002; Ruyken et al., 2011; Lind et al., 2012; Hofmann 
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and Kotzab, 2010; Ruyken, Wagner and Jonke, 2011). The genetic algorithm is applied to 

identify the optimal values to the controllable parameters including price, unit cost, forecasting 

parameter for the inventory, forecasting parameter for the supply line, desired inventory, and 

desired supply line for each supply chain member so as to make the trade-offs between 

conflicting CCCs for the supply chain members and minimize the collaborative CCC of the 

supply chain. The results showed that the CCCs of the supply chain entities and the 

collaborative CCC of the supply chain could be significantly decreased through identifying the 

optimal controllable parameters. 

The second contribution of this thesis that was presented in chapter 5 is the development of an 

SBO model for reducing the bullwhip effect, cash flow bullwhip, and the total cost in a supply 

chain under deterministic demand and lead times, stochastic demand and deterministic lead 

times, and stochastic demand and lead times. In this model financial flow modelling is 

incorporated into the system dynamics simulation of the beer distribution game to identify the 

optimal financial decisions in addition to the optimal operational decisions. This contribution 

extends previous supply chain research on minimizing the bullwhip effect (Alwan et al., 2003; 

Zhang, 2004; Luong, 2007; Balakrishnan, et al., 2004; Hosoda and Disney, 2006; 

Tangsucheeva and Prabhu, 2013, 2014; Goodarzi et al., 2017; Sim and Prabhu, 2017) through 

diminishing the destructive effects of the bullwhip effect in supply chain financial flow in 

addition to the physical flow. Moreover, it incorporates the financial flow modelling into the 

inventory planning models and determines the optimal values to the financial decisions 

parameters, in addition to the inventory decisions. Finally, it incorporates CFB minimization 

as an objective function into an SBO model. The results show that the genetic algorithm is able 

to find the optimal financial and inventory decisions parameters for each member of the supply 

chain to reduce the total cost, bullwhip effect, and cash flow bullwhip. 

The main objective of the proposed SBO model is to find the optimal values of the desired 

inventory, desired supply line, forecasting parameter for inventory, forecasting parameter for 

supply line, sales price per unit, and unit cost for supply chain entities to make trade-offs 

between the supply chain total cost, cash flow bullwhip, and bullwhip effect. Three 

experiments were developed to investigate the ability of the SBO model in identifying the 

optimal replenishment policy. The first experiment was the beer distribution game, which 

employs deterministic demand and lead times. The SBO found the optimal replenishment 

policy to be non-aggressive approach, i.e., forecasting parameter for inventory less than 0.5, to 

the inventory gap for all members, and a cautious approach to orders in the supply line, i.e., 
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forecasting parameter for supply line less than 0.5, for the retailer and distributor. The second 

experiment tested random demand and deterministic lead times. The SBO found the optimal 

replenishment policy to be an aggressive approach to the inventory gap for the retailer and 

manufacturer, and a cautious approach to orders in the supply line for the retailer. The third 

experiment extended the second experiment through considering random lead times in addition 

to the random customer demand. In this experiment, an aggressive approach to the inventory 

gap for the distributor and wholesaler and cautious approach to orders in supply line for the 

distributor and wholesaler was identified to be the optimal replenishment policy. However, the 

recommended policy may not be optimal for every set of random customer demand and lead 

times. The results demonstrated the superiority of the SBO approach over system dynamics 

modelling with and without information sharing between supply chain members as it can 

manage the CFB within supply chain networks through deriving optimal values for the 

inventory, supply line, and financial decisions parameters in presence of conflicts between 

supply chain objectives. While, system dynamics is solely able to compare the effects of varied 

policies, different values of the controllable parameters, through performing what-if analysis 

which may not be an effective strategy particularly, when the decision parameters are 

continuous. 

The third contribution of this thesis that was presented in chapter 6 is the development of an 

SBO model for managing the trade-offs between financial performance and liquidity in a 

supply chain under economic uncertainty. To assess the financial and liquidity performances, 

the economic value added (EVA) and the cash conversion cycle (CCC) metrics are used, 

respectively. These two metrics are not moving towards the same direction and business 

managers should find a balance between them. This contribution extends the literature on 

supply chain inventory management using system dynamics simulation and supply chain 

working capital management (Reyes et al, 2013; Peng et al., 2014; Cannella et al., 2015; Liao, 

2008; Teng, 2009; Mahata, 2012; Huang, 2007; Huang and Hsu, 2008; Teng and Chang, 2009; 

Ravichandran, 2007; Liao, 2008; Teng, 2009) through incorporating financial parameters 

including price, unit cost, collection policy, and payment policy. Moreover, it considers the 

EVA and the CCC in the multi-objective optimisation formulation of the inventory 

management model developed by Sterman (2000) under economic uncertainty. Finally, it 

introduces a new method for measuring the CCC in which the revceiving and payment of the 

advance payament are taken into account. The proposed model handles economic uncertainty 

through a scenario tree approach. Using the data of a real case study introduced in Longinidis 
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and Georgiadis (2013), firstly the conflicting objectives are given the same level of importance 

in order to compare the performance of the SBO approach, in which a genetic algorithm is 

incorporated into a system dynamics simulation model, with the performance of the system 

dynamics simulation model under three economic scenarios. The results show the superiority 

of the SBO approach over system dynamics modelling in all three scenarios. Secondly to 

manage the trade-offs between the conflicting objectives, the weighted sum method is used to 

generate the Pareto efficient frontiers which include the non-dominated optimal solutions. 

These Pareto efficient frontiers provide decision makers with a portfolio of alternative optimal 

inventory and financial decisions that could be selected based on market condition and the 

power of the company within supply chain network. 

The fourth contribution of this thesis that was presented in chapter 7 is the development of a 

hybrid analytical-SBO model for integrating supply chain network design, supplier selection, 

and asset-liability management problems under economic uncertainty. The proposed hybrid 

model integrates a mixed integer linear programming model and an SBO model to maximize 

the EVA generated in a supply chain network in presence of uncertainty in economic 

parameters. This contribution extends the previous research on strategic supply chain planning 

and supply chain finance (Yousefi and Pishvaee, 2018; Melo et al., 2006; Ramezani et al., 

2014; Cardoso, et al., 2016; Zhang et al., 2017; Melo et al., 2006; Naraharisetti  et al., 2008; 

Ramezani et al., 2014; Zhang et al., 2017) by applying the hybrid modelling and considering 

the economic uncertainty. The developed hybrid model identifies the optimal values to the 

decision parameters such as inventory control parameters and optimal values to the decision 

variables such as the flow of products between supply chain entities. 

The hybrid approach is initialized by solving the MILP model to determine the optimal values 

to the raw materials required to be purchased from the suppliers, the production rate at the 

manufacturing site, and the flow of finished products between the SC members considering the 

existing constraints in the financial and physical flows. The solution suggested by the MILP 

model is then used to construct the SBO model in which the distribution and payment lead 

times, the feedback loops, and nonlinearities rooted in a supply chain network are formulated 

through applying system dynamics simulation approach. Thereafter, the embedded GA in the 

SBO model is run to identify the optimal values to the price per tonne of the product, the desired 

cash, the profit distribution policy, and the stocking capacities at the supply chain members. In 

the next stage, the constraints of the optimisation problem are revised in accordance with the 

optimal parameter values recommended by the SBO model and the optimisation problem is 
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run to generate a new set of parameter values to be inputted into the SBO model. The iterative 

process between optimisation and SBO models continues until the stopping criterion which is 

5% difference between the EVAs obtained from the models is met. The hybrid approach 

enables the modeller to not only take into account the lead times, feedback loops, and 

nonlinearities which exist in the supply chain networks, but also dramatically bridge the gap 

between the desired EVA, the EVA obtained from the analytical model, and the real EVA, the 

EVA gained from the SBO model.  

8.4. Managerial implications 

The managerial implications of each contribution are discussed as follows: 

8.4.1. Managerial implications of the contribution 1 

In addition to matching the supply of products with the demand of customers within supply 

chain networks, the supply of cash is also required to be matched with the demand of supply 

chain members. Single company perspective in which each supply chain member decides 

independently on its cash flow decisions such as payables period results in heterogeneous 

distribution of cash among supply chain entities. Therefore, it is imperative for supply chain 

managers to ensure that the available cash in the network is fairly distributed among the supply 

chain members. This is achieved through collaborative working capital management in which 

the conflicts between cash flow optimisation objectives for supply chain members are 

managed. The proposed SBO model in this study assists supply chain managers to manage the 

conflicting objectives through identifying the optimal inventory and financial parameters for 

supply chain members. 

8.4.2. Managerial implications of the contribution 2 

Working capital optimisation in addition to the total cost optimisation plays a pivotal role in 

boosting the efficiency of supply chain management. Therefore, it is imperative that working 

capital metrics such as the cash conversion cycle (CCC) are incorporated into the supply chain 

models. The CCC represents the performance of a firm in managing its capital. The lower the 

CCC, the more successful the firm is in managing its capital. High volatility in the CCCs of 

the supply chain members caused by the bullwhip effect yields volatility in liquidity that may 

trigger inefficiencies in operational processes of the members such as purchasing, and 

consequently reduce SC service levels. Given the results of our study, supply chain managers 

should control the fluctuations in the CCCs of the supply chain members, if they want to 
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manage the liquidity within the supply chain networks. The proposed SBO model in this 

research allows supply chain managers to mitigate the CFB significantly under the 

deterministic and stochastic demand and lead time. This is achieved through identifying the 

optimal values for the sales price, unit cost, and inventory decisions of the members. In the 

original model of the BG, the CCC for the SC members ranges from 30 to 500 days. While, 

after employing the SBO methodology, the CCC ranges from -15 to 32 days. In presence of 

demand uncertainty in the BG model, the cash to cash cycle ranges from -5 to 1500 days. 

Although, after employing the SBO methodology the CCC ranges from -5 to 40 days. In 

presence of uncertainty in demand and lead times in the beer game model, the CCC ranges 

from -5 to 40 days. While after applying the SBO technique, the CCC ranges from -5 to 32 

days.  

In addition to the CFB reduction, the proposed SBO model assists supply chain managers to 

reduce the supply chain total cost (SCTC) significantly. In the original model of the BG the 

SCTC amounted to £10816. While, after employing the SBO methodology, the SCTC 

decreased to £7017.94. In presence of demand uncertainty in the BG model, the SCTC 

amounted to £14283.42. Although, after employing the SBO methodology the SCTC reduced 

to £8292.74. In presence of uncertainty in demand and lead times in the BG model, the SCTC 

amounted to £18387.96. While after applying the SBO technique, the SCTC diminished to 

£8729.90. Moreover, the results of the conducted experiments show the superiority of the 

proposed SBO model over the information sharing strategy which is usually implemented by 

the supply chain managers to mitigate the SCTC. After employing the SBO technique the 

SCTC reduced by 29 percent comparing the SCTC of the SD model with information sharing. 

Similarly, the SCTC in the SBO model under demand uncertainty, and demand and lead time 

uncertainties, reduced by 24 percent and 18 percent, respectively comparing the SD model with 

information sharing. Decreasing the gap between the SD model with information sharing and 

the SBO model as the number of stochastic parameters increase conveys the importance of the 

information sharing among supply chain members in mitigating the SCTC. Therefore, SC 

managers who are in charge of managing SC networks which encounter various uncertainties 

could benefit from significant cost reduction through applying the information sharing strategy. 

Although, the information sharing strategy is not as efficient as the SBO technique in cost 

reduction. 



186 
 

 
 

8.4.3. Managerial implications of the contribution 3 

Supply chains aim to provide a good customer service level by meeting customer demand. The 

higher the inventory level at supply chain members, the lower the possibility of losing customer 

demand. Although keeping high levels of inventory at supply chain members ensures the 

capability of the supply chain on meeting the customer demand, it imposes significant holding 

costs on supply chain members. Thus, supply chain managers should make a trade-off between 

minimizing the inventory levels at the supply chain members and maximizing the shipment 

rate to the customer. In this contribution, Minimizing the inventory levels at the supply chain 

members is achieved by minimizing the cash conversion cycle of the supply chain. While, 

maximizing the shipment rate to the customer is achieved through maximizing the economic 

value added of the supply chain. Furthermore, minimizing the cash conversion cycle enables 

the supply chain managers to decrease the cost of capital for supply chain members and 

accelerate cash flow within the supply chain networks by optimizing receivables level and 

payables level in addition to the inventory levels. 

Implementing the decisions related to supply chain planning problems rely on availability of 

the financial resources. Therefore, the dynamics of the financial flow in a supply chain should 

be tracked along with the dynamics in the physical flow. Considering the dynamics of the 

financial flow in a supply chain necessitates incorporating the financial decision parameters 

such as collection policy into the supply chain planning models. The values to the financial 

decision parameters are decided on by the financial managers. The proposed model in this 

study promotes constructive cooperation between supply chain and financial mangers as it 

integrates inventory decisions such as inventory adjustment time made by supply chain 

managers and financial decisions such as collection policy made by the financial managers. 

Moreover, the estimation of the uncertain economic parameters such as short-term interest rates 

under various scenarios requires the active participation of the financial managers. 

Participation of the financial managers in modelling of the supply chain planning problems 

increases the possibility of the allocating the required financial resources for implementing the 

solutions recommended by the model as the allocation decisions are mainly made by the 

financial managers. 

8.4.4. Managerial implications of the contribution 4 

Businesses need to keep sufficient cash to meet their operations expenses such as buying raw 

material and also pay dividends to their investors. The higher the cash level held by a business, 
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the lower the possibility of business inability in meeting operations expenses and paying 

dividends. Although, keeping high cash level by a business ensures its capability in meeting 

operations expenses and paying dividends, it imposes cash opportunity cost on the business. In 

other words, the business is forgoing the return that would have been derived by investing the 

cash in alternative options to holding it such as investing the cash in the stock market. 

Therefore, business managers need to make a trade-off between adequacy of cash for meeting 

the business expenses and minimizing the opportunity cost that the business incurs as a result 

of holding cash. This contribution helps the business managers in making this trade-off by 

considering cash holding cost as an element to the total cost of the business and ensuring the 

cash level by the business is minimized.  

Integrating supply chain problems provide a more explicit picture of the supply chain dynamics 

and consequently the solutions obtained from the integrated models are more realistic 

compared to the solutions obtained from the segregated problems. Although, the integration 

may result in nonlinear models which require significant amount of time to identify the optimal 

solutions. Therefore, a trade-off is required to be made between the solution quality and the 

computational time. Hybrid analytical-SBO approach in which independent optimisation and 

SBO models are integrated through a feedback structure combines the advantages of the 

complex SBO models and abstract optimisation models. The SBO models are powerful tools 

in capturing uncertainties, nonlinearities, and delays exist in supply chain networks. Although, 

they may not result in global optimal solutions due to applying stochastic optimisation 

algorithms. On the other hand, optimisation models generate global optimal solutions. 

However, incorporating nonlinearities in these models may significantly increase the 

computational time. Applying the hybrid analytical-SBO approach enables the supply chain 

managers to access realistic high-quality solutions in a reasonable time. 

Supply chains are exposed to uncertainties in macroeconomic and macroeconomic parameters 

that may have significant impact on their profitability. Business managers need to ensure that 

the impact of these uncertainties is taken into account while measuring the profitability of their 

supply chains. Otherwise, the profitability of the supply chain may provide a misleading view 

of the financial health of the supply chain. In this contribution, uncertainties in four 

macroeconomic parameters including short-term interest rate, long-term interest rate, expected 

return of the market, and risk-free rate of interest an uncertainty in one macroeconomic 

parameters that is demand are considered to assist the business managers to obtain a more 

realistic view to the profitability of their supply chains. 
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8.5. Limitations and future work 

In this study, it is assumed that there is either full trade credit or partial trade credit among 

supply chain members. While in some real world supply chains the full trade credit and partial 

trade credit coexist. In other words, in these supply chains some members receive full trade 

credit from their suppliers and offer partial trade credit to their customers. The coexistence of 

the full trade credit and partial trade credit in a supply chain has not been considered in this 

study and could be addresses in future research. From cash flow perspective, existence of the 

either full trade credit or partial trade credit policy results in fairer distribution of the cash 

among supply chain members compared to coexistence of the full trade credit and partial trade 

credit policy. The reason for this is the accessibility of the partial trade credit merely for some 

members of the supply chain and not all of them. 

Trade credit policy which is the basis of the financial flow modelling in this study is one of the 

financing solutions that are common in supply chain networks. There are many other financing 

solutions in supply chains such as factoring and reverse factoring that are employed in supply 

chains and can be used for modelling of the financial flow in supply chains. Future research 

might predicate financial flow modelling on financing solutions other than trade credit.  

 As it was explained in chapter 2 of this study some of the supply chain financing solutions 

such as factoring and reverse factoring require a third-party finance provider such as banks. 

Although these solutions expedite the access of the supply chain members to cash, they are 

accessible for small supply chains that do not contain companies with high business volume 

and annual turnover. The small supply chains will be not be able to avail of these financing 

solutions, unless they become part of supply chains that contain big brands and key players in 

their industry. 

Although minimizing the cash conversion cycle for a supply chain ensures the homogenous 

distribution of the cash among supply chain members, it may not be appealing to the supply 

chain members which have a sub zero cash conversion cycle before minimizing the cash 

conversion cycle for the supply chain. Therefore, one of the implementation difficulties of the 

current study is to convince supply chain members with a sub zero cash conversion cycle to 

improve the cash conversion cycle of the other supply chain members in expense of increasing 

their own cash conversion cycle. 
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The opportunity cost of holding cash heavily relies on the economic condition. For instance, 

when the economy is growing the opportunity cost to the cash holding is high as a higher return 

than cash holding could be obtained by investing the cash in the stock market or other growing 

markets. Although, when the economy is shrinking the opportunity cost to the cash holding is 

negligible as the return on the alternative options to cash holding is low or there might be no 

return at all. Therefore, the other main difficulty to the implementation of the current study is 

to convince supply chain managers to minimize the cash level when there is no consensus on 

the future economic condition.  

In addition to the assumptions and limitations of the study as a whole, the limitations of each 

contribution are discussed as follows. 

8.5.1. Limitations and future work of the contribution 1 

To recognize directions for future research, the limitations of the contribution 1 are elaborated 

as follows. Firstly, our simulation model was developed based on the beer distribution game 

structure (Sterman, 1989; Joshi, 2000). Similar simulation models can be developed to manage 

the conflicting CCC minimization objectives for other supply chain networks. Secondly, in this 

contribution, anchoring and adjustment heuristic (Tversky and Kahneman, 1974) was 

employed as an inventory ordering policy. There are other replenishment policies such as 

reorder point-order quantity (Q,r) which may be integrated into future research. Thirdly, the 

performance of the other optimisation algorithms in managing the conflicting working capital 

objectives can be compared with the GA performance in future work. Another research topic 

is to use collaborative cash conversion cycle (CCCC) by which the CCC of the supply chain 

network is measured as objective function rather than the CCC by which the CCC of each 

supply chain member is measured. 

8.5.2. Limitations and future work of the contribution 2 

To recognize directions for future research, the limitations of the contribution 2 are elaborated 

as follows. Firstly, our simulation model was developed based on the beer distribution game 

structure (Sterman, 1989; Joshi, 2000). Similar simulation models can be developed to control 

cash flow bullwhip (CFB) for other supply chain networks. Secondly, in this contribution, 

anchoring and adjustment heuristic (Tversky and Kahneman, 1974) was employed as an 

inventory ordering policy. There are other replenishment policies such as reorder point-order 

quantity (Q,r) which may be integrated into future research. Thirdly, other BWE contributors 

such as order batch and lead time have not been optimised in this study. Another research 
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opportunity may arise by extending this paper through considering the aforementioned 

parameters. Fourthly, further work can be carried out to identify an optimisation algorithm 

which is more effective than the GA in CFB minimization under lead time uncertainty. Another 

research topic is to define other metrics rather than cash conversion cycle to measure cash flow 

bullwhip and controlling CFB through tuning its controllable parameters.  

8.5.3. Limitations and future work of the contribution 3 

The limitations of this contribution that need to be studied in the future research are as follows. 

Firstly, the presented simulation-based optimisation model manages the trade-off between 

economic profitability and working capital efficiency under economic uncertainty, although 

there are other trade-offs such as trade-off between working capital efficiency and credit 

solvency that can be considered in future research. Secondly, the uncertainty of other financial 

parameters such as tax rate could be considered in supply chain inventory management and 

working capital management problems. Thirdly, future research might extend our model by 

considering the fixed assets as an endogenous variable rather than a constant or incorporating 

leaseback of fixed assets into invested capital. Fourthly, Future research might consider a two-

part trade credit policy in which some of the supply chain members receive full trade credit 

from their suppliers and offer partial trade credit to their customers Finally, future research can 

employ other optimisation algorithms to manage trade-off between economic profitability and 

working capital efficiency and compare the performance of these algorithms with performance 

of the GA that is presented in this study. 

8.5.4. Limitations and future work of the contribution 4 

The limitations of this work that need to be studied in the future research are as follows. Firstly, 

this study only examines the use of hybrid approach to address a strategic supply chain planning 

and finance problem. In future research other integrated supply chain planning problems such 

as integrated network design, distribution and transportation planning could be solved using 

the hybrid approach. Secondly, the simulation approach applied in this study is SD, it would 

be interesting to investigate the capability of optimisation-SBO models that employ simulation 

models rather than SD in addressing supply chain planning problems. Finally, multi-objective 

optimisation can also be incorporated into the developed MILP-SBO model as an extension to 

the present study. 
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Appendix 

The remaining studies that applied the simulation-based optimisation modelling for addressing 

supply chain problems are presented as follows. 

Table 2.5. Continued 
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