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Abstract

Supply chains are composed of suppliers, manufacturers, distributors, and retailers that are
integrated with regard to the physical, financial, and information flows across the supply chain
networks. Considering the financial flow within supply chain models is of paramount
importance as implementing the supply chain decisions relies on the availability of the financial
resources. For instance, opening a new facility in the supply chain network is impossible unless

the funding mechanism is explicit.

This research aims to incorporate financial flow modelling into the supply chain models to
ensure that the financial resources are available to the supply chain members at the right time
while the profitability of the supply chain is maximized. It provides new insights into the
methods to monitor the flow of cash within supply chain networks. It further provides a more
realistic view to supply chain total cost by considering the cash holding cost as a constituent of
the total cost. To analyse and optimise the performance of the studied supply chains in this
research, Hybrid simulation optimisation modelling is used as the modelling approach as it is
an effective tool to accommodate uncertainties in internal and external factors to the supply
chains, conflicting objectives related to the responsiveness and efficiency of the supply chain,

and delays in the supply chain product, information, and cash flows.

To distribute the financial resources fairly among supply chain members, two simulation-based
optimisation (SBO) models are developed. The first model is a multi-objective model which
contains the minimization of the cash cycle for supply chain members and the second model is
a single-objective model that considers the cash cycle of the supply chain as objective function.
The two models are optimised through finding the optimal values to the inventory and financial
decisions parameters. The results indicated that the cash cycle of the supply chain members
and the cash cycle of the supply chain can be decreased significantly by identifying the optimal

values to the inventory and financial decisions parameters.

To minimize the inventory of the products at supply chain facilities and match the flow of cash
with the demand of the supply chain members under economic uncertainty, an SBO model is
developed. The developed model aims to minimize the bullwhip effect, cash flow bullwhip,
and supply chain total cost through finding the optimal values to the inventory and financial
decisions parameters. The results showed that the SBO model is an effective tool in managing
the trade-offs between objective functions as it significantly improved the values of the

objective functions compared to the simulation modelling.



To manage the trade-off between profitability and cash cycle in a manufacturing supply chain
under economic uncertainty, an SBO model is developed. The developed model aims to
minimize cash conversion cycle and maximize economic value-added through finding the
optimal values to the production, inventory, and financial decisions parameters. The results

showed the superiority of the SBO approach over simulation modelling.

Finally, to maximize the profitability of a manufacturing supply chain in an integrated supply
chain network design, supplier selection, and asset-liability management problem under
economic uncertainty, a hybrid analytical-SBO model is developed. The developed model aims
to maximize the economic value added through finding the optimal values to the
manufacturing, inventory, financial, and distribution decisions. The results showed that the

hybrid approach outperforms the individual analytical and SBO approaches.
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Chapter 1. Introduction

1.1. Research Motivation

Severe competition in the marketplace and the increased expectations of the customers have
prompted the firms to search for solutions which help them to create competitive edge in order
to survive in the highly competitive market. Developing supply chain networks which can
respond quickly to the customer demands and deliver the right products at the right time at the
minimal price is a preferred way to retain competitive edge. A supply chain network composed
of all the parties which are involved in the process of providing a good or service for a
customer. The parties include raw material suppliers, producers, distributors, wholesalers, and
retailers which are linked through flows of material, money, and information (Gupta and Dultta,
2011). The material flows downstream to the customers, whereas the funds flow upstream, and
information moves in both directions. Supply chain management (SCM) is the active
streamlining of business supply-side activities to match the supply of products with the
consumers’ demand and the supply of funds with the demand of supply chain members at a
minimum cost. The activities regarding the supply of products include the procurement of raw
material, production, distribution, transportation, and so on. While, the activities associated
with the supply of funds contain issuing the invoices, payment, securing loans, equity issuance,

and so on.

To improve the business supply-side activities many decisions relating to the flow of
information, products, and money are required to be made. These decisions are grouped into
strategic, tactical, and operational decisions. The strategic decisions have a long-lasting effect
on the supply chain performance and are reviewed anywhere between yearly and once every
five years. These include the decisions regarding the location and capacity of the supply chain
entities. The tactical decisions have a medium-term effect on the supply chain performance and
are updated anywhere between quarterly and yearly. These contain the decisions related to
procurement, production planning, inventory planning, and so on. The operational decisions
have a short-term effect on the supply chain performance and are reviewed anywhere between
daily and weekly. These include decisions such as production scheduling, transportation

scheduling and so on.

In addition to the supply-side activities which relate to supply chain responsiveness, the supply

chain networks are required to be efficient. Although, efficiency and responsiveness do not
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move at the same direction. An efficient supply chain strives to eliminate waste and maximize
performance at a minimum cost. While, a responsive supply chain aims to shorten the product
distribution lead time and payment lead time. Therefore, a trade-off is required to be made
between efficiency and responsiveness in the supply chain networks.

Supply chain networks may confront uncertainties in external factors which may have
detrimental effects on both supply chain efficiency and responsiveness. For instance,
uncertainty in demand may result in bullwhip effect. The bullwhip effect occurs when the
variations in the demand of supply chain members are amplified when moving upstream of the
supply chain (Lee et al., 1997). This phenomenon causes many inefficiencies in supply chain
product flow such as excessive inventory, stock-outs and inefficiencies in supply chain cash

flow such as increased total cost and higher cost of capital.

In addition to the uncertain external factors, there are some delays in the downstream flow of
products, upstream flow of funds, and two-sided flow of information in the supply chain
networks. The distribution lead times, trade credits, and information delays are the examples

for delays exist in product flow, cash flow, and information flow, respectively.

The existence of conflicting efficiency and responsiveness objectives, delays and uncertainties
cause supply chain networks to be complex systems. Computer simulation has been described
as the most effective tool for analysing the complex systems. Although the simulation is a
powerful tool in representing the complex systems, it is not able to optimise the performance
of the systems due to its incapability in identifying the optimal values to the controllable design
variables. Incorporating optimisation tools into simulation transform it into a prescriptive tool
rather than a descriptive one. On the other hand, optimisation tools may not be able to
efficiently accommodate the uncertainties rooted in supply chain networks, due to their
inability to depict stochastic behaviours and complex relationships between supply chain
entities that exist in real world problems (Mele et al., 2006). Therefore, to optimise the
performance of a complex system such as supply chain, the optimisation and simulation tools
are required to be integrated. Such an integrated framework is knowns as hybrid simulation
optimisation modelling. The hybrid simulation optimisation modelling is divided into
simulation-based optimisation (SBO) modelling and hybrid analytical-simulation modelling.
The SBO includes the integration of simulation and optimisation algorithms and the hybrid
analytical-simulation contains the integration of independent simulation and optimisation

models.
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Financial factors have a major impact on supply chain planning. Implementing all the supply
chain operational decisions rely directly on the availability of the financial resources. A supply
chain cannot achieve its desired performance, unless the operational decisions are in
accordance with its financial decisions. Moreover, the operational and financial decisions have
mutual effect on each other. For instance, investing in production increases production capacity
and may affect the production amount. On the other hand, reducing the inventory levels

increases the profitability and may affect the amount of cash holding.

The SBO methodology has been frequently applied to address supply chain problems related
to planning of product flow. For instance, inventory planning (Mele et al., 2006; Duggan,
2008), capacity planning (Georgiadis and Athanasiou, 2013; Sudarto et al., 2017). While, it has
been applied in a limited number of studies to address a supply chain problem concerned with
integrated planning of financial and product flows. For instance, Puigjaner and Lainez (2008)
applied the SBO to address an integrated supply chain network design, production planning,
distribution planning, and cash management problem. The research on the application of hybrid
analytical-simulation approach for supply chain modelling is still in its infancy as the approach
is new. Therefore, more studies on the application of hybrid analytical-simulation approach for
solving the supply chain problems are required to be conducted. Supply chain planning models
predominantly focus on the planning of physical flow, while the studies considered the
planning of financial flow are very limited in proportion to the relevant literature (Yousefi and
Pishvaee, 2018; Chauffour and Malouche, 2011). To conclude, supply chain planning literature
requires the SBO and hybrid analytical-simulation models which integrate the planning of cash

and material flows to address supply chain problems.
1.2. Research objectives and methodologies

This thesis aims to integrate planning of the cash and material flows within supply chain
networks. The integration is performed through four case studies. As shown in Figure 1.1, all
four case studies incorporate the stock management problem which refers to the issue of
optimally regulating stock variables in a system to meet some system objectives. For instance,
supply chain managers seek to minimize the inventory levels whilst providing 100% service

levels in fulfilling the orders.
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Figure 1.2.1. Case studies incorporating the stock management problem.

Case study 1 and 2 are based on the beer distribution game introduced by Sterman (1989) and
replicate a four echelon beer supply chain with the objective of fulfilling customer demand
while minimizing the inventory levels. In both case studies, the beer game is further extended
through incorporating the financial flow modelling and relaxing the initial assumptions of the
game including deterministic demand and distribution lead times. In case study 1, minimizing
the cash conversion cycles, which is a metric for working capital performance, of the supply
chain members are considered as objective functions. In case study 2, the existence of the cash
flow bullwhip which relates to the bullwhip effect in the cash flow is illustrated and it is
minimized. In case study 3, the inventory management model developed by Sterman (2000) is
extended through incorporating the flow of cash within the supply chain network. The objective
of the original model is to balance production rate and inventory levels for a manufacturer in
order to fulfil the customer demand. While, the extended model in addition to the product flow
decisions such as production rate seeks to determine the optimal financial decisions such as
collection policy from the customer and the payment policy to the supplier in order to minimize
the cash to cash cycle of the supply chain while fulfilling the customer demand. In case study
4, the developed inventory and cash management model in case study 3 is integrated with an
optimisation model in which the optimal network structure and the optimal values to the stock
variables such as inventory and cash are determined considering the capacity constraints. To
put it in a nutshell, the principal objectives of the research are enumerated as follows:

1. Managing the trade-offs between conflicting cash conversion cycle minimizations for

supply chain members
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2. Reducing the bullwhip effect and cash flow bullwhip in a supply chain under
deterministic demand and lead times, stochastic demand and deterministic lead times,
and stochastic demand and lead times

3. Managing the trade-offs between the financial performance and liquidity in a supply
chain network under economic uncertainty

4. Addressing an integrated supply chain network design, supplier selection, inventory

planning, and asset-liability planning

To achieve the first three research objectives, the SBO methodology in which system dynamics
simulation and genetic algorithms (GA) are integrated is applied. The GA determines the
optimal values to the controllable decision parameters in the system dynamics model. The
fourth objective is addressed using the hybrid analytical-SBO methodology in which an SBO
model and a mixed integer linear programming (MILP) model are integrated. The MILP model
identifies the optimal values to the decision variables of the simulation model, while the
optimal values to the decision parameters of the simulation model are determined by the SBO
model.

1.3. Summary of contributions

The primary contributions of this thesis are as follows:

A methodology for working capital management in a supply chain using the SBO is provided.
The employed methodology identifies the optimal values to the inventory and financial
decision parameters. This work has been published at IEEE conference on intelligent systems,
Portugal, 2018. (Badakhshan et al., 2018).

A methodology for reducing the bullwhip effect and cash flow bullwhip in a supply chain using
the SBO is presented. The efficiency of the methodology for various stages of complexity
including deterministic demand and lead times, stochastic demand and deterministic lead times,
and stochastic demand and lead times is investigated. This work has been published at
International Journal of Production Research (IJPR), Volume 58, Issue 17. (Badakhshan et al.,
2020).

A methodology for managing the trade-offs between financial performance and liquidity in a
supply chain under economic uncertainty using the SBO is presented. The applied methodology
determines optimal values to the inventory and financial decisions parameters in three probable

economic scenarios. This work will be submitted to an international journal in the near future.
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A methodology for integrating supply chain network design, supplier selection, inventory
planning, and asset-liability planning under economic uncertainty by employing the hybrid
analytical-SBO approach is provided. The applied methodology determines the optimal supply
chain network structure, the suppliers to work with, the optimal values to the current and fixed
assets, and the optimal inventory parameters such as inventory adjustment time and financial
decisions parameters such as payment policy. This work will be submitted to an international

journal in the near future.
1.4. Thesis outline

This thesis contains eight chapters and a brief summary of each chapter is provided as follows:

Chapter 1 presents an introduction to the research carried out in this project. The research

objectives, methodologies employed, and contributions are discussed.

Chapter 2 provides a comprehensive literature review on applications of simulation-based
optimisation modelling and hybrid analytical-simulation modelling in supply chain
management. Moreover, a literature review on the supply chain models with financial aspects

IS given.

Chapter 3 presents an introduction to the system dynamics and the genetic algorithms. The
integration of the system dynamics simulation and the genetic algorithms in the form of
simulation-based optimisation framework is also discussed. The integration of the SBO and
MILP in the form of the hybrid analytical-simulation framework is also elaborated.

Chapter 4 provides the proposed SBO approach to manage the working capital within supply
chain networks. The cash conversion cycle is defined and the SBO approach is applied to
manage the trade-offs between conflicting cash conversion cycle minimizations for supply
chain members in the beer distribution game through finding the optimal values to the

inventory and financial decisions parameters.

In chapter 5 the concept of cash flow bullwhip is explained and the proposed SBO approach is
applied to reduce the bullwhip effect, cash flow bullwhip, and supply chain total cost in the
beer distribution game supply chain. This chapter concludes with two experiments designed to
investigate the ability of the SBO reduced the bullwhip effect, cash flow bullwhip, and supply
chain total cost when facing stochastic demand and deterministic lead times and stochastic

demand and lead times.
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In Chapter 6 the same SBO methodology is employed to manage the trade-offs between
financial performance and liquidity under economic uncertainty in a real case study from the
recent literature. The economic value added and the cash conversion cycle represent the
financial performance and liquidity, respectively. The scenario tree approach is also applied to
formulate the economic uncertainty. The performance of the SBO methodology is also

compared with the performance of the system dynamics simulation in each defined scenario.

Chapter 7 provides the proposed hybrid analytical-SBO methodology that integrates physical
and financial flows in a supply chain. The proposed methodology is applied to address an
integrated supply chain network design, supplier selection, and inventory and asset-liability
planning problem under economic uncertainty. The scenario tree approach is also applied to
formulate the economic uncertainty. The performance of the hybrid analytical-SBO
methodology in each defined scenario is also compared with the performances of the analytical

and SBO approaches.

Chapter 8 draws a conclusion to the thesis where the major achievements of this research are

discussed and some potential direction for future research are suggested.
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Chapter 2. Literature review

2.1. Introduction

Supply chain management (SCM) is the management of product, information, and financial
flows among supply chain members in order to deliver superior customer value at the lowest
cost to the supply chain. In this chapter, firstly an overview of SCM is provided. A discussion
on the two important paradigms in the SCM, i.e. efficiency and responsiveness, and the drivers
of the supply chain are presented. The necessity of incorporating financial flow into supply
chain planning is discussed. A taxonomy on supply chain modelling and a comprehensive
literature review on simulation-based optimisation and hybrid analytical-simulation modelling
is provided to identify the gaps in the literature. Finally, the areas which require further research
are recognized and the need for applying the simulation-based optimisation and hybrid
analytical-simulation techniques to model the supply chain models with financial aspects is

justified.
2.2. Overview of supply chain management

A supply chain is a network of organizations which cooperatively work together in order to
manage and improve the flow of products, information, and cash within the network
(Christopher, 2005). A supply chain is characterized by a forward flow of products, a backward
flow of cash, and a two-sided flow of information. It is composed of a series of inter-
organizational and intra-organizational business processes in order to procure raw materials
from suppliers, promote these raw materials into the finished products, distribute them to
distributors, wholesalers, and retailers, and finally deliver them to the end customers. Brewer
et al. (2001) classify key supply chain processes into: customer relationship management,
customer service management, demand management, customer order fulfilment,
manufacturing flow management, procurement, product development and commercialization,
and return. It is imperative for a supply chain to continuously control and improve these

processes.

The core objective of a supply chain is to fulfil customer needs while optimizing the total cost
including procurement cost, production cost, inventory holding cost, distribution cost, etc
(Christopher, 2005). A successful supply chain provides the right product, at the right price, at
the right time to the customer. Therefore, customer satisfaction is at the heart of supply chain

management. To achieve the customer satisfaction several tasks are required to be carried out
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within the supply chain networks. The three main tasks of the supply chains are design,
planning, and execution. Supply chain design is related to the strategic decisions such as facility
location, supply relationships, logistics strategy and so on. Supply chain planning deals with
tactical decisions such as production and distribution planning. Supply chain execution
corresponds to the operational decisions such as order management and production
management (Davis, 1993; Buurman, 2002). Supply chain event management is an additional
major task in supply chain management that includes reactive risk management activities such

as announcing plan changes and initiating corrective measures (Otto, 2003).

Supply chain tasks including design, planning, execution, and event management are required
to be performed in a way that not only result in customer satisfaction through fulfilling the
customer demand at the right time and at the right price, but also maintain the supply chain
total cost at the lowest possible level. In other words, supply chain tasks aim to improve the

efficiency and responsiveness of the supply chain.

Supply chain efficiency is defined as the ability of a supply chain to fulfil the customer demands
at the lowest cost (Chopra and Meindl, 2007). An efficient supply chain focuses on lowering
various costs which are incurred by supply chain members. These costs include production
cost, inventory holding cost, transportation cost to name a few. A supply chain is efficient when

the use of resources is optimised and the waste at all costs is avoided.

Supply chain responsiveness is concerned with the ability of the supply chain to respond
quickly to the changes in the marketplace (Kilger et al., 2015). These changes might be related
to the end customer demand, lead times within the supply chain network and any other internal
or external factor which necessitates updating the supply chain plans. A supply chain is
responsive when the products move quickly through the supply chain network from suppliers
to the manufacturers to the distributors to the retailers and finally to the end customers (Perry
etal., 1999).

A responsive supply chain concentrates on shortening the lead times such as manufacturing
lead times and distribution lead times which prolong the amount of time that takes to deliver
the products or services of the supply chain to the end customers. To reduce the lead times
various tools such as electronic data interchange, automated warehousing, and improved
manufacturing methods might be applied. Although implementing the solutions for lead time

reduction impose extra costs on the supply chain members, in the long-term they result in
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reducing supply chain costs. For instance, the cost of holding inventory and the cost of lost

sales are diminished as a result of lead time reduction.

The characteristics of efficient and responsive supply chains are described in Table 2.1. An

efficient supply chain sets decision strategy regarding the product design, pricing,

manufacturing, inventory holding, lead time, and supplier selection to minimize the total cost

of the supply chain network. While, a responsive supply chain overlooks the cost savings

opportunities and focuses on solutions which maximize the speed of responding to customer

demands.

Christopher et al. (2016) describe the differences between efficient and responsive supply

chains from five perspectives:

1.

Core objective. The core objective of an efficient supply chain is to reduce the waste.
While, the responsive supply chain aims to fulfil customer demand immediately.
Supply chain structure. The efficiency is related to the developing long-term supply
chain partnerships that are reinforced over time. Although, the responsiveness involves
reconfiguring the supply chains based on new market opportunities.

Measuring the performance. Efficient supply chains strive to improve productivity
measures such as profit margins. Although, responsive supply chains endeavour to
improve responsiveness metrics such as order fulfilment ratio.

Organizing the workflow. An efficient supply chain concentrates on developing the
procedures to standardise the workflow within the supply chain. Whereas, the
responsive supply chain focuses on developing the flexible workflows that enable the
supply chain members to respond quickly to the market changes.

Planning and controlling of the workflow. Efficient supply chains plan and control the
workflow in fixed time periods, e.g., monthly, while the responsive supply chains
emphasise on immediate interpretation of market changes and quick response to the

customer demands
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Table 2.1. Comparing of efficient and responsive supply chains (Chopra and Meindl, 2007).

minimum product cost

Efficient supply chain Responsive supply chain
Primary goal Demand fulfilment at the | Quick response to the
lowest cost demand
Product design strategy Maximize performance at a | Maximize product

differentiation

Pricing strategy

Lower margins as price is a

primary customer driver

Higher margins as price is
not a primary customer

driver

Manufacturing strategy

Lower costs through utilizing
the benefits of economy of
scale

Maintaining the capacity
flexibility to hedge against

demand/supply uncertainty

Inventory holding strategy

Minimizing the inventory

level

Maintaining safety stock
inventory to hedge against

demand/supply uncertainty

Lead time strategy

Reduce but not at the

expense of cost increase

Reduce aggressively

regardless of cost increase

Supplier selection strategy

Supplier selection based on

cost and quality

Supplier selection based on
expedition, quality,

flexibility, and reliability

Real world supply chains are neither fully efficient nor fully responsive. According to the Fig

2.1 which illustrates the cost-responsiveness efficient frontier, increasing supply chain

responsiveness will cost more, thus lowering the efficiency. Chopra and Meindl (2007) state

that demand uncertainty plays a pivotal role in designing an efficient or responsive supply

chain. As the uncertainty of customer demand increases the supply chain is required to be more

responsive.
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Responsiveness

3
High

High Low

Figure 2.1. Cost-responsiveness efficient frontier (Chopra and Meindl, 2007)
2.2. Drivers of supply chain performance

A supply chain is defined as a chain that links supply chain members through flows of products,
cash, and information across the chain. Effective supply chain management is related to the
effective management of the products, cash, and information flows across the supply chain to
make a trade-off between efficiency and responsiveness that best satisfies the needs of a
competitive strategy of a supply chain. The performance of the supply chain could be
streamlined through improving its drivers. Chopra and Meind| (2007) classified supply chain
performance drivers into six categories: facilities, transportation, inventory, sourcing,
information, and pricing. For each individual driver, a trade-off between responsiveness and
efficiency is required to be made by supply chain managers. The interplay between these

drivers determines whether the supply chain is efficient, responsive or both.

The structure of the supply chain decision making process is illustrated in Fig 2.2. Inventory,
facilities, and transportation known as logistical drivers are related to the physical flow in the
supply chain. Information, sourcing, and pricing known as cross functional drivers relate to
cash and information flows in addition to the physical flow. The performance of the supply
chain is contingent on the decisions which are made regarding these drivers. It is worth noting
that the framework should not be viewed from top down as the study of the logistical and cross-
functional drivers may suggest updating the structure of the supply chain and supply chain
strategy. The detailed discussion on each driver and its impact on supply chain performance

are provided below.
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2.2.1. Facilities

Facilities refer to the locations where a product is manufactured, assembled or stored (Chopra
and Meindl, 2007). Facilities are known as the “where” of the supply chain. Two major types
of facilities are production and storage sites. Decisions on the location, capacity, and flexibility
of the facilities can have a major impact on supply chain performance as they determine the
degree of efficiency and responsiveness of the supply chain. For instance, a supply chain is
more efficient if multiple retailers across a wide area are supplied by a single centralized
storage facility and is more responsive if the retailers are supplied by various storage facilities
that increases cost but diminishes the delivery time (Pochampally et al., 2004; Huang et al.,
2005). Therefore, when making decisions with regard to facilities, supply chain managers
should assess the impact of their decisions on efficiency and responsiveness of the supply chain
(Chopra and Meindl, 2007; Kilger et al., 2015).
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Figure 2.2. supply chain decision making framework (Chopra and Meindl, 2007).
2.2.2. Transportation

Transportation refers to the movement of the products between supply chain facilities (Chopra
and Meindl, 2007). Rail, motor, water, and air are basic modes of transportation which have
different characteristics and provide different qualities of transport service with regard to
expedition, shipment size, shipment cost, and flexibility (Stank and Goldsby, 2000).
Transportation decisions can have a major impact on supply chain performance as they

determine the degree of efficiency and responsiveness of the supply chain. Faster transportation
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modes such as air improve supply chain responsiveness while decreasing its efficiency. On the
other hand, slower transportation modes such as water shipment improve supply chain
efficiencies while limiting its responsiveness. Therefore, the challenge for the transportation
decision is to find the right balance between the transportation time and the transportation cost.
The transportation decisions must be made in line with customer requirements. Faster
transportation modes are preferred when serving customers who seek high level of
responsiveness. Whereas, efficient transportation modes are selected when serving cost-
sensitive customers. Moreover, transportation mode impacts other supply chain drivers. For
instance, transportation model directly impacts on inventory holding cost, stock out cost, and
operating costs of the facilities. Therefore, the impact of transportation decisions on other
supply chain drivers should be examined while making transportation decisions (Chopra and
Meindl, 2007).

2.2.3. Inventory

Inventory refers to the raw materials, work in progress (WIP), and finished goods which are
held in production and storage sites within the supply chain (Chopra and Meindl, 2007).
Inventory is the main source of cost to the supply chain and it is held because the supply cannot
be matched to the demand. Companies are continuously seeking solutions to bridge the gap
between the supply and demand to reduce the inventory and thus the cost. Inventory decisions
have a decisive influence on supply chain performance (Magnanti et al., 2006). A responsive
supply chain entails large quantity of stock to fulfil the orders quickly. While, an efficient
supply chain holds small quantity of stock to decrease the costs. The size of safety stock, cycle
inventory, and seasonal inventory are inventory related decisions that determine whether a
supply chain is more responsive or more efficient. As inventory is a major element of supply
chain cost, the inventory decisions should be determined in line with supply chain strategy.

2.2.4. Sourcing

Sourcing in the supply chain refers to the selection of the suppliers, design of contracts with
the suppliers, collaboration in product design, procurement of the raw materials, and evaluation
of the suppliers’ performances (Chopra and Meindl, 2007). Supplier failure is known as one of
the top supply chain risks which results in increased acquisition costs, excessive downtime of
production resources, poor customer service, loss of revenue, and market share (O’Marah,
2009). Various strategies such as single versus multiple sourcing, local versus global sourcing,

optimizing order allocation among multiple suppliers, and performance-based supply contracts
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have been suggested by the researchers to mitigate the negative impacts of the supplier failure
(Swink and Zsidisin, 2006; O’Marah, 2009). Global sourcing includes making a trade-off
between reliable high-cost local suppliers and unreliable low-cost offshore suppliers
(Ravindran et al., 2010). Multiple sourcing improves the responsiveness of the firms in
responding to the customers’ demands. Optimizing order allocation among multiple suppliers
improves the efficiency of the supply chain in terms of supply chain procurement costs.
Performance-based supply contracts assure that during the supply contract the quality of the
raw materials/products which are supplied by the supplier remains unchanged and the firms

are able to terminate the supply contracts if there is deviation from the committed quality levels.
2.2.5. Information

Information is one of the flows that connects supply chain members. Increased global
competition has raised the need for an intimate relationship between the supply chain partners
(Flynn et al., 2010). Information sharing is one of the solutions for establishing the intimate
relationships among supply chain members. Information sharing refers to distributing useful
information between organizational units within supply chain networks. There are various
types of information that could be shared among supply chain members. Some familiar types
of information which are shared within supply chain networks are: inventory information, sales
data, sales forecasting, order information, product ability information, and information about
new products (Lotfi et al., 2013). Information sharing may bring several benefits to the supply
chain members such as inventory reduction, cost reduction, bullwhip effect reduction and
improved resource utilization (Lee, So and Tang, 2000; Mourtzis, 2011). Therefore, supply
chain members are required to employ advanced information technologies to share information
between them to increase the competitive advantage of the supply chain network in today’s
global economy (Goodman and Darr, 1998; Lotfi et al., 2013).

2.2.6. Pricing

Pricing refers to the process of determining the amount a company should charge its customers
in exchange for its products. A variety of factors such as manufacturing cost, market place,
market competition, market condition, and the quality of the product influence the price of a
product (Christopher and Gattorna, 2005). Pricing is one of the major elements of the marketing
strategy which not only affects the behaviour of the products or services customers but also
influences the performance of the supply chain (Voeth and Herbst, 2006). Pricing impacts on
the buying decision of the customers as: (1) price is the most flexible marketing variable that
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can be adjusted to respond to or stimulate customer demand; (2) price is the trigger of the first
impression through which the customers make their purchasing decision. Proper pricing is
crucial as it has been shown that the customers may stop learning more about the product when
the price is higher than expected; (3) sales promotions which are implanted through price
adjustment are capable of stimulating demand for a particular product (Christopher and
Gattorna, 2005). From a supply chain perspective, the pricing decisions are made with the
objective of the increasing the profitability of the supply chain. Chopra and Meindl (2007)
argue that the supply chain members should employ a pricing strategy which either increases
revenue or reduces cost, or preferably both. The pricing process which conforms to the dynamic
behaviour of the customers can help to absorb the customer demand and improve the supply
chain profitability (Panda et al., 2015).

As discussed earlier, the essence of supply chain management is to make a trade-off between
responsiveness and efficiency through decisions which are made regarding the supply chain
drivers, i.e., facilities, transportation, inventory, sourcing, information, and pricing. For each
individual driver, a trade-off between responsiveness and efficiency is required to be made by
supply chain managers. The interplay between these drivers determines whether the supply
chain is efficient, responsive or combined. In this study, decisions on facilities, inventory,
sourcing, information, and pricing are made to manage the trade-off between the efficiency and

responsiveness.
2.3. Supply chain finance

Supply chain management integrates suppliers, manufacturers, distributors, and customers with
regard to the physical and financial flows across the supply chain network (Comelli et al.,
2008). Considering the financial flow within supply chain networks is of paramount importance
as implementing the supply chain decisions relies on the availability of the financial resources.
For instance, opening a new facility in the supply chain network is impossible unless
the funding mechanism is explicit. Moreover, the financial and physical flows have a mutual
effect on one another. For example, inventory optimisation leads to savings in the financial
resources which can in turn provide the required resources for implementing other operational
decisions such as production capacity expansion. Therefore, it is imperative to incorporate the
financial flow into supply chain models in addition to the physical flow.

The financial flow within supply chain networks is usually considered from two perspectives:

(1) cost and (2) flow of funds (Yousefi and Pishvaee, 2018). The cost perspective is related to
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attributing fixed or variable costs to supply chain activities such as holding inventory and
transportation and then deducting these costs from the revenue generated in the supply chain
to measure the profitability. The flow of funds perspective is related to considering the financial
flow dynamics by studying the dynamics of the assets and liabilities.

Supply chain finance which is described as the intersection of the supply chain management
and finance integrates the planning of the financial and physical flows within the supply chain
networks considering the financial flow dynamics (Stemmler, 2002; Hofmann, 2005). Supply
chain finance focuses on a collaborative inter-organizational financing approach, whereby the
financial situations of the supply chain members are optimised by integrating all the financing
processes (Pfohl and Gomm, 2009). The objective of supply chain finance is to decrease the
cost of capital for supply chain members and accelerate cash flow within the supply chain
networks through applying financing solutions on assets and liabilities that are either offered
by the financial service providers such as banks to the supply chain members or by the supply

chain members to their suppliers and customers (Gomm, 2010; Wauttke et al., 2013).

The financing solutions offered by the financial service providers include short-term solutions
on receivables and payables and long-term loans for fixed assets financing. For instance,
reverse factoring is a financing solution provided by a financial service provider and initiated
by a buyer, in which the financial service provider pays the buyers payables to its suppliers at
an accelerated rate in exchange for a discounted price (Camerinelli, 2009). The financing
solutions offered by the supply chain members to their suppliers and customers include
solutions on optimizing the working capital elements including cash, receivables, payables,
and inventories (Gelsomino et al., 2016). The trade credit, advance payment, and vendor-

managed inventory are examples of the financing solutions on working capital optimisation.

Working capital optimisation comprises reducing the current assets including inventory, and
receivables whilst increasing the current liabilities or payables in order to minimize the capital
tied up in the company’s turnover process (Hofmann and Kotzab, 2010). Working capital
optimisation can be achieved through minimizing cash conversion cycle (CCC) which is a
metric that integrates inventory, receivables, and payables and indicates the efficiency of
working capital management. The CCC is defined as the average days that it takes for a
company to convert a dollar invested in raw material into a dollar collected from customer
(Stewart, 1995) is one of the widely used key performance indicators to measure the efficiency

of a firm’s working capital management. This study focuses on working capital optimisation
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by using the financing solutions that are provided by the supply chain members to their
customers and suppliers in presence of economic uncertainty. Among various solutions, this

study focuses on trade credit and advance payment.

e Trade credit is an agreement between the buyer and the supplier in which the buyer is
permitted to postpone the payment for the received goods or services to a scheduled
later time. Trade credit can be defined as a type of 0% financing offered by the supplier
to the buyer.

e Advance payment is an agreement between the supplier and the buyer in which the
supplier is paid for the goods or services which have not been received by the buyer.
Advance payment can be defined as a type of 0% financing offered by the buyer to the

supplier.

There are cases in which the buyer is allowed to postpone part of the value for the received
goods or services known as partial trade credit and the supplier is paid for part of the received
order known as partial advance payment. In this study, each supply chain member offers either
full or partial trade credit to its customers and either partial or full advance payment to its

suppliers.

Economic uncertainty refers to microeconomic, macroeconomic, financial, and market
conditions that impact profitability and working capital performance within supply chain
networks (Longinidis and Georgiadis, 2013). In this study, the economic value added (EVA)
and the cash conversion cycle (CCC) are used to measure the profitability and working capital
performance, respectively. The EVA is a widely used index which indicates the economic
performance of a firm and considers the real costs associated with the main sources of capital,
i.e., equity and liabilities, used by the firm (Ogier, Rugman and Spicer, 2004). Therefore, it

provides a more realistic representation of a firm’s profitability.

Considering the uncertainties in economic parameters that are used in calculating the
profitability and working capital performance indicators, i.e., CCC and EVA, provides a more
realistic representation of the profitability and working capital performance within supply
chains. In this study, the concept of economic cycle in which it is assumed that the economic
condition between the economic cycles remains unchanged is applied to model the
uncertainties in five economic parameters including demand, risk free rate of interest, expected

return of the market, short-term interest rate, and long-term interest rate.
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e Risk free rate of interest is the reward for placing the capital in an investment without
taking any risks such as the interest rate of a treasury bill.
e Expected return of the market is the return of the most representative stock market

index.

Moreover, this study focuses on asset-liability optimisation. The asset-liability optimisation
includes optimizing fixed assets, current assets, current liabilities, long-term liabilities, and
equity. In other words, the asset-liability optimisation involves optimizing fixed assets, long-
term liabilities, and equity in addition to the working capital. The objective of the asset-liability
optimisation is to ensure that assets are available to cover liabilities and is achieved through
using the equations of the balance sheet. The balance sheet is a financial statement that reports
a firm’s assets, liabilities and equity at a given point in time. The core notion behind balance
sheet is that the assets are financed by liabilities and/or equity. Therefore, at any given time the
value of the assets equals to the value of the liabilities plus value of the equity that is known as
the fundamental equation of the balance sheet. The other equations of the balance sheet include
equality of the assets, liabilities, and equity with the sum of their elements. In this study, the
optimal values to the assets, liabilities, and equity is achieved through maximizing the

economic value added (EVA) index.
2.4. Supply chain modelling

Modelling is an extremely powerful tool for analysing complex systems such as supply chains.
Various modelling approaches such as optimisation and simulation have been applied to deal
with supply chain problems. Giannoccaro and Pontrandolfo (2001) classified approaches for
supply chain modelling into: analytical approaches, approaches based on artificial intelligence,
simulation approaches, and hybrid simulation optimisation approaches. In this thesis, an
overview of the literature on applying analytical, artificial intelligence, and simulation
approaches for supply chain modelling is provided to show the application of these modelling
approaches for addressing the supply chain problems. Moreover, a thorough review of the
literature on applying hybrid simulation optimisation approaches for supply chain modelling is
presented to identify the gaps in this area. The literature on hybrid simulation optimisation
modelling is divided into simulation-based optimisation modelling and hybrid analytical-

simulation modelling and the gaps in both areas are identified.
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2.4.1. Analytical modelling

Analytical approaches refer to the approaches such as linear programming, mixed-integer
linear programming, stochastic programming, and robust optimisation (Giannoccaro and
Pontrandolfo, 2001). A summary of previous works on analytical approaches is provided in
Table 2.2. To provide an overview of the studies which applied analytical approaches for
supply chain modelling a literature search in web of science database using the keywords such
as “stochastic programming” or “robust optimisation” and “supply chain” was conducted and
some of the papers which were published in highly reviewed operations and production
management journals such as International Journal of Production Economics (IJPE) and

International Journal of Production Research (IJPR) were selected and included in Table 2.2.

Table 2.2. Analytical approaches for supply chain modelling

Article Research scope Analytical approach
Yu and Li (2000) Stochastic logistic problems | Robust optimisation
SC capacity and inventory ) )
Agrawal et al. (2002) ) Stochastic programming
planning
o SC production and inventory ) _
Lababidi et al. (2004) ) Stochastic programming
planning
Guillén et al. (2005) SC network design Stochastic programming
Spitter et al. (2005) SC production planning Linear programming
Leung et al. (2006) SC production planning Stochastic programming
- ) Stochastic location
Snyder et al. (2007) SC facility location o )
model with risk pooling
Aalaei and Davoudpour (2017) | SC network design Robust optimisation
] ] o ] Mixed integer linear
Nindyasari et al. (2018) SC distribution planning _
programming
Brunaud et al. (2019) SC inventory planning Linear programming
Bertsimas and Youssef (2019) | SC inventory planning Robust optimisation
N SC production and Mixed integer non-linear
Ganji et al. (2020) o ) )
distribution scheduling programming
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2.4.2. Artificial intelligence modelling

Approaches based on artificial intelligence consists of approaches such as fuzzy multi-
objective programming, fuzzy linear programming, fuzzy goal programming, evolutionary
programming, reinforcement learning, and genetic algorithms (Giannoccaro and Pontrandolfo,
2001). Table 2.3 summarises the studies that applied artificial intelligence approaches. To
provide an overview of the studies which applied artificial intelligence approaches for supply
chain modelling a literature search in web of science database using the keywords such as
“fuzzy linear programming” or “reinforcement learning” and “supply chain” was conducted
and some of the papers which were published in highly reviewed operations and production
management journals such as International Journal of Production Economics (IJPE) and
International Journal of Production Research (IJPR) and highly reviewed journal in the area of

fuzzy logic such a “Fuzzy Sets and Systems” were selected and included in Table 2.3.

Table 2.3. Approaches based on artificial intelligence for supply chain modelling

Artificial intelligence

Article Research scope
approach
SC production and transportation _ _
Sakawa et al. (2001) ] Fuzzy linear programming
planning
Giannoccaro and ) ) ) )
SC inventory planning Reinforcement learning
Pontrandolfo (2002)
Giannoccaro et al. . )
SC inventory planning Fuzzy numbers
(2003)
Lin and Chen (2003) | SC inventory planning Genetic algorithm

. . Fuzzy multi-objective
Kumar et al. (2004) | SC supplier selection _
programming

SC production and distribution

Chen and Lee (2004) ) Fuzzy numbers
planning
Deshpande et al. ) Fuzzy multi-objective
SC task assignment _
(2004) programming
Wang and Shu ) ) Fuzzy numbers and genetic
SC inventory planning i
(2005) algorithms
Truong and ) . .
SC network design Genetic algorithm

Azadivar (2005)
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Amid et al. (2006)

SC supplier selection

Fuzzy multi-objective

programming

Xie et al. (2006)

SC inventory planning

Fuzzy numbers

Kumar et al. (2006)

SC inventory planning

Evolutionary programming

Selim et al. (2008)

SC production and distribution

planning

Fuzzy goal programming

Jiang and Sheng
(2009)

SC inventory planning

Reinforcement learning

Sun and Zhao (2012)

SC inventory planning

Reinforcement learning

Oroojlooyjadid et al.
(2017)

SC bullwhip effect

Reinforcement learning

Yousefi and
Pishvaee (2018)

Global SC planning

Fuzzy mixed integer linear

programming

2.4.3. simulation modelling

Simulation modelling composed of approaches such as discrete-event simulation and system

dynamics (Giannoccaro and Pontrandolfo, 2001). Table 2.4 provides a summary of the studies

which employed the simulation approaches. To provide an overview of the studies which

applied simulation approaches for supply chain modelling a literature search in web of science

database using the keywords such as “system dynamics” or “discrete-event simulation” and

“supply chain” was conducted and some of the papers which were published in highly reviewed

operations and production management journals such as International Journal of Production

Economics (IJPE) and International Journal of Production Research (IJPR) and highly

reviewed journals and conferences in the area of simulation modelling such a “Simulation

Practice and Theory” and “Winter Simulation Conference” were selected and included in Table

2.4.
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Article

Research scope

Simulation approach

Towill et al. (1992)

Bullwhip effect

System dynamics

Towill and del Vecchio (1994)

Bullwhip effect

System dynamics

van der Vorst (2000)

SC network design

Discrete event

simulation

Minegishi and Thiel (2000)

SC production and inventory

planning

System dynamics

Jansen et al. (2001)

SC distribution planning

Discrete event

simulation

Zhao and Xie (2002)

SC information sharing

Discrete event

simulation

Hung et al. (2006)

SC production and inventory

planning

System dynamics

Nair and Closs (2006)

SC inventory and distribution

planning

Discrete event

simulation

Chatfield et al. (2007)

SC architecture

Agent-based simulation

Chiang and Feng (2007)

SC information sharing

Discrete event

simulation

Chaerul et al. (2008)

SC waste management

System dynamics

Van Der Vorst et al. (2009)

SC network design

System dynamics

Persson and Araldi (2009)

SC production and inventory
planning

Discrete event

simulation

Ferreira and Borenstein (2011)

SC planning

Agent-based simulation

Das and Dutta (2013)

Closed loop SC

System dynamics

Vidalakis (2013)

SC distribution planning

Discrete event

simulation

Long and Zhang (2014)

SC production, inventory and

transportation planning

Agent-based simulation

Tian et al. (2014)

Green SC

System dynamics

Cigolini et al. (2014)

SC network design

Discrete event

simulation




34

Bautista et al. (2019) SC sustainability assessment | System dynamics
) o Discrete event
Prinz et al. (2019) SC energy efficiency ) )
simulation
Yazan and Fraccascia (2020) SC waste management Agent-based simulation
Tipmontian et al. (2020) SC block chain System dynamics

2.4.4. Hybrid simulation optimisation modelling

Hybrid simulation optimisation models are constructed through integrating analytical and
simulation approaches. Integrating mixed-integer linear programming (MILP) and discrete-
event simulation is an example of hybrid simulation optimisation approaches. Simulation-
based optimisation is a hybrid simulation optimisation approach which refers to integrating
simulation models such as system dynamics and optimisation algorithms such as genetic
algorithms. In this thesis, the hybrid simulation optimisation models except for simulation-
based optimisation are called hybrid analytical-simulation models. Although, in some studies,
the hybrid analytical-simulation modelling was called simulation-based optimisation. To
conduct a systematic literature review on applying simulation-based optimisation and hybrid
analytical-simulation approaches for supply chain modelling, a literature search in web of
science database using the keywords “simulation-based optimisation” and “supply chain” was
conducted. The generated papers were then reviewed and classified into (1) the studies which
applied simulation-based optimisation approach, i.e., integrating simulation and optimisation
algorithms, and (2) studies which employed hybrid analytical-simulation approach, i.e., i.e.,

integrating simulation and optimisation models.
2.4.4.1. Simulation-based optimisation modelling

Tables 2.5 presents a summary of the previous works on the simulation-based optimisation
modelling. Table 2.5 is divided into five sections; Article showing the article’s author(s)
reference; Research scope presents the article’s main field of study; optimisation algorithm
shows the algorithm which was employed to determine the optimal values to the decision
parameters; simulation model displays the modelling approach which was used to simulate the
supply chain problem; optimisation objective shows the objectives which were considered in
the studied supply chain model. The full list of the papers presented in Table 2.5 is given in

appendix.
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The literature review on simulation-based optimisation (SBO) modelling for supply chain
management, shown in Table 2.5, demonstrates that discrete-event simulation is the most
applied simulation technique in the SBO models (Jiang and Ruan, 2008; Aydogan-Cremaschi
et al., 2009; Ding, Benyoucef and Xie, 2009; Dong and Leung, 2009; Li, Sourirajan and
Katircioglu, 2010; Maliki, Sari and Souier, 2013; Kulkarni and Niranjan, 2013; Fischer et al.,
2014; Essoussi, 2015; Woerner, Laumanns and Wagner, 2016; Yang, Arndt and Lanza, 2016;
Chavez, Castillo-Villar and Webb, 2017; Keramydas et al., 2017; Afshar-Bakeshloo et al.,
2018). While, the share of system dynamics simulation in the SBO models is considerably
lower than the share of the discrete-event simulation. In terms of research scope, the inventory
planning problem which corresponds to the planning of the material flow within supply chain
networks has been addressed in a significant number of studied papers (Mele et al., 2006;
Schwartz, Wang and Rivera, 2006; Amodeo, Chen and EIl Hadji, 2007; Gao and Wang, 2008;
Veeraraghavan and Scheller-Wolf, 2008; Diaz and Bailey, 2011; Essoussi, 2015). Although,
the working capital planning problem which relates to the integrated planning of inventory,
cash, accounts receivable, and accounts payable has remained under investigated (Puigjaner
and Lainez, 2008; Bandaly, Satir and Shanker, 2016).

The cost minimization has been widely considered as objective function in the supply chain
planning models (Beyer, 2006; Chunxu, Feifei and Jianbing, 2007; Yoshizumi and Okano,
2007; Jiang and Ruan, 2008; Aydogan-Cremaschi et al., 2009; Duan and Liao, 2013; Pitzer
and Kronberger, 2015; Kara and Dogan, 2018). While the literature on supply chain planning
lacks studies that focus on managing the trade-off between financial performance, i.e., cost
minimization or profit maximization, and working capital management through developing the
multi objective models. Working capital management focuses on minimizing the inventory
levels, while financial performance metrics i.e., cost minimization or profit maximization aim

to minimizing the backlog cost that is higher than the inventory holding cost.

To fill the gap in the literature of supply chain planning using SBO modelling, in chapters 4-6
of this study, three SBO models which integrate system dynamics simulation and genetic
algorithm are developed to address three working capital planning problems. To manage the
trade-offs between conflicting objectives in the working capital planning models, multi-
objective models are presented in chapters 5 and 6. The model presented in chapter 5, aims to
minimize the total cost of the supply chain while minimizing the bullwhip effect and cash flow
bullwhip. The model presented in chapter 6, aims to manage the trade-off between profit

maximization and CCC minimization which represents the working capital performance. The
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CCC is minimized through minimizing the inventory levels. While the profit is maximized

through minimizing the lost sale or backlog that is achieved by maximizing the inventory

levels.

Table 2.5. Simulation-based optimisation approaches for supply chain modelling

Article

Research scope

Optimization
algorithm

Simulation model

Optimization objective

Genetic algorithms

Agent-based simulation

Chunxu et al. (2007)

inventory planning

Mele et al. (2006) SC inventory planning (ABS) Max: Total profit
(GA)
Monte Carlo
. Internal model control
simultaneous (IMC)
Schwartz et al. (2006) | SC inventory planning | perturbation stochastic .. Max: Profit
approximation (SPSA) Model predictive control
PP o (MPC)
Beyer (2006) SC mventory planmgg and NA ()th.:ct-orlf:nted Min: Total cost
demand forecasting Simulation
Min:sustainability
Georgiadis et al. (2006)|  SC capacity planning P;?ep?;;goﬁgo System dynamics (SD) dlmensmn‘s:(iirformance
Min: remanufacturing
s . - . Min: Inventory cost
Amodeo et al. (2007) | SC inventory planning NSGA-II Petri nets Max: service level
SC supplier selection and GA Disperse-event Min: Total cost

simulation

Lagrangian relaxation

Yoshizumi and Okano . . algorithm ) .
(2007) SC network design Steepest descent Not available (NA) Min: Total cost
method

Particle Swarm

. . . -
Gao and Wang (2008) | SC inventory planning optimization ( PSO) NA Min: Total cost
Jiang and Ruan (2008) | SC inventory planning PSO SIEEC;E:;L(‘SE;) Min: Total cost
Sundal" Raj and SC performance GA NA Min: Total Cost
Lakshminarayanan assessment and
Veeraraghavan and . . Framework proposed .
Scheller-Wolf (2008) SC inventory planning by authors NA Min: Total Cost
N ’ SC netwm.'k design, Two s?agc shrinking Max: Change in equity
Puigjaner and Lainez production and horizon (SHT) . .
C . L MPC Min: Environmental
(2008) distribution planning, and approximation impact
cash management P
. . Min: Wholesaler cost
Duggan (2008) SC inventory planning GA SD Min: Retailer cost
SC network design, -
Ding et al. (2009) | distribution and inventory NSGA-II DES Min: Tot? Loost
: Max: Service level
planning
Aydogan-Cremaschi et |_ .. . NA(deterministic - )
al. (2009) Life-support system design algorithm) DES Min: Total cost
Dong and Leun Max: Production balance
g(2 009) g SC inventory planning GA DES
Min: Lost sales
Lietal. (2010) SC inventory planning Bisection search DES Min: Total cost
Min:sustainability
Georgiadis and SC canacity plannin Proposed MOO D dlmensmnz(iirformance
Athanasiou (2010) pacity p g methodology . .
Min: remanufacturing

capacity expansion
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2.4.4.2. Hybrid analytical-simulation modelling

Tables 2.6 presents a summary of the previous works on the hybrid analytical-simulation
modelling. Table 2.6 is divided into five sections; Article showing the article’s author(s)
reference; Research scope presents the article’s main field of study; optimisation model shows
the optimisation approach which was used for modelling the supply chain problem; simulation
model displays the modelling approach which was used to simulate the supply chain problem;
optimisation objective shows the objectives which were considered in the studied supply chain

model.

The literature review on hybrid analytical-simulation modelling for supply chain management,
shown in Table 2.6, indicates that discrete-event simulation is the most commonly applied
simulation technique in the hybrid analytical-simulation models (Wan et al., 2003; Jung et al.,
2004; Almeder and Preusser, 2007; Chen et al., 2010; Durand, Mele and Bandoni, 2012; Diabat
etal., 2013; Frazzon, Albrecht and Hurtado, 2016; Ziarnetzky and Moénch, 2016; Chiadamrong
and Piyathanavong, 2017). While, limited number of studies conducted on applying an SBO
model in a hybrid analytical-simulation framework. Moreover, from our analysis of the
literature there is no study that has employed system dynamics simulation in a hybrid
analytical-simulation model. In terms of research scope, the integrated planning problems such
as distribution and inventory planning problem has been addressed in a significant number of
the studied papers (Jung et al., 2004; Almeder and Preusser, 2007; Chen et al., 2010; Gu and
Rong, 2010; Varthanan, Murugan and Kumar, 2012; Diabat et al., 2013).

Addressing the strategic supply chain planning problem, which includes integrating the
strategic decisions such as network design and planning decisions such as inventory planning,
using the hybrid analytical-simulation framework has remained under investigated. Although,
a significant number of the hybrid analytical-simulation models were developed to address the
integrated planning problems (Jung et al., 2004; Almeder and Preusser, 2007; Chen et al., 2010;
Gu and Rong, 2010; Durand, Mele and Bandoni, 2012; Varthanan, Murugan and Kumar, 2012;
Diabat et al., 2013). Cost minimization has been the dominant objective function in the hybrid
analytical-simulation models (Truong and Azadivar, 2003; Wan et al., 2003; Jung et al., 2004,
Chenetal., 2010; Nikolopoulou and lerapetritou, 2012; Sahay, lerapetritou and Wassick, 2014;
Boulaksil, 2016). While, the literature on supply chain hybrid analytical-simulation modelling
lacks the sufficient number of studies which consider the profit maximization as the objective

function.
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To fill the gap in the supply chain hybrid analytical-simulation modelling literature, in chapter
7 of this study, a hybrid analytical-simulation framework which integrates an SBO model and
a mixed-integer linear programming (MILP) model is developed to address a strategic supply
chain planning problem which integrates supplier selection, network design, inventory
planning, and asset-liability planning problems. The SBO model integrates a system dynamics
simulation model and a genetic algorithm. The developed MILP and SBO models aim to
maximize the profit of the supply chain and are connected through an iterative process. The
detailed description of the connection between the SBO and MILP models is elaborated in the

next chapter.
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Article Research scope Optimization model Simulation model Optll.'l'lllilfl()l'l
objective
Mixed integer linear Min: Aogj:'egate
. ) . cos
3 .
Truong and Azadivar (2003) SC network design programming (MILP) NA Max: Service level
GA
- . MILP .
Wan et al. (2003) SC inventory planning GA DES Min: Total cost
T
. . - . Linear programming (LP) . . .
Elmabhi et al. (2004) SC transport scheduling GA PN Min: Delivery time
. LP Min: Total cost
SC product d DES
Jung et al. (2004) S procuchon an Gradient-based stochastic Max: Customer
inventory planning Monte Carlo . .
search satisfaction level
Almeder and Preusser (2007) SC p I’OC'IUCHOH ar}d MILP DES Min: Total cost
distribution planning
Chen et al. (2010) SC production and MILP DES Min: Total cost
distribution planning
Gu and Rong (2010) §C production gnd MILP NA M?lx Cp.su)mer
mventory planning Monte Carlo satisfaction level
MILP
SC production and Discrete particle swarm .
Varth tal. (2012 NA Min: Total cost
arthanan et al. ¢ ) distribution planning optimization (DPSO) e fotateos
Equipment location and MILP DES Max: Expected
D detal (2012 . . e
urand et al. ( ) production scheduling GA Monte Carlo | demand satisfaction
Nikolopoulou and Ierapetritou SC production and Agent-based )
(2012) distribution planning MILP simulation (ABS) Max: Total cost
SC inventory and DES* Tl.\r/[ mlet('ﬂa] o
Diabat et al. (2013) % mventory an LP Simulated (translation of a
distribution planning . KPIs into an overall
Annealing N,
cost function)
Min: Total cost
. SC distributi d S ) .
Sahay and lerapetritou (2013) 1SrDUHOT am Multi-objective MILP ABS Min: Environmental

inventory planning

GA

impact

Max: Total net

Singh et al. (2014) SC network design MILP ABS present value
Sahay and Ierapetritou (2014) SC distribution E.iIld LP ABS Min: Total Cost
inventory planning
Max: Profit
Sahay and Ierapetritou (2015) SC distribution z.ind MILP ABS Min: Downside risk
inventory planning
Max: service level
SC production and LP
Frazzon et al. (2016) transportation GA DES Min: Tardiness
scheduling !
. . . Min: Total cost
Boulaksil (2016) SC inventory planning LP NA Max: Service level
. . Production planning and LP ) .
Ziametzky and Monch (2016) capacity expansion Simulated Annealing DES Max: Profit
Chiadamrong and SC network design MILP DES+OptQuest Max: profit

Piyathanavong (2017)
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2.5. Research gaps

2.5.1. Gap 1. working capital management and supply chains

Working capital management (WCM) seeks to improve the efficiency of a firm’s operation
through managing its inventory, accounts receivable, and accounts payable. Cash conversion
cycle which is defined as the average days that it takes for a company to convert a dollar
invested in raw material into a dollar collected from customer is one of the widely used key
performance indicators to measure the efficiency of a firm’s working capital management
(Hofmann and Kotzab, 2010). Supply chain entities, e.g. suppliers, manufacturers are willing
to decrease their financial cost through diminishing CCC, however, CCC may be fallen for a
company at the expense of CCC increase for either their upstream or downstream partners or
both. Consequently, single company perspective toward working capital management appears
to be inefficient in supply chain perspective.

Several works studied the CCC in supply chain. For instance, Zhang et al. (2017) considered
the minimization of the supply chain CCC as an objective in a multi-objective mixed integer
linear programming model that was developed to address a supply chain network design
problem. Lind et al. (2012) used an empirical approach to measure the CCCs for the members
of an automotive supply chain during 2006-2008. The results showed that during the studied
period there was no considerable change in the CCC of the supply chain members. Banomyong
(2005) used the balance sheet of the members in a global shrimp supply chain to measure their
CCCs. Theodore Farris and Hutchison (2002) applied a descriptive research and argued that
the lower the CCC of the supply chain members the more successful the supply chain is. They
suggested extending the average accounts payable, reducing the average accounts receivable,
and shortening the production cycles as the strategies to reduce the cash conversion cycle for

the supply chain members.

Hofmann and Kotzab (2010) applied conceptual model building approach and argued that the
CCC metric should be considered from supply chain perspective rather than single company
perspective. They introduced a new metric called collaborative cash conversion cycle (CCCC)
to measure the efficiency of the working capital management in a supply chain. Ruyken et al.
(2011) applied an empirical approach and argued that the minimizing of the CCCs for supply
chain echelons are in conflict, as one firm’s payable conversion period is another firm’s
receivable conversion period. They inferred that the right CCC for every single supply chain

member should be determined considering the extent of responsiveness or efficiency
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of the supply chain, supply chain design configuration, and risk aspect rooted within the supply
chain network. Talonpoika et al. (2014) used the empirical approach and argued that for supply
chains such as ICT and publishing, in which the supply chain members receive advance
payments, CCC may not be an effective tool for measuring the efficiency of working capital.
They introduced modified cash conversion cycle (CCC) as a new metric for measuring the

cycle time of working capital in industries which receive advanced payments.

Much of the literature on working capital management in the supply chain applied the empirical
approaches to measure the CCCs for supply chain members (Theodore Farris and Hutchison,
2002; Ruyken et al., 2011; Lind et al., 2012). Although, modelling approaches such as
simulation and optimisation are under-represented. Moreover, it has been argued that supply
chain members may reduce their cash conversion cycle at the expense of increasing it for their
upstream and/or downstream members (Hofmann and Kotzab, 2010; Ruyken, Wagner and
Jonke, 2011). The literature lacks the studies which applied a practical modelling approach to
manage the trade-offs between conflicting CCC minimizations for supply chain members by
finding the optimal values to the financial and inventory decisions parameters. Finally, the
literature lacks the studies that applied the collaborative CCC (CCCC) as the metric for

measuring the efficiency of the working capital management in supply chains.

To fill the gap in the literature, in chapter 4 of this study, simulation-based optimisation
approach which integrates system dynamics simulation and genetic algorithms is applied to
manage the trade-offs between conflicting cash conversion cycle minimizations for supply
chain members and to minimize the collaborative CCC (CCCC) of the supply chain through
finding the optimal values to the financial decisions parameters including price and unit cost
and inventory decisions parameters including desired inventory, desired supply line, inventory

adjustment parameter, and supply line adjustment parameter.
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Kotzab, 2010;
Ruyken, Wagner and
Jonke, 2011)

Lack of CCCC
application for
measuring the
working capital
management in
supply chains
(Hofmann and
Kotzab, 2010;
Ruyken, Wagner and
Jonke, 2011; Lind et
al., 2012)

Gap1l Current literature Focus of Parameters/variables | Approaches
approach/SC | considered
issues
Working Lack of simulation Managing the | Desired Inventory System
capital and optimisation trad-offs Desired Supply line dynamics
management | modelling (Theodore | between Inventory adjustment
and supply | Farris and Hutchison, | conflicting parameter Multi-objective
chain 2002; Ruyken et al., CCCs Supply line adjustment | optimisation
2011; Lind et al., Minimization | parameter
2012) for supply Price Genetic
chain Unit cost algorithms
Lack of quantitative members
approach for Simulation-
modelling the trade- Minimizing based
offs in CCCs the CCCC of optimisation
minimization the supply
(Hofmann and chain
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2.5.2. Gap 2. Bullwhip effect and cash flow bullwhip

Beer distribution game which first was introduced by Sterman (1989) is a simplified but still
realistic representation of a four-echelon beer supply chain consisting of a retailer, wholesaler,
distributor, and factory. Using the SD simulation, it is illustrated that variations in end customer
demands cannot be handled by the supply chain members which results in excessive inventory
levels for the supply chain members. The inventory levels for upstream members of the supply
chains, i.e., distributor and manufacturer are several of magnitudes larger than the end customer
demand (O’donnell et al., 2006). This undesirable phenomenon is called bullwhip effect which
leads to inefficiencies such as excessive inventory and stock-outs (Lee et al., 1997; Chen et al.,
1999). Demand forecasting, lead times, and ordering policies were identified as the main

contributors to the bullwhip effect (Dejonckheere et al., 2003).

Supply chains are mostly forecast-driven rather than demand-driven (Barlas and Gunduz,
2011). In other words, supply chain members control and replenish inventory based on
historical data. The impact of forecasting methods on the bullwhip effect has been investigated
in several studies. Alwan et al. (2003) study the bullwhip effect in a periodic review inventory
control and replenishment system in which mean squared forecasting method is used for
demand forecasting. They conclude that the bullwhip effect could be mitigated using the mean
squared forecasting method. Zhang (2004) investigated the impacts of three forecasting
methods including moving average, exponential smoothing, and minimum mean squared error
on bullwhip effect in a periodic inventory review system with a first order autoregressive (AR1)
demand process. The findings showed that all the three forecasting methods lead to the
bullwhip effect. Luong (2007) studied the bullwhip effect in a periodic review inventory system
with a first order autoregressive (AR1) demand process in which minimum mean squared
method was used for demand forecasting. He concluded that the bullwhip effect could be

diminished through increasing the value of the demand autocorrelation.

The impact of the lead time on the bullwhip effect was investigated in several studies. Chatfield
et al. (2004) studied the bullwhip effect under stochastic lead time and found that lead time
variability exacerbates variance amplification in the supply chain. Kim et al. (2006) measured
the impact of stochastic lead times in a k-stage supply chain and found that the lead time
variability increases the bullwhip effect. Much of literature regarding the impact of lead time
on the bullwhip effect point out that the lead time and the lead time variability should be
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minimized as the longer lead times and larger lead time variations have an adverse effect on

the supply chain performance (Chen et al., 2000; Agrawal et al., 2009).

Ordering policy is another main contributor to the bullwhip effect which was investigated by
the researchers. Dejonckheere et al. (2004) showed that in an order up to (OUT) inventory
system in which the demand is forecasted using exponential smoothing or moving average, the
bullwhip effect is unavoidable. They proposed a general replenishment rule for order
smoothing. Balakrishnan et al. (2004) emphasize the importance of proposing new
replenishment policies that are able to generate smooth order patterns which in turn can reduce
the demand amplification. Hosoda and Disney (2006) introduced the Generalized order-up-to
policy to mitigate the bullwhip effect in a three-echelon supply chain in which minimum mean
square error method was applied for demand forecasting. The proposed ordering policy added
a proportional controller to the simple order-up-to (OUT) policy. They showed that the
proposed replenishment policy reduces the inventory costs by 10%. Boute et al. (2007)
investigate the impact of ordering policy in a two-echelon supply chain including a retailer and
a manufacturer with independent and identically distributed (1.1.D) customer demand. They
showed that smoothing the ordering pattern at the retailer’s level mitigates the replenishment

lead time and the bullwhip effect.

Previous research on the bullwhip effect has highlighted the existence of this phenomenon and
identified its main causes to mitigate its adverse effects (Alwan et al., 2003; Zhang, 2004;
Luong, 2007). However, there is lack of studies that focus on minimizing the bullwhip effect
by finding the optimal values to the controllable decisions of the supply chain members.
Moreover, previous research does not consider the flow of cash in the bullwhip effect
modelling. To fill the gap in bullwhip effect literature, in chapter 5 of this study, the bullwhip
effect is minimized through finding the optimal values to the inventory decisions of the supply
chain members. In the developed model the flow of cash is considered in addition to the flow

of products.

In addition to the high volatility in inventory levels, the bullwhip effect results in high volatility
in the number of days that it takes for supply chain members to convert resource inputs into
the cash flows collected from the customers known as cash conversion cycle (CCC). In such
circumstances, supply chain members may confront liquidity constraints, as they are not able
to predict the amount of time that it takes to get access to the cash. Tangsucheeva and Prabhu

(2013) named this undesirable phenomenon “cash flow bullwhip” (CFB), which is caused by
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variations in the CCC that occurs throughout financial flows in the supply chain. Cash flow
bullwhip was quantified as the ratio of variability in CCC to variability in the end customer
demand and the bullwhip effect and lead time were identified as its most significant
contributors in an inventory system with the order up to (OUT) replenishment policy
(Tangsucheeva and Prabhu, 2013). Goodarzi et al. (2017) identified rationing and shortage
gaming as the main cause of the CFB in inventory systems with OUT policy, while it was
identified as the least significant contributor to the CFB in Tangsucheeva and Prabhu (2013)
study. Tangsucheeva and Prabhu (2014) argue that the existence of the CFB in the supply chain
networks indicates the need for improving the cash flow forecasting. They presented a
stochastic model to improve the accuracy of cash flow forecasting models within supply chain
networks. The proposed model was developed by integrating Markov chain model in which
payment probabilities were calculated by accounts receivable (AR) aging report (Corcoran,
1978) and Bayesian model whereby the payment probability was extracted from payment
behaviour of every single customer (Pate-Cornell et al., 1990). Sim and Prabhu (2017)
developed a mathematical model to measure the CFB in a two-echelon supply chain including
a supplier and a manufacturer. It was shown that the financing of the supplier by the

manufacturer reduces the CFB in the supply chain.

Previous research on the CFB has identified the causes of this phenomenon (Tangsucheeva and
Prabhu, 2013; Goodarzi et al., 2017). There is a lack of studies that focus on minimizing the
CFB through finding the optimal values to the inventory bullwhip contributors including the
desired inventory, the desired supply line, the inventory adjustment parameter, and the supply
line adjustment parameter. Furthermore, price and unit cost are two decision parameters that
assist the decision maker in controlling variations in the CCC. To fill the gap in CFB literature,
in chapter 5 of this study, the CFB is minimized through identifying the optimal values to the
price, unit cost, and inventory decisions that cause the inventory bullwhip.
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controllable decisions
(Alwan et al., 2003;
Zhang, 2004; Luong,
2007)

Lack of cash flow
consideration into
bullwhip effect
modelling(Balakrishnan,
et al., 2004; Hosoda and
Disney, 2006)

Lack of research on
minimizing the CFB
through finding the
optimal values to the
bullwhip effect
contributors
(Tangsucheeva and
Prabhu, 2013, 2014;
Goodarzi et al., 2017;
Sim and Prabhu, 2017)

Inventory adjustment

parameter

Supply line

adjustment parameter

Price

Unit cost

Gap 2 Current literature Focus of Parameters/variables | Approaches
approach/SC considered
issues
Bullwhip | Lack of studies which Bullwhip effect | Desired Inventory System
effectand | minimize the bullwhip dynamics
cash flow | effect through finding Cash flow Desired Supply line
bullwhip | the optimal values to the | bullwhip (CFB) Multi-objective

optimisation

Genetic

algorithms

Simulation-
based

optimisation
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2.5.3. Gap 3: Inventory planning and working capital management under economic
uncertainty

Inventory planning refers to making a trade-off between efficiency and responsiveness. The
inventory levels at the stock keeping units need to be adequate to meet customer demands and
simultaneously at the minimum level to minimize the inventory holding cost. Inventory
planning includes controlling the inventory levels and replenishing the inventory to respond to

the customer demands quickly while minimizing the inventory levels.

Several studies applied system dynamics to simulate the inventory planning systems. These
studies aim to explore the dynamics of the inventory planning to evaluate system improvement
strategies. Ashayeri and Lemmes, (2006) developed a SD model to investigate how various
demand forecasting methods, different logistics routes, and alternative inventory planning
methods may increase the profitability of a supply chain. Peng et al. (2014) proposed a SD
model for inventory and logistics planning in a post-seismic supply chain. They investigated
the effects of three inventory planning strategies and four demand forecasting methods under
different lead time uncertainties on the system performance. Umeda, (2007) proposed an
integrated simulation framework which combined SD and discrete-event simulation to examine
the efficiency of three inventory planning strategy including push, pull, and hybrid push-pull
and two production planning strategy including make to order and make to stock in a
manufacturing supply chain model presented by Sterman (2000).

Verwater-Lukszo and Christina (2005) developed a SD model to improve inventory and
production management in a batch-wise plant. The developed model aimed to assess the impact
of four inventory and production management tactics including increasing production capacity,
eliminating safety stock, reducing safety stock, and reducing desired service level on the system
performance indicators which were inventory level and service level. Poles and Cheong (2009)
applied SD approach to model and simulate an inventory control system for a remanufacturing
process in a closed-loop supply chain. The study aimed to analyse the impacts of residence
time which was defined as the time period that products stay with customers and changes in
level of company incentives for recycling on total inventory costs in an inventory system with
pull strategy. Belhajali and Hachicha (2013) employed SD simulation to determine the safety
stock for a single-stage inventory system with order-up-to (OUT) policy.

Reyes et al. (2013) employed SD simulation to improve the management of the inventory in a
disaster relief system. They found that the transhipment strategy in which supply chain
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members at the same echelon exchange inventory could reduce inventory costs and improve
service to the disaster victims. Cannella et al. (2015) applied SD simulation to quantify the
impact of inventory record inaccuracy in collaborative supply chains. The results showed that
the detrimental effects of the inventory record inaccuracy in terms of supply chain costs and
service level in upstream supply chain is higher than the downstream supply chain. Schuh et
al. (2015) developed the manufacturing supply chain model introduced by Sterman (2000) to
investigate the impacts of the disturbances on the manufacturing supply chains. Minnich and
Maier (2007) developed a SD model to compare the efficiency and responsiveness of the pull-
based and push-based inventory systems in the high-tech electronics industry. The results
showed that the pull-based inventory planning systems are more efficient and responsive than
the push-based systems providing higher fluctuations in capacity utilization upstream in the

supply chain.

Sanchez et al. (2016) developed a SD model to improve the performance of a production and
inventory control in an automotive supply chain. Applying sensitivity analysis on model
parameters including cycle time, production adjustment time, delivery time, desired raw
material inventory, and desired finished good inventory, the order fulfilment ratio was raised
to 1. Mehrjoo (2014) used SD to assess the risks of delays, forecasting, and inventory in fast
fashion apparel industry. Mashhadi et al. (2015) presented a SD model to evaluate the impacts
of additive manufacturing on configuration of supply chains. The simulation results showed
that the inventory levels for supply chain members in additive manufacturing systems is lower
than the traditional systems. Campuzano-Bolarin et al. (2015) integrated SD and optimisation
to reduce the bullwhip effect and inventory costs in a perishable product supply chain using
different E-business scenarios.

Sheehan et al. (2016) applied SD simulation to mitigate the waste of raw material and finished
good inventory in closed-loop supply chains. Lot size, product variety, process choice, and
throughput were identified as the driving factors in industrial waste production and waste
reduction policies were sought through modifying the values to the driving factors. Schmelzle
and Tate (2015) employed SD modelling to investigate the impact of macroeconomic factors
including interest rate, exchange rate, and inflation rate on inventory management policies.
They concluded that keeping low levels of inventory in supply markets with high currency
devaluation rates decreases the total cost of the supply chain. Shahi (2016) integrated SD
simulation and OptQuest optimisation solver to determine the minimum and the maximum

inventory levels in an order-up-to inventory control and replenishment system.
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Much of the literature on the application of the SD modelling for inventory control and
replenishment focuses on evaluating the impacts of various policies on improving the system’s
performance in terms of efficiency and responsiveness. The effects of the improvement policies
on the system’s performance are measured through modifying the values to the decision
parameters of the model. In other words, by applying SD modelling, the modeller is solely able
to compare the effects of varied policies, i.e., different values of the controllable parameters,
through performing what-if analysis which may not be an effective strategy particularly, when
the decision parameters are continuous such as inventory decisions. Therefore, incorporating
optimisation algorithms into the SD simulation is inevitable when the modeller aims to identify

the optimal values to the continuous decision parameters.

To fill the gap in inventory planning using SD simulation, In chapter 6 of this study, the genetic
algorithm which is a metaheuristic and is an effective tool for optimisation of the continuous
parameters (Muhlenbein and Schlierkamp-Voosen, 1993) is applied to identify the optimal
values to the inventory decisions parameters such as inventory and supply line adjustment

parameters.

Working capital management from supply chain perspective relates to managing accounts
receivable, accounts payable, and inventories through cooperation and coordination among
supply chain members (Gelsomino et al., 2016). Several studies incorporated receivables and
payables into inventory planning problem by using the trade credit policy. Ravichandran (2007)
developed a dynamic programming model to address an inventory planning problem. The
proposed model considered the constraints on receivables and payables in addition to the
inventory and order fill rate constraints. Due to the complexity of the model, the simulation
was applied to determine the optimal ordering policies for supply chain members so as to
maximize the profit of the supply chain, minimize the inventory levels of the members, and
minimize the working capital for the supply chain members. Teng (2009) developed a
mathematical model which integrated receivables and payables management into an inventory
planning problem. The objective of the developed model was to identify the optimal ordering
policy for a retailer who received trade credit by its supplier and offered either partial trade

credit or full trade credit to its customer depending on their debt payment history.

Huang (2007) developed a mathematical model to identify the optimal inventory cycle time
and order quantity for a retailer which was offered partial permissible delay in payment by its

supplier when its order quantity was smaller than a predetermined quantity. Huang and Hsu
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(2008) developed a mathematical model to determine the optimal ordering policy for a retailer
that had access to the full trade credit offered by its supplier while he offered partial trade credit
to his customer. Moussawi-Haidar and Jaber (2013) presented a mathematical model that
incorporated the management of receivables, payables, and cash into an inventory planning
problem in a two-echelon supply chain including a retailer and a supplier where the delayed
payment was allowed by the supplier. The objective of the developed model was to determine
the optimal order size, payment time, and maximum cash level to keep in account for the

retailer to minimize the inventory and financial costs.

Ho et al. (2008) presented a mathematical model to address an integrated supplier-buyer
inventory planning problem in which the supplier offered the retailer a two-part trade credit
policy. If the buyer paid within a specified time period, he was offered cash discount, otherwise
he needed to pay the full purchasing price before another specified period which was larger
than the first specified period. The objective of the developed model was to identify the optimal
pricing, ordering, shipping and payment policy to maximize the total profit of the supply chain.
Teng and Chang (2009) developed a mathematical model to determine the optimal
replenishment decisions for a retailer in presence of two-level trade credit which implied that
the trade credit offered by supplier to the retailer differed from the trade credit offered to the
customer by the retailer. Liao (2008) developed a mathematical model based on economic
order quantity model to identify the optimal replenishment policy for a retailer that received
trade credit from its supplier and provided trade credit to its customer. Mahata (2012)
developed an economic order quantity-based inventory model to determine the optimal
inventory policy for a retailer that was provided with full trade credit by its supplier and offered
partial trade credit to its customers.

Much of the literature on inventory planning under trade credit applied mathematical modelling
approaches, and the simulation-based modelling remains underrepresented. Moreover, cost
minimization or profit maximization are the dominant objective function in the developed
models in the literature, while the literature lacks the studies that manage the trade-off between
profitability and liquidity through developing the multi objective models. Finally, the literature
lacks the studies that consider uncertainties in economic parameters such as demand and
interest rates. To fill the gap in the inventory planning under trade credit literature, in chapter
6 of this study, a simulation-based optimisation model which integrates SD simulation and a
genetic algorithm is developed to manage the trade-off between profitability and liquidity

under economic uncertainty.
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and liquidity
in inventory
planning
under trade
credit models
(Huang, 2007;
Huang and
Hsu, 2008;
Teng and
Chang, 2009)

Ignoring the
economic
uncertainty in
the inventory
planning
under trade
credit problem
(Ravichandran
, 2007; Liao,
2008; Teng,
2009)

2.5.4. Gap 4: Strategic supply chain planning and supply chain finance under economic
uncertainty

As explained in section 2, supply chain design refers to strategic decisions such as network
design and supplier selection. While, supply chain planning is related to the tactical decisions
such as production and inventory planning. Strategic supply chain planning integrates the
strategic and tactical decisions. For instance, integrating a network design and an inventory
planning problem is considered a strategic supply chain planning problem. Strategic supply
chain planning models show more realistic viewpoint of supply chain decisions; as different
decisions in the supply chain are related to each other and deciding on them in an integrated
manner results in better performance. Besides, application of the strategic supply chain
planning models reduces unexpected events such as increased cost through the supply chain
network (Lainez et al., 2008; Gupta and Dutta, 2011).
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Several works incorporated financial flow modelling into the strategic supply chain planning
problem. Melo et al. (2006) developed a MILP model to address an integrated supply chain
network design and inventory planning problem considering budget constraints. The developed
model aimed to identify the optimal network structure, flow of goods in the network, inventory
levels held at the facilities, and the amount of capacity transferred between the facilities.
Naraharisetti et al. (2008) developed a MILP model to address a strategic supply chain planning
problem considering budget constraints. The objective of the developed model was to
maximize the net present value of the total assets through determining the optimal values to
the flow of products in the network, inventory decisions, open/close decisions of the facilities,

and the loans.

Zhang et al. (2017) presented a multi-objective MILP model to formulate a strategic supply
chain planning problem for a multi-source, multi-product, multi-stage supply chain. The
developed model considered minimizing the cash conversion cycle in the supply chain network
in addition to minimizing the total cost and maximizing the customer service level. The
developed model aimed to identify the optimal network structure, flow of products in the
network, and the inventory levels at the facilities. Puigjaner and Lainez, (2008) presented an
SBO framework to incorporate financial flow planning into a supply chain network design and
distribution planning problem under demand, price, and interest rate uncertainties. The
objectives of the developed model were to maximize the change in equity and minimize the
environmental impact through identifying the optimal level of current assets, fixed assets, and
liabilities in addition to the network design and distribution planning decisions such as the

location of the facilities and the flow of products in the network.

Longinidis and Georgiadis (2011) developed a MILP model to incorporate balance sheet
equations and financial ratios constraints into a strategic supply chain planning problem under
demand uncertainty. The proposed model aimed to maximize economic value added of the
supply chain network through determining the optimal values to the number, location and
capacity of the warehouses and distribution centres in the supply chain network, the flows of
materials in the network, the inventory levels at facilities, and the production rates at the plants.
Nickel et al. (2012) developed a MILP model to incorporate financial flow modelling in a
strategic supply chain planning problem under demand and interest rates uncertainties. The
objective of the developed model was to identify the optimal values to the location of the
facilities in the network, investment choices, loans, inventory levels at the facilities, and the

flow of products within the network to maximize the total financial benefit.
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Longinidis and Georgiadis (2013) presented a mixed integer nonlinear programming (MINLP)
model to make a trade-off between financial performance and credit solvency within a strategic
supply chain planning problem under economic uncertainty. Economic value added (see
Stewart lii (1994)) and Z-score (see Altman (1968)) were applied to measure the financial
performance and credit solvency, respectively. The developed model determined the optimal
values to the level of fixed assets, current assets, liabilities, and equity in addition to the optimal
number, location and capacity of the warehouses and distribution centres in the supply chain
network, the flows of materials in the network, the inventory levels at the facilities, and the

production rates at the plants.

Ramezani et al. (2014) developed a MILP model which considered the financial aspects of the
supply chain in addition to the operational aspects to address a strategic supply chain planning
problem. The developed model aimed to find the optimal values to the short-term liabilities,
optimal level of current assets, fixed assets, and liabilities in addition to the location of the
facilities, inventory levels at the facilities, and the flow of products in the network so as to
maximize the change in equity. The results showed that the change in equity in the developed
model was higher than in the traditional model in which the financial decisions are made after
deciding on the operational decisions. Cardoso et al. (2016) developed a bi-objective MILP
model which incorporated financial risk measures into the design and planning of closed-loop
supply chains under demand uncertainty. The objectives of the developed model include
maximizing the supply chain expected net present value and minimizing the financial risk. The
financial risk is measured through applying four different risk measures including VaR, CVaR,
variability index, and down-side risk. The e-constraint model was used to solve the developed

model.

Yousefi and Pishvaee (2018) presented a MILP model which integrated physical and financial
flows within a strategic supply chain planning problem under exchange rate uncertainty. The
developed model aimed to maximize the profitability of the supply chain through identifying
the optimal financial flow decisions including the level of current assets, fixed assets, and
liabilities in addition to the optimal physical flow decisions including the number of required
suppliers and distribution centres in the supply chain network, the amount of raw material to
be purchased by the manufacturer, the flow of material in the network, and the optimal
inventory levels should be held at each supply chain entity. The profitability of the supply chain

was measured by the economic value added (EVA).
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Previous research on integrated strategic supply chain planning and supply chain finance
mostly applied MILP modelling, while the hybrid analytical-simulation approach which are
more efficient than the analytical approaches in capturing the nonlinearities, delays, and
feedback loops exist in such problems have remained underrepresented. Previous studies take
into account a limited number of uncertainties, mostly uncertainty in demand, while there is
lack of studies that consider a wide range of uncertainties in the economic parameters. To fill
the gap in the literature, in this study, a hybrid analytical-simulation model is developed to
address a strategic supply chain planning problem under economic uncertainty. The strategic
supply chain planning problem includes supplier selection, network design, inventory

planning, and asset-liability optimisation.

Table 2.10. Strategic supply chain planning and supply chain finance literature
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Zhang et al.,
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Chapter 3. Simulation-based optimisation and hybrid
analytical-SBO

3.1. Introduction

As the literature reviews presented in the previous chapter concluded, there is a great lack of
research involving the integration of system dynamics and the genetic algorithms in the SBO
literature and there is also a considerable need for integration of the SBO and MILP in the
hybrid analytical-simulation literature. In this chapter, firstly, an introduction to the system
dynamics and optimisation techniques are provided and the selection of the genetic algorithm
as the optimisation technique in this study is justified. Later on, the integration of the system
dynamics simulation and the genetic algorithm in the form of simulation-based optimisation
framework is discussed. Finally, the integration of the SBO and MILP in the form of the hybrid

analytical-simulation framework is elaborated.
3.2. System Dynamics

System dynamics (SD) is a simulation technique for modelling complex, non-linear, and
dynamic systems developed by Jay W. Forrester during the mid-1950s. According to
Richardson (1991), SD is a computer-aided approach to policy analysis and design of any
dynamic system characterized by independence, mutual function, information feedback, and
circular causality. SD captures the dynamical behavior of the system through considering
information feedbacks and delays of the model (Angerhofer and Angelides, 2000). SD
modelling enables users to evaluate the behaviour of the system and its response to various
policies. Supply chain processes, information, strategies, and organizational limits can be
qualitatively described by the SD modelling. Supply chains are complex systems comprise
multiple autonomous entities which can be characterized by a stock and flow structure for
acquisition, storage, converting inputs into outputs, and the decision rules governing these
flows (Sterman, 2000). SD is an applicable approach for modelling and analysing the supply
chains as the existing flows in the supply chain networks, e.g. information, material, and cash
flows, create important feedbacks among the supply chain agents (Georgiadis, Vlachos and
lakovou, 2005). SD modelling process can be subdivided into three steps. First, the generation
of a causal loop diagram, which is translated into a stock and flow diagram in the second step.
The final step includes the formulation of a mathematical system of differential equations
(Biellich et al., 2014). In order to transfer the causal loop diagram into a simulation-capable

stock and flow diagram, five central building blocks, namely; stocks, flows, auxiliaries,
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feedbacks, and time delays, are defined. The stocks indicate the current state of the system and
are only changed through their in-and outflows. The flows, on the other hand, are determined
by various model variables that change the flows and consequently the stocks. The auxiliary is
attributed to all other model variables which cannot be defined as stocks and flows. The
corrective measures taken by the system to bridge the gap between the actual value and the
desired value of a variable are known as feedback loops (Campuzano and Mula, 2011). The
time delay is defined as a process whose output lags behind its input (Sterman, 2000). An SD
stock and flow model representing a simple capital injection process, utilizing the building
blocks is depicted in Figure 3.1.

The stock in this process is the system’s cash level where the inflow of cash which is as the
result of products selling and the outflow of cash triggers by purchasing costs increase and

decrease the cash level.

Cash #’Q

Cash Inﬂow Cash Outflow

Initial Cash Feedback Loop
Inflow Rate Desired Cash

Cash Gap/

Figure 3.1. A simple SD stock and flow model with feedback loop and delay

The initial cash inflow rate and the cash gap variable constitute the flow of cash injection into
the cash pool, by defining the cash inflow variable. The cash gap variable is part of the feedback
loop which takes corrective measures to keep the cash at a desired level, by increasing or
decreasing the cash gap. There is a delay between identifying the cash gap and bridging the
gap through the cash inflow rate. As explained, the stocks accumulate their flows where the
net flow, e.g., the inflow less the outflow, into the stock is the rate by which the stock is
changed. The cash stock is defined by integral Equation 3.1, where Cash,_, represents the cash
level in the previous time period, andcash, ,Cash inflow,, Cash outflow, represent the variable

values at current time ¢

Cash; = Cash;_, + (Cash inflow; — Cash outflow;) (3.1)
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In chapters 4-7 of this study, the stock and flow structure of the system dynamics simulation
modelling is applied to represent the flow of products, information, and cash within distribution
and manufacturing supply chains. The state of each supply chain system is indicated by stocks
such as the inventory of the raw material, the inventory of the products, and the inventory of
cash. The change in the stocks is represented by flows such as order delivery, and order
payment. The parameters that remain unchanged during the simulation time such as payment
policy, i.e., the amount of cash payment at the time of order placement, and desired level of
inventory are shown as auxiliaries. The corrective measures that are taken by the supply chain
systems to bridge the gap between the auxiliaries such as the desired inventory and the desired
cash with their actual values are indicated by feedback loops. Finally, the time delays exist in
the supply chain systems such as the time delay between placing an order and receiving of the
order known as the distribution lead time and the time delay between shipping of an order and

receiving of the payment are shown by delay functions.

3.3. optimisation techniques

Optimisation is defined as the determination of optima which is maxima or minima in a search
space using a fitness function (cost function). The main objective of the optimisation is to
identify the singular global optimum in a search space that may contain multiple local optimal.
There main approaches to the optimisation include analytical optimisation, exhaustive

searching and natural optimisation.
3.3.1. Analytical optimisation

Analytical optimisation includes using differential calculus to minimize a cost function (fitness
function) and to find the global optimum. If the cost function contains one variable, the first
derivative of the cost function is set to zero and the variable value is determined. If the second
derivative of the cost function in the determined point is less than zero, the determined point is

a maximum. Otherwise, it is a minimum (Lawden, 2006).
3.3.2. Exhaustive searching

Exhaustive searching approach determines the global optimum by extensively investigating the
cost function surface (Aliev and Larin, 1998). In other words, the extensive searching approach
performs an extensive survey of the surface to gain an overall perspective on the entire
topological layout of the cost function surface. Using this approach, each possible solution

within the entire search area is evaluated the global optimum is identified after complete
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analysis. As in the exhaustive searching approach, all possible solutions need to be examined,
this method requires a considerable amount of time to identify the global optimum. To make
the exhaustive approach more effective in terms of solving time, a variation of this approach
that uses branch and bound heuristics, is applied which is called semi-exhaustive search
approach. This approach considers the positions of neighbouring solutions and requires less
evaluation. Heuristic methods are employed to determine the number and proximity of the

neighbours to be used in the semi-exhaustive search approach (Yoo, 2006).
3.3.3. Natural optimisation

Natural optimisation approaches use the mechanisms that exist in our natural surroundings to
identify the global optimum in the search space. There are many nature inspired algorithms
such as genetic algorithms (GAs), particle swarm optimisation (PSO), ant colony optimisation
(ACO), and simulated annealing (SA) to name a few. Some of widely applied nature inspired

algorithms are explained as follows.
3.3.3.1. Simulated annealing

Simulated annealing algorithm is inspired from annealing process whereby metal is heated to
melting point and is then very slowly cooled. The slow cooling allows the atoms to line up and
form a crystal that is the state of minimum energy in the system. The rate by which cooling
occurs is of paramount importance as a rapid cooling results in a non-crystalline meta-stable
glass. The formation of the perfect crystal is analogues to finding the global optimum in an
optimisation problem and the formation of non-crystalline meta-stable glass is analogous to
mistake a local minimum for the global optimum. Similar to the annealing process in which
the temperature is set to high in the early stages of the process for faster melting, simulated
annealing algorithm initially wanders toward a broad region of the search space that contain
good solutions. Similar to the annealing process in which after the melting the temperature is
slowly reduced for greater stability, simulated annealing algorithm thoroughly examines the
sections of the search space that provide better solutions than the other sections to identify the
global optimum. This approach guides the optimisation to find the best valley in the search
space before searching for the lowest point within the specific valley which is the global
optimum. Simulated annealing approach is used for solving combinatorial optimisation

problems in which the search space is discrete (Van Laarhoven and Aarts, 1987).
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3.3.3.2. Particle swarm optimisation

Particle swarm optimisation is inspired from the swarming behaviour of birds and fish. It solves
an optimisation problem by having a population of candidate solutions knowns as particles and
moving these particles in the search space according to their best known positions and the best
known position of the entire swarm. When improved positions are discovered, they guide the
movements of the swarm. By repeating the process it is hoped but not guaranteed that a
satisfactory solution will be identified (Kennedy and Eberhart, 1995). Particle swarm
optimisation algorithm does not require the optimisation problem to be differentiable as
opposed to the classic optimisation methods. Although, it cannot guarantee an optimal solution
is ever discovered. As the decision parameters that are required to be optimised in this study
are continuous, particle swarm optimisation can be used to obtain the optimal values to the

decision parameters.
3.3.3.3. Ant colony optimisation

Ant colony optimisation algorithm is inspired by ants behaviour. In the natural world, ants walk
randomly in search of food and upon finding it go back to their colony while laying down
pheromone trails. Other ants that find such a path are likely to follow the trail in an attempt for
finding food rather than travelling randomly. If the ants which followed the trail are successful
at finding the food, they reinforce the pheromone trail while returning to their colony. Over
time the pheromone trail will start to evaporate, thus reducing its attractiveness. The longer it
takes for an ant to travel down the path and back again, the longer it takes for the pheromones
to evaporate. The evaporation of the pheromone avoids the convergence to a locally optimal
solution. Ant colony optimisation algorithm is used for solving combinatorial optimisation
problems. As the decision parameters that are required to be optimised in this study are
continuous, ant colony optimisation is not a viable method for obtaining the optimal values to
the decision parameters.

3.3.3.4. Genetic algorithms

Genetic algorithms (GAs) are computational algorithms inspired by Darwinian evolutionary
theory which can be called in short as “survival of the fittest” (Darwin, 1859). In GAs it is
assumed that fittest solutions survive and their characteristics are transferred from one
generation to the next (Duggan, 2008). GAs do not require derivative information found in
analytical optimisation, work well with numerically generated data, experimental data or

analytical functions, possess the ability to jump out of local minimum, and are able to optimise
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continuous and discrete parameters, particularly the continuous parameters (Lu et al., 2009).
Consequently, GAs are an efficient and robust method of obtaining global optimisation in
complex optimisation problems (Johnson and Vonk, 1997). GAs are able to optimise
conflicting objectives simultaneously; the population is composed of individuals from different
sectors of the cost function surface that enables the GA algorithm to search over large areas of
the search space in parallel. This attribute makes the Gas a perfect fit for multi-objective

optimisation problems (Streichert, 2002).

The GA is a well-suited optimisation algorithm for this study as the decision parameters that
are required to be optimised in this study are continuous and the studied optimisation problems
are multi-objective. In chapters 4-7 of this study, the GA is applied to find the optimal values
to the decision parameters, i.e., auxiliaries, of the system dynamics simulation models such as
inventory and financial decisions parameters while making trade-offs between conflicting

supply chain objectives such as simultaneous bullwhip effect and total cost minimization.

To optimise SD models using GAs, each solution known as chromosome is represented by an
array of elements, where each position in the array pertains to a possible parameter value. A
solution pool named population is formed by a set of chromosomes. The algorithm starts with
setting up a population of random possible solutions. Then, the chromosomes are evaluated
based on the objective function to obtain the fitness of the solution. A fitness value shows that
how good each solution is in satisfying objective functions. Applying the rule of survival of
the fittest, strongest solutions are selected from the population. Subsequently, solutions with
higher fitness are combined to produce new solutions by performing crossover operator. These
solutions are known as parent solutions. To ensure maintaining variety in the overall
population, new solutions may then be subjected to small variations from parent solutions
called mutation operator. Each population then represents a generation, and the process
continues until predefined stopping criteria is met, such as convergence of fitness over
generations or reaching maximum number of generations (Lu et al., 2012). A brief outline of

how GA derives optimal parameter values is illustrated in Figure 3.2 and outlined below.

Initialization. Initially many individual solutions are randomly generated to form an initial
population. The population size depends on the nature of the problem, but typically contains
several hundreds or thousands of possible solutions. Traditionally, the population is generated
randomly, covering the entire range of possible solutions (the search space). Occasionally, the

solutions may be "seeded" in areas where optimal solutions are likely to be found.
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Evaluation. Every solution is then evaluated through simulation based on an objective(s), e.g.
total cost of the supply chain, and is assigned a fitness value. The fitness value for the solution
is computed using the objective function(s) value(s), e.g. the lower the total cost of the supply
chain, the higher the fitness value of the solution.

Selection. During each successive epoch, a proportion of the existing population is selected to
breed a new generation. Individual solutions are selected through a fitness-based process,
where fitter solutions (as measured by a fitness function) are typically more likely to be
selected. Certain selection methods rate the fitness of each solution and preferentially select
the best solutions. Other methods rate only a random sample of the population, as this process
may be very time-consuming. Most functions are stochastic and designed so that a small
proportion of less fit solutions are selected. This helps keep the diversity of the population
large, preventing premature convergence on poor solutions. Popular and well-studied selection

methods include roulette wheel selection and tournament selection.

Reproduction. This process includes generating a new population of solutions from those
selected through genetic operators: crossover and mutation. Crossover operator is used to take
two solutions from the mating pool, and combines elements of those solutions to produce two
new solutions: the procedure for this contains: (1) identifying a random crossover point on the
two selected parent chromosomes and mark the two solutions at this point, (2) joining the first
half of the first solution with the second half of the second solution also the first half of the
second solution with the second half of the first solution to produce first and second child,
respectively, and finally (3) replace parent solutions with the newly defined solutions (Duggan,
2008). Mutation operator is another genetic operator makes random changes to the solutions to
deter stuck on a local optimum. Mutation operator generates a new solution by randomly
changing one or more elements of the selected solution, namely, the value of one of the control
parameters. The procedure for mutation involves: (1) selecting a small number of solutions for
each generation by random, (2) selecting one or more elements of that solution randomly, and
(3) generating a new value for the chosen elements considering the highest and lowest possible

values for each parameter (Duggan, 2008).

Iteration and termination. The old population is replaced with the new population and cycle
repeats until an optimal or near optimal solution to the problem appears in the population.
Common terminating conditions are: a solution is found that satisfies minimum criteria, fixed

number of generations reached, allocated budget (computation time/money) reached, the
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highest ranking solution's fitness is reaching or has reached a plateau such that successive
iterations no longer produce better results, or combinations of the aforementioned conditions.
To putitin anutshell, the overall solution set becomes fitter through each generation and finally

converges to an optimum.

Fandom initial population
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Figure 3.2. General GA process
3.4. Simulation-based optimisation

SBO is the process of obtaining optimal control parameters, i.e., input parameters, where the
objective functions are examined through the output results of the simulation model (Olafsson
and Kim, 2002). The SBO process has been depicted schematically in Figure 3.3. The
optimisation model encompasses optimisation algorithms, optimisation objectives, and
constraints, whereas the simulation model depicts the system environment and considers

governing dynamics such as uncertainties, time delays, feedback loops, and complex
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relationships (Aslam, 2013). The two models are related through defined input and output
parameters. SBO is an iterative process which mostly is launched during the optimisation
modeling process by generating initial values for the input parameters in the simulation model
(supply chain decision variables). The simulation model is then run using inputted values to
evaluate system performance. The performance measures are then fed back into the
optimisation model. Based on this feedback a new set of decision variables are generated and
inputted into the simulation model for evaluation (Aslam, 2013). This iterative process
continues until a stop criterion has been met, such as performing a defined number of
evaluations, elapsing a specific amount of time or any user-specified criterion (Syberfeldt,
2009). The SBO integrates the advantages of the simulation and optimisation modelling.
Simulation models are powerful tools to model the complexities and incorporate the dynamic
behaviour of supply chains. However, they are not able to determine optimal values to the
decision parameters (Abo-Hamad and Arisha, 2011). On the other hand, optimisation models
can identify the optimal values to the decision parameters. Although, they are not as efficient
as simulation models in capturing the dynamics exist in supply chain networks including the
uncertainties, time delays, feedback loops, and complex relationships. In the SBO framework,

firstly a supply chain network is represented through simulation modelling to take into account

its dynamic behaviour, and then integrated with optimisation methods to acquire optimal
solution sets (Aslam, 2013).

Input
values

Optimization: Simulation:

. Optimization objectives | . System environment

. Constraints on decision . Uncertainties
parameters . Complex relationships
. Optimization algorithms

Output
values

Figure 3.3. Simulation-based optimisation process
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In chapters 4-6 of this study, the simulation-based optimisation (SBO) methodology is
employed to integrate system dynamics simulation models and optimisation models. The
system dynamics simulation models represent the dynamic behaviours of the studied supply
chains and the optimisation models include the optimisation objectives such as total cost
minimization, the constraints on the decision parameters i.e., auxiliaries, of the system
dynamics models, and the genetic algorithm that is applied for identifying the optimal values

to the decision parameters.
3.5. Hybrid analytical-SBO

The SBO technique merely enables the modeller to identify the optimal values to the decision
parameters which are the input parameters to the simulation model. Although, it is not able to
determine the optimal values to the decisions such as production level which cannot be
formulated as input parameters to the simulation model. These decisions are states and flows
in the simulation model. The analytical-simulation modelling enables the modeller to identify
the optimal values to the decision variables, i.e., states and flows, in addition to the decision
parameters, i.e., input parameters or auxiliaries. The hybrid analytical-simulation modelling
consists of constructing independent optimisation and simulation models and then integrating
the solution strategy through connecting the independent models. In this study, the SBO is the
simulation model. Therefore, the hybrid analytical-simulation modelling is called hybrid
analytical-SBO modelling. The process of the hybrid analytical-SBO modelling is illustrated
in Figure 3.4. The optimisation model encompasses optimisation objectives and constraints on
decision variables, while the SBO model contains the simulation model, constraints on decision
parameters, and optimisation algorithms. The two models are connected through defined input
and output parameters. The hybrid analytical-SBO modelling is an iterative process which is
launched by considering initial values for the capacities in the optimisation model. The
optimisation model is then solved and the optimal values to the decision variables are
determined and inputted into the SBO model. The SBO model is then run and the optimal
values to the capacities in the optimisation model, which are the input parameters to the SBO
model, are identified and outputted into the optimisation model to generate a new set of
decision variables. This iterative process continues until the difference between the value of
the objective function(s) obtained from the optimisation model and the value of the objective
function(s) obtained from the SBO model is less or equal to a user-specified difference

tolerance level.
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The hybrid analytical-SBO integrates the advantages of the SBO and optimisation modelling.
SBO models are powerful tools to incorporate the dynamic behaviour of supply chains and to
determine the optimal values to the decision parameters. Although, they are not able to
determine the optimal values to the decision variables.

On the other hand, optimisation models are capable of identifying the optimal values to the
decision variables. While, they are not as efficient as SBO models in capturing the dynamics
exist in supply chain networks including the uncertainties, time delays, feedback loops, and
complex relationships and also identifying the optimal values to the decision parameters.
Optimizing the decision parameters in the optimisation models converts them into non-linear
models and increases the computational time. In the hybrid analytical-SBO framework, firstly
the optimal values to the decision variables are determined by optimisation modelling which
takes into account the constraints on the decision variables and then integrated with the SBO

modelling which incorporates dynamics in the supply chain network to identify the optimal
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. Optimization algorithms
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Figure 3.4. Hybrid analytical-SBO process

In chapter 7 of this study, the hybrid analytical-SBO approach is applied to integrate a mixed-
integer linear programming (MILP) model and an SBO model. The MILP contains the
optimisation objective that is maximizing the economic value added (EVA) and the constraints
on the decision variables, i.e., flows and stocks, of the SBO model. The SBO model includes

the system dynamics simulation model, which represents the dynamic behaviour of the studied
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supply chain and the genetic algorithm that is applied for identifying the optimal values to the

decision parameters such as the desired inventory.
3.6. Conclusions

This chapter presents an introduction to the simulation approach that was used in this study,
i.e., SD, and justifies the selection of the GA as the optimisation algorithm, i.e., for solving
multi-objective optimisation problems in this study. Thereafter, the integration of simulation
models and optimisation algorithms within the SBO framework and the integration of the
optimisation and SBO models within the hybrid analytical-simulation framework are clarified.
The SBO framework is merely capable of identifying the optimal decision parameters. While,
using the hybrid analytical-SBO framework the optimal decision variables are determined in
addition to the optimal decision parameters.
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Chapter 4. Simulation-based optimisation of collaborative
working capital management within supply chain

4.1. Introduction

Working capital management (WCM) integrates the product and cash flows for supply chain
members. The WCM seeks to improve the efficiency of a firm’s operation through managing
its inventory, accounts receivable, and accounts payable. Cash conversion cycle (CCC) which
is defined as the average days that it takes for a company to convert a dollar invested in raw
material into a dollar collected from customer is one of the widely-used key performance
indicators to measure the efficiency of a firm’s working capital management. A low CCC
implies that the company has lower financial cost to fund its business operation. Supply chain
entities, e.g. suppliers, manufacturers are willing to decrease their financial cost through
diminishing CCC, however, CCC may be fallen for a company at the expense of CCC increase
for either their upstream or downstream partners or both. Consequently, single company
perspective toward working capital management appears to be inefficient in supply chain
perspective.

In this chapter to manage the working capital from supply chain perspective two optimisation
models are developed. The first optimisation model is a multi-objective model that aims to
minimize the cash conversion cycle (CCC) of supply chain members and the second
optimisation model is a single-objective model that aims to minimize the collaborative cash
conversion cycle (CCCC) of the supply chain. A simulation-based optimisation approach,
which integrates system dynamics (SD) simulation and the genetic algorithm (GA), is applied
to fulfill the objectives by identifying the optimal values to the inventory and financial
decisions parameters.

The rest of the chapter is organized as follows. Section 4.2 describes the model that was
developed to measure the CCC for the supply chain members, the CCCC of the supply chain,
and the proposed SBO methodology for reducing the CCC of the members and the CCCC of
the supply chain. In section 4.3, the beer distribution game that is the studied supply chain is
elaborated and two optimisation models for minimzing the CCC and the CCCC are developed.
Section 4.4 illustrates the applicability of the proposed SBO approach and compares its
performance with system dynamics simulation. Finally, concluding remarks are presented in

section 4.5.
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4.2. Methodology

4.2.1. Ordering policy

Amongst various types of replenishment policies (see Silver et al., 1998; Zipkin, 2000), Order-
Up-To (OUT) policy and reorder point-order quantity or (r,Q) model are the most commonly
used replenishment policies. In this study OUT policy is considered as the ordering policy. In
this system, the inventory position is determined by (= amount on-hand + inventory on-order
— backlog). The inventory position is reviewed periodically (e.g. daily, weekly, monthly) and
an order is placed to enhance inventory level to an OUT level (S) that defines order quantities
(Towill, 1982). Therefore, the values to the two decision variables need to be recognized: (1)
inventory position review period, and (2) the OUT level (S). The OUT level is determined by
the sum of expected demand during risk period (= lead time+ review period) and a safety stock
to satisfy higher than expected demands during the risk period. To simplify, in this study, the

review period is assumed to be equal to one week. Therefore,
S, = Dt + K.gTv*1 (4.1)

T, represents lead time, D'»** is an estimate of mean demand over T, + 1 periods, K is a
constant chosen to meet a desired service level, and ™1 is an estimate standard deviation of
forecast error over T, + 1 periods.

The exponential smoothing method used to forecast the demand. Accordingly, the ordering

policy is defined as follows:

0; = S; — inventory position; (4.2)

The order at the end of period t (0, ) equals to the difference between OUT level and inventory
position. The inventory position is determined by the sum of net inventory (NI) and inventory
on order (SL). The net inventory equals to the value of inventory on hand (INV) minus backlog
(B). The safety stock level is replaced with desired net inventory (DNI). Subsequently, (4.2)

can be rewritten as follows:

St inventory position

0, = DF, (T, + 1) + DNI — (NI, + SL,),
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Ot = DFt + (DNI - (INVt - Bt)) (TpDFt - SLt),
Deman?]?:)recast AINV ASL
where DF, = SMOOTH(D;,,y),

The T,,DF, is assumed to be desired supply line or DSL. As the gap between the OUT level
(St) and the current inventory is not replenished entirely in a review period, smoothing

replenishment rules should be used to give an appropriate weight (i.e.,a and B) to the gap terms
(Disney et al., 2007).

0, = DF, + a(DNI — (INV, — B,)) + B(DSL — SL,),
0, = MAX(0,0,) (4.4)

In (4.4), desired net inventory (DNI), desired supply line (DSL), inventory proportional
parameter (o), and inventory on order proportional parameter (B) which are known as
controllable parameters; allow us to amend the dynamic behavior of the supply chain.

Moreover, it is ensured that the place orders by supply chain members are non-negative.

4.2.2. Working capital management

Working capital management involves managing inventories, accounts receivable, and
accounts payable to ensure capability of a firm to continue its operation. The objective of
working capital management is to reduce current assets and also extend current liabilities in
order to minimize the capital tied up in the company’s turnover process (Hofmann and Kotzab,
2010). To manage working capital effectively, firstly metrics which are used for measuring its
efficiency should be identified. Cash conversion cycle (CCC) is one of the key indicators for
measuring the efficiency of working capital management which is defined by (4.5) through
adding days inventory outstanding (DIO) and days sales outstanding (DSO) minus days
payable outstanding (DPO). The days inventory outstanding (D1O) is measured by dividing
average inventory value into daily cost of goods sold (COGS). The days sales outstanding
(DSO) is defined as average accounts receivable divided by daily revenue and the days
accounts payable outstanding (DPO) is the ratio of average accounts payable and daily COGS.
CCC indicates the length of time that it takes for a company to convert resource inputs into

cash flows collected from customers.
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CCC = Average Inventory = Average Account receivable  Average Account Payable 45
- coGs; Revenue/ - coGs; ( : )
365 365 365

DIO DSO DPO

To determine DIO (4.6), the value of average inventory which is the product of inventory
position (1) and sales price per unit (sp) is divided by daily cost of goods sold (COGS) which
is measured by multiplying unit cost (uc) and the average demand (D). Dividing COGS by 365
assures the expression of DIO in days since both average inventory and COGS are expressed
in currency unit (£). Therefore, DIO can be calculated as:

I

D10 =365 () (5) (4.6)

D

In (4.7), account receivable (AR) can be expressed in terms of demand, backlog (B) and

inventory level (1) as follows:

AR = mmin(sp(D + B), spl) 4.7)

Where m indicates the collection policy of the firm; 0 < m < 1. It would be equal to 1 if all
sales is in the form of credit and would be zero if all value of sales is in the form of advanced

payment. Replace (4.7) in DSO, obtain

_ min(sp(D+B),spl) \ _ min(D+B,I)
DSO = m< o7 ) = 365 m (OED) (4.8)

Lastly, consider (4.9) in which accounts payable (AP) can be calculated by order quantity (q)

and unit cost (uc) as follows:

AP = nucq (4.9)

Where 0 < n < 1, shows the payment policy of the company. It would be equal to 1 for all
credit purchases and zero for all purchases the price must be paid before delivery. In this study

both m, n is assumed to be equal to one.

Replace (4.9) in DPO, we get



73

DPO = 29— 365 (%) (4.10)

‘IJ.CD/365

Given (4.5), CCC can be obtained as follows:
ccc =365(2) (1) + 365 m (“HZED) — 3650 (2) (4.12)

The lower the CCC, the lower financial cost for a company to fund its business operation. The
cash to cash cycle (CCC) can be diminished through lowering days inventory outstanding
(DIO), reducing days sales outstanding (DSO), and extending days payable outstanding (DPO)
(Tangsucheeva and Prabhu, 2013).

Hofmann and Kotzab (2010) argue that the “leading” and most powerful companies in a supply
chain are often able to degrade their own cash conversion cycle at the expense of CCC increase
for either their upstream or downstream partners or both. Hence, a single company perspective
on working capital management appears to be inefficient in the supply chain perspective. They
suggest collaborative CCC as an indicator for measuring efficiency of the working capital
management in supply chain networks. The collaborative CCC in a supply chain can be
obtained by adding up all inventory periods of the members, adding accounts receivable period
(DSO) of the last member of the chain (retailer) and deducting accounts payable period (DPO)
of the first member of the chain (supplier) (Hofmann and Kotzab, 2010).

4.3. Experiments

4.3.1. Beer distribution game

The beer game (BG) is a role playing simulation game was originally developed in (Sterman,
1989). The main objective of the game was to demonstrate the existence of the bullwhip effect
within supply chain networks. In this study, a four-agent BG consists of a manufacturer, a
distributor, a wholesaler, and a retailer is modelled and cash flow between supply chain
members is taken into account, in addition to material and information flows, to measure the
collaborative CCC of the supply chain network. Each member strives to maintain a dynamic
equilibrium between inflows (arriving goods from upstream member) and outflows (goods
being sent to downstream member). According to the assumptions of the beer game (BG),
customer demand starts by ordering 4 crates of beer during the first four week and then
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suddenly, in week 5, the customer demand rises to 8 crates per week for the rest of the
simulation (Joshi, 2000). The distribution lead time is constant and equals to 2 weeks. The
initial values of the variables at each entity at t = 0 are extracted from (Joshi, 2000). The

simulation model is run for 120 weeks and the values of the CCCC are illustrated in Fig.2.

4.3.2. Optimisation model

4.3.2.1. Optimisation model |

As discussed earlier, the objective of the first optimisation model is to manage the trade-offs
between the CCC minimizations for the supply chain members through identifying the optimal
values to the decision parameters (e.g. a, 8, DNI, DSL,SP,UC). The optimisation model is

formulated as:

Min MCCC = Min pycee = g ot
Min DCCC = Min pipeee = leg 2o
. | e (4.12)
Min WCCC = Min pyece = Xi=o—,
_ _ T RCCC
Min RCCC = Min pipccc = Le=0—7—
Subject to:
0<a<1,0<B <1 0<DNI<12 0<DSL<151<SP <4,
0.5 < UCi <35 (4.13)

The objective functions are related to minimizing the cash conversion cycle (CCC) of the
supply chain entities which is measured by the mean of cash to cash cycle for each entity over
the simulation period. The lower and upper bounds for the decision parameters of entity i (e.g.,

manufacturer, distributor, wholesaler, and retailer) are defined by Eq. (4.13).

4.3.2.2. optimisation model 11

As discussed earlier, the objective of the second optimisation model is to minimize the
collaborative CCC (CCCC) or supply chain CCC (SCCC) through identifying the optimal
values to the decision parameters (i.e.a, , DNI, DSL, SP, and UC). The optimisation model is

formulated as:

Min SCCC = Min Uscce =
R (4.14)
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0<al<1, 0 < B'<10,
0 < DNI' < 12, 0 < DSL' < 15,
1< SP' <4, 0.5<UC' <35 (4.15)

The objective function is related to minimizing the supply chain cash conversion cycle (SCCC)
which is measured by the mean of supply chain cash conversion cycle over the simulation
period. The lower and upper bounds for the decision parameters of entity i (e.g., manufacturer,

distributor, wholesaler, and retailer) are defined by (4.15).

4.4. SBO implementation

SD simulation approach and the GA as optimisation engine are integrated in the form of an
SBO model to derive optimal values to the controllable parameters (i.e. a, B, DNI, DSL, SP,
UC) so as to make trade-offs between conflicting CCC minimizations in the optimisation model
I and minimize collaborative CCC (CCCC) of the supply chain in the second optimisation
model. To solve the optimization model | that is a multi-objective model the weighted sum
method which is one of the widely used methods for addressing multi- objective optimization
problems is applied. In this method, the multi-objective optimisation problem is transformed
into a single objective optimisation problem through multiplying each objective function by a
weighting factor and aggregating all weighted objective functions (Marler and Arora, 2010).
The weight of an objective is chosen in proportion to the relative importance of the objective
(Gass and Saaty, 1955) and the aggrgated weights of objectives needs to add up to 1. In the
optimization model I all objective functions are given the same importance and consequently
the same weight. Therfore the multi-objective model presenyted in Eq. (4.12) is transformed
into a single-objective model as follow that is used the fitness function of the GA for identifying
the optimal values to the decision parameters.

new objective = w1XMin ppcce+W2XMIn tpyeceFW3XMIn ycec +W4AXMIn Uycee

wl=w2=w3 =w4= 0.25 (4.16)

The genetic algorithm parameters are set as follows. Population size is set to be 200, crossover
rate is set to be 0.8, and the mutation rate is set to be 0. The fitness function for the optimization

model | is as follows.

. . 1 .
Fitness Function = ; , ; , ;
WIXMin pyecc+HW2XMin @y eco+W3XMin gy e cc+waAXMIn gy ece

wl=w2=w3 =w4=0.25 (4.17)
With the defined constraints for the decision parameters in the optimisation model | and the set

values for the GA parameters, the SBO is run.
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Figure 4.1 illustrates the CCC of the supply chain members before and after employing the
SBO methodology. According to the results demonstrated in Figure 4.1(a), before applying
SBO methodology, cash conversion cycle (CCC) of the manufacturer in week 30 arrived at
500 days, almost 72 weeks, while employing optimal parameter values not only results in
significant decrease in cash to cash cycle of upstream members, i.e. distributor and
manufacturer, but also improves CCC of the downstream members, i.e. wholesaler and retailer
(see Figure 4.1(b)). The CCC of the manufacturer and the distributor in some weeks is negative
that implies they are collecting money from their customers before providing any service. The
optimal values to the decision parameters also objective functions values are displayed in Table

4.1.
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Retailer cash conversion cycle (RCCC), Wholesaler CCC (WCCC), Distributor CCC (DCCC), Manufacturer CCC (MCCC)
Figure 4.1. System performance before and after applying the SBO methodology

Table 4.1. Optimal parameter values

™ 0.74 wec™ 1.24
't 0.12 DNT® 407
o 0.76 DsL® 5.48
e 0.52 sp® 2,75
find 0.72 vk 2.89
B 0.88 sp* 109
B 0.97 pnr 11.62
B® 0.94 psr" 9.68
oNTY 4.29 spw 274
DsL® T.42 oW 2.38
spe 2.08 DCCC 0.12
wc? 1.76 MCCC -163.47
DNTM 3,59 RCCC -0.46
DsLM 0.82 )
wCCc -31.32
spM 1.56

With the defined constraints for the decision parameters in the optimisation model Il and setting
the GA parameter values as population size 200, crossover 0.8, and mutation 0.1, the SBO is

run. The fitness function for the optimization model Il is defined as follows.
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Fitness Function= L (4.17)
scce

Figure 4.2 depicts the collaborative CCC (CCCC) of the supply chain members before and
after employing the SBO methodology. According to the results demonstrated in Figure 4.2(a),
before applying SBO methodology, collaborative cash conversion cycle (CCCC) in week 30
arrived at 600 days, almost 86 weeks, while employing optimal parameter values results in
negative cash conversion cycle for the supply chain in most of the weeks (see Figure 4.2(b)).

The optimal values to the decision parameters also objective function value are displayed in

Table 4.2.
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Figure 4.2. Collaborative cash conversion cycle (CCC) before and after employing the SBO

Table 4.2. Optimal parameter values
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o 0.13 spM 1.54
o' 0.9 e 1.13
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Fin 0.48 DSLE 2,22
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4.5. Conclusions

In addition to matching the supply of products with the demand of customers within supply
chain networks, the supply of cash is also required to be matched with the demand of supply

chain members. Single company perspective on working capital management results in
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heterogeneous distribution of cash among supply chain entities. Therefore, working capital
management should be considered from supply chain perspective in which each company is
aware of the impact of its corrective measures for managing the working capital on its suppliers

and customers.

As discussed in section 2.5.1 and is illustrated in Table 4.3, much of the literature on working
capital management in the supply chain applied the empirical approaches to measure the CCCs
for supply chain members (Theodore Farris and Hutchison, 2002; Ruyken et al., 2011; Lind et
al., 2012). Although, modelling approaches such as simulation and optimisation are under-
represented. Moreover, it has been argued that supply chain members may reduce their cash
conversion cycle at the expense of increasing it for their upstream and/or downstream members
(Hofmann and Kotzab, 2010; Ruyken, Wagner and Jonke, 2011). The literature lacks the
studies which applied a practical modelling approach to manage the trade-offs between
conflicting CCC minimizations for supply chain members by finding the optimal values to the
financial and inventory decisions parameters. Finally, the literature lacks the studies that
applied the collaborative CCC (CCCC) as the metric for measuring the efficiency of the

working capital management in supply chains.

To fill the gap in the literature, in this chapter, a simulation-based optimisation model which
integrates system dynamics simulation and genetic algorithms is developed for working capital
management in a supply chain. In this model financial flow modelling is incorporated into the
system dynamics simulation of the beer distribution game and minimizing the cash conversion
cycle for supply chain members and minimizing the collaborative CCC of the supply chain are
considered as optimisation objectives. This contribution extends the previous research on
working capital and supply chain management by using the SBO modelling for managing the
trade-offs between conflicting CCCs minimization for supply chain members and minimizing
the collaborative CCC of the supply chain (Theodore Farris and Hutchison, 2002; Ruyken et
al., 2011; Lind et al., 2012; Hofmann and Kotzab, 2010; Ruyken, Wagner and Jonke, 2011).
The genetic algorithm is applied to identify the optimal values to the financial decisions
parameters including price and unit cost and inventory decisions parameters including desired
inventory, desired supply line, inventory adjustment parameter, and supply line adjustment
parameter so as to mange the trade-offs between conflicting CCCs minimization for supply

chain members and minimize the collaborative CCC of the supply chain.
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Current literature Parameters Managing the Minimizing Approaches
considered trad-offs the
between collaborative
conflicting CCC
CCCs (CCCC) of
Minimization the supply
for supply chain
chain members
(Theodore Farris and Empirical
Hutchison, 2002; Ruyken
etal., 2011; Lind et al., Conceptual
2012; Hofmann and - X X modelling
Kotzab, 2010; Ruyken,
Wagner and Jonke, 2011) Simulation-
based
Inventory control optimisation
parameters (System
This study Price v v dynamics and
Unit cost genetic
algorithms)

The results indicated that the CCC of the supply chain members and the collaborative CCC of
the supply chain (CCCC) can be decreased significantly by identifying the optimal values of
inventory and financial decision parameters. Given the results of our study, supply chain
managers should measure Collaborative CCC rather than CCC. In other words, this research
provided the supply chain managers with a novel view to shift from the common paradigm of
single perspective toward working capital management to collaborative cash flow

management.

As it was shown in Figure 3, volatility of CCC for upstream members of the supply chain is
significantly higher than that of the downstream members. This phenomenon is called cash
flow bullwhip and relates to the bullwhip effect in the cash flow of the supply chain. In the

next chapter an SBO model is developed to minimize the cash flow bullwhip in supply chains.
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Chapter 5. Minimizing bullwhip effect and cash flow bullwhip
in a supply chain using simulation-based genetic algorithms
optimisation

5.1. Introduction

To remain responsive to uncertain demand conditions, supply chain members carry inventory
to prevent orders being lost and also try to update orders placed to their upstream member
according to the volatility in demand of their downstream member. However, there is a delay
between the order placement time and the receiving of the order by the upstream member. In
other words, the volatility in demand is not concurrently perceived by the upstream members
such as the manufacturer and distributor. This unwanted phenomenon is called the Bullwhip
Effect (BWE) and is mostly attributed to the lack of coordination between participants,

distorted information, and information delays in the supply chain (Coppini et al., 2010).

In addition to the inefficiencies in product flow within a supply chain, such as excessive
inventory, stock-outs, distorted demand forecasting (Chen et al. 2000; Lee, Padmanabhan, and
Whang 1997), the BWE also negatively affects the financial flow through heterogonous
distribution of cash among supply chain members. The cash conversion cycle (CCC) is one of
the pivotal metrics used to measure supply chain efficiency in cash flow management (Zhao et
al., 2015). The CCC is defined as the length of time that it takes for a company to convert
resource inputs into cash flows collected from customers (Stewart, 1995). The lower the CCC,
the more successful the firm is in managing cash flow. For example, Amazon is a role model
in the effective management of cash flow possessing a CCC of -51 days in 2009 (Kumar, Eidem
and Perdomo, 2012). Indeed, Amazon collects cash from customers before providing any
service. Reducing the number of days inventory held at a firm is one of the actions that can be
taken to reduce the CCC (Randall and Theodore Farris, 2009).

Volatility in inventory levels, which is caused by the BWE, results in variability in the number
of days inventory outstanding, and accordingly causes variations in the CCC (Tangsucheeva
and Prabhu, 2013). In such circumstances, supply chain members may face liquidity
constraints, as they are not able to predict the amount of time that it takes to get access to the
cash. The term “cash flow bullwhip” (CFB) was first introduced by Tangsucheeva and Prabhu

(2013) to name this undesirable phenomenon, which is caused by variations in the CCC that
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occurs throughout financial flows in the supply chain. In this chapter, a simulation-based
optimisation (SBO) framework including genetic algorithm (GA) and SD is developed to
minimize the CFB, BWE, and supply chain total cost through identifying the optimal values to

the inventory and financial decisions.

The rest of the chapter is organized as follows. Section 5.2 describes the model that was
developed to measure the CFB within the supply chain and the proposed SBO methodology
for mitigating the CFB. The beer distribution game which is the studied supply chain is
elaborated in section 5.3. Section 5.4 illustrates the applicability of the proposed SBO approach
and compares its performance with information sharing starategy in mitigating the CFB.
Finally, concluding remarks are presented in section 5.5.

5.2. Supply chain model for cash flow bullwhip effect

Simulation stages of our case study model are outlined as follows. First, nomenclatures are
demonstrated. Second, ordering policies applied by supply chain members are introduced and
causes of the inventory bullwhip are identified in the ordering policy. Then, the impact of the
ordering policy on CCC is investigated. To measure variations of the CCC and CFB, the SD
simulation model of the studied supply chain composed of one manufacturer, one distributor,
one wholesaler, and one retailer is developed. Causes of the inventory bullwhip and CFB are
part of inputs and outputs of the simulation model, respectively. The validity of the SD model
is assessed through implementing an extreme condition test. Furthermore, the capability of the
model in showing the bullwhip effect within the supply chain network is another proof of its
validity. Thereafter, feasible intervals of the input parameters, including causes of inventory
bullwhip, price, and unit cost, are defined and the SBO approach is applied to derive optimal
combination of the parameters to minimize CFB, BWE, and SCTC. Nomenclatures are

presented in Table 5.1.

Table 5.1. Nomenclatures

Symbol Definition
OP; Ordering decision made at the end of period t;
DF, Demand forecast at period t;
NI, Net inventory at time t;
SL; Supply line at time t;
14 Smoothing parameter;
coGS Cost of goods sold,;
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DIO Days inventory outstanding;
DSO Days sales outstanding;
DPO Days payable outstanding;
q Order quantity;
D Demand;
/ Level of average inventory;
B Backlog;
m Collection policy;
n Payment policy;
SCTC Supply chain total cost;
MBWE Manufacturer bullwhip effect;
MCFB Manufacturer cash flow bullwhip;
TC; Total cost of entity i;
MPO Manufacturer placed orders;
mccc Manufacturer cash conversion cycle;
2 ypo Variance of manufacturer placed order;
a%pp Variance of distributor demand;
02 ycee Variance of manufacturer cash conversion cycle,
A fraction of the gap between desired on-hand inventory and current level of on-hand
i inventory of entity i;
A fraction of the gap between desired supply line and current level of supply line of
hi entity i;
DI, Desired inventory of entity i;
DSL; Desired SL of entity i;
SP; Sales price per unit of entity i;
Uc¢; Unit cost of entity i;
RPO Retailer placed orders;
wpPO Wholesaler placed orders;
DPO Distributor placed orders;
RI Retailer inventory;
Wi Wholesaler inventory;
DI Distributor inventory;
MI Manufacturer inventory;
Rccc Retailer cash conversion cycle;
wcee Wholesaler cash conversion cycle;
bcce Distributor cash conversion cycle;

Supply chain member index;
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5.2.1. Ordering policy

In this study we have applied the ordering policy developed by Mosekilde et al. (1991) to
calculate the amount to order (OP) for each member of the supply chain. The placed order

which must be non-negative is calculated as:
OP, = MAX (0, DOP,) (5.5)

Where the desired amount to order (DOP) is defined as follows:

NI
DOP, = DF,+ a <DI - (INV - Bt)> +B (DSL — SL,) (5.6)
SL Gap
INV Gap

To determine the desired amount to order (DOP), each member endeavours not only to meet
the forecasted demand of its downstream member but also bridge the inventory and supply line
gaps. The exponential smoothing method with a smoothing parameter (y) that equals to one is

used to forecast the demand forecast (DF) as follows:
DF, = SMOOTH (D,, y) (5.7)

The inventory gap is the difference between the desired inventory (DI) and net inventory (NI)
which is calculated by subtracting the unfulfilled orders (B) from the inventory (INV). The
supply line (SL) gap is defined as the gap between the desired and actual supply line. The
supply line represents the previous orders which have been sent by the upstream member but
still have not been delivered. The desired inventory and the desired supply line are constant
values which are specified by each member and represent the inventory levels which are
desired to be held or to be on order for each member. As the inventory and supply line gaps are
not replenished entirely in a review period, smoothing replenishment rules should be used to

give an appropriate weight (i.e., @ and f) to the gap terms (Disney et al., 2007).

a and S represent the discrepancy of units needed in the form of on-hand inventory (INV) and
the supply line (SL) respectively. A high a value indicates an aggressive policy to bridge the
gap between the desired inventory and the current net inventory. In the case of 3, a high value
shows that all the orders in the supply line have been considered, when deciding on the amount
of orders to be placed with the upstream member.

In Expression (2), desired inventory (DI), desired supply line (DSL), inventory proportional

parameter (a), and inventory on order proportional parameter (£) which are known as
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controllable parameters allow us to amend the dynamic behaviour of the supply chain. Indeed,
changing these exogenous factors results in a set of ordering patterns ranging from order
variance amplification (bullwhip) to dampening (smoothing) (Disney et al., 2007). In the next
section, it is explained how Expression (5.2) may lead to a fluctuation in the CCC known as
CFB.

5.2.2. Impact of ordering policy on CCC and CFB

According to Eq. (4.11) that defines the CCC using its three constituents: days sales
outstanding (DSO), days inventory outstanding (DIO), and days payable outstanding (DPO)
the CCC is a function of order quantity (q), inventory (1), demand (D), sales price per unit (SP),
upstream sales price (USP), and unit cost (UC). Each supply chain member applies the
replenishment rule presented in Eq. (5.1) to determine its order quantity. The variability of
CCC is used to measure the cash flow bullwhip (CFB) for supply chain members as follows
(Tangsucheeva and Prabhu, 2013):

Variance of CCC __ VAR(CCC)

Variance of downstream demand VAR(D)

CFB = (5.4)

To decrease CFB, the variability of CCC needs to be diminished through determining the
optimal values for the inventory decision parameters (e.g., a, B, DNI, DSL), sales price per unit
(SP), and unit cost (UC). To measure CFB through the supply chain, a system dynamics (SD)
structure of the Beer distribution game is developed. In this case, inputs are inventory decisions
parameters, price, and unit cost (i.e., control parameters) and outputs are variations of cash to
cash cycle and CFB for participants. Simulation models that are developed by the SD approach
are considered to be more robust than other types of simulation models, even though there are
robustness tests that can be used to test the validity of the model. To show the robustness of
our developed simulation model, the extreme condition test (Sterman, 2000) is applied. The
extreme condition test deals with a test accompanied by a reasonable expected behaviour
according to its inputs values (Sterman, 2000). e.g., dramatic increase in price of a product
results in converging the demand function to zero (Sterman, 2000). To run the extreme
condition test in our developed model, sales price per unit of product which is a model input is
increased significantly. As a result, the CCC rises dramatically. Hence, it can be concluded that
the behaviour of the model is reasonable.
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5.2.3. Simulation-based optimisation (SBO)

After simulating the supply chain’s cash flow and observing the CFB across the supply chain
network, we need to manage its adverse effects through recognizing optimal values for the
controllable parameters. As was indicated in the previous section, the CCC is a function of
order size which is affected by ordering parameters including demand forecast updating («),
and rationing and shortage gaming () given in Eq. (5.2). That is to say, the CCC is influenced
by factors that contribute to inventory bullwhip, hence our objective is to minimize CFB by
recognising optimal values to the ordering parameters, inventory decisions, price, and unit cost.
These are input parameters for the simulation model. Moreover, minimizing supply chain total
cost and the BWE are other objective functions that will be taken into account. Here,
simulation-based optimisation (SBO) is used to determine the optimal decision variables
through integrating system dynamics (SD) and a Genetic algorithm (GA). SBO is an emerging
field which consolidates simulation analysis by integrating optimisation methods into it. In
other words, SBO transforms simulation model from a descriptive tool toward a prescriptive
method. Regardless of the optimisation algorithm used, the process of optimizing an SD model
involves four steps: (1) Developing the stock and flow diagram, (2) Selecting control
parameters by which performance of the system is adjusted, (3) Specifying the lower and upper
bounds of control parameters, and (4) ldentifying model variables for optimisation. These

variables represent the values that need to be optimised (Duggan, 2008).

After following these steps, the optimisation algorithm can be implemented. In all cases, SBO
involves an iterative process between the optimiser and the simulation model, where firstly the
optimisation algorithm inputs a set of parameter values to the simulation model and the
simulation model then outputs performance measurements of the model to the optimiser. The
optimisation algorithm then compares the performance of the system with the performance
produced by previous permutations of the parameters in order to generate a new set of
parameter values. This process continues until a stop criterion has been met, such as performing
a defined number of evaluations, elapsing a specific amount of time or any user-specified
criterion (Syberfeldt, 2009). The framework of the SBO approach in this study is shown in
Figure 5.1.
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1. Send parameter values
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2. Simulate Model
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4. Process results

3. Performance measurements

Figure 5.1. SBO process
5.2.4. Genetic algorithms (GAs)

Genetic algorithms (GAs) are computational algorithms inspired by Darwinian evolutionary
theory which can be called in short as “survival of the fittest” (Darwin, 1859). In GAs it is
assumed that fittest solutions survive and their characteristics are transferred from one
generation to the next (Zaman et al. 2012). To optimise SD models using GAs, each solution
known as a chromosome is represented by an array of elements, where each position in the
array pertains to a possible parameter value. A solution pool named population is formed by a
set of chromosomes. The algorithm starts with setting up a population of random possible
solutions. Then, the individuals are evaluated based on the objective function to obtain the
fitness of the solution. A fitness value shows how good each solution is in satisfying objective
functions. Applying the rule of survival of the fittest, fittest solutions are selected from the
population. Subsequently, solutions with higher fitness are combined to produce new solutions
by performing a crossover operator. These solutions are known as parent solutions. To ensure
maintaining variety in the overall population, new solutions may then be subjected to small
variations from parent solutions called a mutation operator. Each population then represents a
generation, and the process continues until predefined stopping criteria are met, such as
convergence of fitness over generations or reaching the maximum number of generations (Lu
et al., 2012). GAs are well suited for parameter optimisation and can also be extended to
multiple objective optimisation (MOO) (Streichert, 2002). Therefore, in this research, a GA is
employed to specify optimal values to the control parameters (e.g. a, 8, DNI, DSL, SP,UC). As
it was explained in section 3.3.3.4 and shown in Figure 3.2, the GA derives the optima values

to the control parameters as follow.
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Representation. The first step in applying GA is to encode a solution of the problem into
appropriate array representation. The length of the array is 25 (four supply chain members with
6 element each participant plus supplier sales price).

Initialization. The population size is set to be 200 solutions, each of which consists
of 25 random elements, i.e. 6 elements for each member plus supplier sales rice. The values to
the elements are randomly generated within their feasible intervals defined by the modeller.
The lower and upper bounds of these intervals must be large enough to ensure that the optimal
settings are inside the searching boundary (Chiadamrong and Piyathanavong,
2017). The process of generating random solutions continues until the population
of 200 solutions is reached.

Evaluation. Every solution is then evaluated through simulation based on the supply
chain total cost (SCTC), bullwhip effect (BWE), and cash flow bullwhip (CFB) and is assigned
a fitness value. The fitness value for the solution is computed using the objective functions
values, i.e. the lower the SCTC, BWE, and CFB, the higher the fitness value. Supply chain total
cost (SCTC) includes inventory cost and backorder (backlog) cost. Bullwhip effect (BWE)
and cash flow bullwhip (CFB) are minimized for manufacturer, as this member experiences
the highest demand fluctuationsand CCC variability compared to other supply
chain members.

Selection. The roulette wheel principle (Goldberg, 1994) is applied to select chromosomes
from the solution pool into a mating pool for generating offspring. Firstly, solutions are given
a range between [0, 1] according to their fitness function value. The higher the fitness of the
solution, the greater the assigned range. Then, random numbers between [0, 1] are
generated and based on the range they are in the solutions are inserted into the mating pool. For
example, one solution may be in the range of [0, 0.30], if the random number generated is
within this range, this solution would be selected to enter the mating pool.

Reproduction. This process includes generating a new population of solutions from those
selected through genetic operators: crossover and mutation. Crossover operator is used to take
two solutions from the mating pool, and combines elements of those solutions to produce two
new solutions: the procedure for this contains: (1) identifying a random crossover point on the
two selected parent chromosomes and mark the two solutions at this point, (2) joining the first
half of the first solution with the second half of the second solution also the first half of the
second solution with the second half of the first solution to produce first and second child,
respectively, and finally (3) replace parent solutions with the newly defined solutions (Duggan,
2008). The crossover operator in this study is set to be 0.8. Mutation operator is another genetic
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operator makes random changes to the solutions to deter stuck on a local optimum. Mutation
operator generates a new solution by randomly changing one or more elements of the selected
solution, namely, the value of one of the control parameters. The procedure for mutation
involves: (1) selecting a small number of solutions for each generation by random, (2) selecting
one or more elements of that solution randomly, and (3) generating a new value for the chosen
elements considering the highest and lowest possible values for each parameter (Duggan,
2008). The mutation operator in this study is set to be 0.1.

Iteration and termination. The old population is replaced with the new population and cycle
repeats until an optimal or near optimal solution to the problem appears in the population. GA
tries to determine the optimal control parameters for each member. It applies a fitness function
to determine the best chromosomes (solutions) in all generations also decide when to stop
evolution. The proposed fitness function is defined as the inverse of the SCTC, BWE, and CFB
as shown in Eqg. (5.5), where a lower TC, BWE, and CFB results in a higher fitness value.
SCTC aggregates inventory holding cost and backlog cost of all the members. The BWE is
quantified through the ratio between the variance of orders and the variance of demand (Chen

et al., 2000). Finally, the CFB is measured through Eq. (5.4).

1
SCTC + MBWE + MCFB

Fitness Function= (5.5)

As the initial population in GA, i.e. solution set, is randomly selected within the solution space
and also that the optimisation process is stochastic, the exact same results will not be replicated
every time. To obtain a wide range of optimal results, the optimal parameter sets are gained by
defining various initial population. Thereafter, non-dominated optimal solutions are chosen
from generated optimal solutions. Finally, the most ideal solution is selected by the decision
maker based on higher level information (Duggan, 2008). In this work, MATLAB GA toolbox
was used to perform the simulation with the fitness function of Eq. (5.5) with the restriction set

on the ranges of the control parameters (e.g. a, B, DNI, DSL, SP, UC).
5.3. The beer distribution game

In this study, a four-agent Beer distribution game consisting of a manufacturer, a distributor, a
wholesaler, and a retailer is modelled and cash flow between supply chain members is taken
into account, in addition to the material and information flows, to measure the CFB for each

supply chain member.
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The studied supply chain model is shown in Figure 5.2., As in the case of the original BG, there
is no information sharing between the supply chain entities and each entity places orders with
its upstream member using the ordering policy outlined in section 5.2.1. The stock and flow
structure of the material flow is shown in Figure 5.3. Joshi (2000) provides a complete
description of the BG stock and flow model. Another relevant variable in this model, in addition
to the orders placed to the upstream members, is the supply chain total cost (SCTC) (5.6),
which is calculated by aggregating the total cost of the supply chain members. Total cost (5.7)
for each agent is composed of the inventory holding cost and backlog cost. Inventory holding
cost (5.8) is the product of inventory level and unit holding cost. However, the backlog cost

(5.9) is determined by multiplying the backlog level into the unit stock out cost.

Supply chain total cost = TCy; + TCp + TCy + TCy (5.6)
Total cost = Inventory holding cost + backlog cost (5.7)
Inventory holding cost = Inventory % unit holding cost (5.8)
Backlog cost = Backlog x unit stock out cost (5.9)

Manufacturer | — I}imrihutm W ImIL saler Reﬂ-lur
—

ey Material flow
4 Cash flow

Figure 5.2. A four-echelon supply chain
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Figure 5.3. Generic structure of material stock and flow diagram for a member

The financial stock and flow model is shown in Figure 5.4 Each member pays for the orders
placed to its upstream member and is paid for the orders received from its downstream member.
The variable of interest in this model is the CCC which is determined by Eq. (4.11). The
detailed description of the financial stock and flow model are presented as follows. The
accounts receivable for each agent (5.10) is the product of downstream shipments and unit sales

price of the product. The sales price of each member’s product is determined by (5.11) -(5.14).

The revenue of each agent (5.15) is defined as the product of unit sales price and downstream
orders. The days sales outstanding (DSO) (5.16) is defined as average accounts receivable
divided by the daily revenue. As the simulation model is run weekly, the revenue is divided by
seven to determine daily revenue. To measure inventory value (5.17), the inventory level is
multiplied by the product unit sales price. The cost of goods sold (COGS) (5.18) is measured
by multiplying downstream orders and unit product cost. The unit product cost is composed of
all the costs that the members incur for unit of product, such as the production cost for the
manufacturer and purchasing cost for the distributor. The unit product cost for each member is
defined by (5.19) - (5.22).
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Figure 5.4. Generic structure of financial stock and flow diagram for a member

d(Accounts receivable)

= downstream shipments x product unit sales price | (5.10)

dt
Manufacturer unit sales price = 1.5 (5.11)
Distributor unit sales price = 2 (5.12)
Wholesaler unit sales price =2.5 (5.13)
Retailer unit sales price = 3 (5.14)
d(Revenue
% = downstream orders x product unit sales price (5.15)
DSO = Average(accounts receivable)
a Revenue/ (5.16)
7

d(Inventory value

( d:y ) = Inventoryx product unit sales price (5.17)
d(COGS
(d—t) =downstream orders x unit product cost (5.18)
Manufacturer unit product cost = 1.25 (5.19)

Distributor unit product cost =1.75 (5.20)
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Wholesaler unit product cost =2.25 (5.21)

Retailer unit product cost =2.75 (5.22)

The days inventory outstanding (DIO) (5.23) is measured by dividing the average inventory
value into the daily COGS. To measure the amount of payables (5.24), product unit sales price
of the upstream member is multiplied by orders. The days accounts payable outstanding (DPO)
(5.25) is the ratio of average accounts payable and daily COGS. Cash conversion cycle (CCC)
(5.26) for each supply chain member is the summation of DSO, and DIO minus DPO.

DIO = Average (inventory value) (5.23)

a COGS /
7
d(Accounts payable
( m payable) = orders X upstream unit sales price (5.24)

_ Average(accounts payable)

bPO= COGS) (5.25)

7
CCC=DSO0 + DIO - DPO (5.26)

5.3.1. MOO of the BG

To determine the optimal decision parameters for the supply chain members, an optimisation
problem which contains the objective functions and constraints on parameter values should to

be formulated. The objective functions for the optimisation problem are denoted as (5.27):

Min SCTC = Min pg e = Zgog

2
. . G
Min MBWE = Min MPO/GZDD (5.27)

2
Min MCFB = Min ° MCCC/ 5
G“pD

Decision variables: o;, B;, DI;, DSL;, SP;, UC;
Subject to:
0<oy<1,0<B,<I, 0<DL <12, 0<DSL;<15,1 <SP, <4,

0.5<UC;<3.5 (5.28)
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The first objective function is related to minimizing the SCTC which is measured by the mean
of supply chain total cost over the SBO period. The second objective is to minimize the BWE
for the manufacturer which is formulated as the ratio of variation in manufacturer’s order to
variation in its downstream demand. The third objective function pertains to CFB minimization
for the manufacturer quantified by the ratio of variation in the manufacturer’s CCC to variation
in its downstream demand. The lower and upper bounds for the decision parameters of entity i
(e.g., manufacturer, distributor, wholesaler, and retailer) are defined by Eq. (5.28). The
manufacturer, as the final upstream member of the supply chain, endeavours to manage
variations in the order quantity, and cash conversion cycle (CCC) in order to reduce the BWE,
and CFB respectively. It would be interesting to know whether minimizing the order quantity
and CCC fluctuations for the manufacturer results in volatility reduction in order quantity and
CCC for other supply chain members. The premise for this model is that the decision maker
aims to minimize SCTC and also minimize the BWE and CFB throughout the supply chain

network.

To solve the multi-objective optimisation problem indicated in Eq. (5.27) and Eq. (5.28) the
weighted sum method which is one of the most widely used methods for solving multi-
objective optimisation problems is applied. In this method, the multi-objective optimisation
problem is transformed into a single objective optimisation problem through multiplying each
objective function by a weighting factor and aggregating all weighted objective functions
(Marler and Arora, 2010). The weight of an objective is chosen in proportion to the relative
importance of the objective (Gass and Saaty, 1955). Considering a multi-objective optimisation
problem with m objectives, where w; (i = 1, ..., m) represents the weighting factor for the ith
objective function. If ¥;i2, w; = 1 and 0 < w; < 1, the weighted sum is a convex combination
of objectives (Kim and De Weck, 2006). As the objective functions in Eq. (5.27) have the same
importance for the decision maker, they are given equal weights that add up to one and Eq.
(5.27) is transformed into a single-objective function as follows.

new obj= w1xMin sg... +w2XxMin JzMPO/ ;> 4+w3xMin OJMCCC/ >, wl=w2=w3=0.33 (5.29)
0"pD 0" pp

5.4. Experiments

This section outlines the results of the tests conducted on the beer distribution game using the
SBO methodology and information sharing, which are two common techniques for bullwhip

effect reduction. The SBO aims to minimize the total cost of the supply chain in addition to the
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BWE and CFB for the manufacturer by obtaining the optimal price, unit cost, and inventory
decision parameters for all members. The information sharing strategy involves supply chain

members being informed about end customer demand.

5.4.1. Experiment 1

The first experiment was designed to test the performance of the SBO and information sharing
under the assumptions of the original beer game, which included deterministic demand and
lead times. According to the assumptions of the beer game (BG), customer demand starts by
ordering 4 crates of beer during the first four weeks and then suddenly, in week 5, the customer
demand rises to 8 crates per week for the rest of the simulation (Joshi, 2000). Aslam and Ng
(2016) provides the initial values for material flow variables and parameters at each entity
att=0. The values for cash flow parameters, unit cost and price, are shown in Table 5.2. As
expected from running the SD-BG model, Figure 5.5 clearly demonstrates the existence of the
BWE. The placed orders by upstream members is several orders of magnitude larger than the
end customer demand. The manufacturer placed order (MPO) is 3.4 times more than the end
customer demand at week 12. This oscillating effect shows how an increase in the customer
demand, from four to eight in week 5, has resulted in a huge oscillating effect at the final

upstream member, manufacturer.

Table 5.2. Sales price and unit cost of supply chain members

Manufacturer Distributor Wholesaler Retailer
SP uc SP uc SP uc SP uc
1.5 1.25 2 1.75 2.5 2.25 3 2.75
io0 4+ SCTC=£10816.69 15+
g -4
o =T o 10T
o
g 7T z
61+ 5
5 -4
H\' ] ] ] ] ] ] ] ] ] ] ] ] ] 1 ] ] ] ] ] ] ] ] 1 ]
0 20 40 &0 80 100 120 0 20 40 &0 80 100 120
weeks weeks
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Manufacturer PO (MPO) Figure 5.5. The bullwhip effect

The inventory levels for entities is shown in Figure 5.6. The inventory level for the
manufacturer between weeks 25 and 35 remains at 60, which is 7.5 times larger than the

customer demand.

Inventory

Figure 5.6. The inventory of supply chain members

The variability of the cash conversion cycle (CCC) for supply chain members is shown in
Figure 5.7. The existence of the BWE results in an increase in inventory levels which
subsequently leads to a rise in days inventory outstanding (DI1O). An increase in DIO also
results in CCC growth. The oscillations in CCC rises significantly as we move toward upstream
members of the chain so that CCC for the final entity, manufacturer, ranges from 30 to 500
days. Hence, it can be concluded that the existence of the BWE prolongs the cash to cash cycle

for the upstream members.
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5.4.1.1 Impact of information sharing

Considering the assumption that SC members do not share the demand information, each entity
forecasts the end customer demand based on the previous orders of its downstream member.
Most companies amplify the demand of their downstream member which leads to information
distortion throughout the supply chain that is one of the main drivers of the BWE. Information
sharing is a mechanism which eliminates information distortion and reduces the BWE through
sharing the end customer demand between the SC members (Yu et al .2001).

To illustrate the impact of information sharing on diminishing the BWE, CFB and SCTC, the
results of the original SD model in which the demand information are not shared among the
SC members are compared with the results obtained from the SD model in which there is
information sharing between the entities. According to the results shown in Figure 5.8(a)-(c),
the information sharing among the SC members reduces the variability in the placed orders by
the customers, variability in inventory levels of the entities, and variability in cash conversion
cycles of the entities. According to the results shown in Figure 5.5, the placed orders by the SC
members in the original SD model has a scale of 0-27. While, after the information sharing the

placed orders by the SC members vary in the range of [1, 12] (see Figure 5.8(a)). According to
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the results shown in Figure 5.6, the inventory levels of the SD members in the original SD
model has a scale of 0-60. While, after the information sharing the inventory levels of the SC
entities vary in the range of [0, 20] (see Figure 5.8(b)). According to the results illustrated in
Figure 5.7, the CCCs of the members has a scale of 30-500. Although, after the information
sharing the CCCs of the SC entities vary in the range of [0, 27] (see Figure 5.8(c)).

As explained, the DIO volatility is caused by increasing the inventory levels. Therefore,
mitigating the inventory levels through information sharing reduces the CFB in addition to the
BWE. Although the BWE and CFB decrease dramatically as a result of implementing the
information sharing strategy, the impact of the strategy on reducing the SCTC is not significant.
The SCTC decreases by 8 percent, from £10816 to £9915.65. The reason is that the information
sharing strategy does not identify the optimal values for the inventory decision parameters

which affect the inventory levels of the SC members and consequently the SCTC.
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Figure 5.8. Impact of information sharing for experiment 1

Although, information sharing may bring several benefits to the supply chain members such as
inventory reduction, cost reduction, bullwhip effect reduction and improved resource
utilization (Lee, So and Tang, 2000; Mourtzis, 2011). Some of the supply chain members are

not willing to share their information including sales data, sales forecasting, order information,
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inventory information and so on with other members of their supply chains, unless those
members are part of their own company. It goes without saying that partial information sharing
is not as effective as full information sharing in reducing the bullwhip effect, cash flow
bullwhip, and supply chain total cost. Although, it should be noted that the partial information
sharing particularly when the order information is shared with the upstream members of the
supply chains that are hardest hit by bullwhip effect and cash flow bullwhip, the partial
information sharing may have a significant impact in reducing the bullwhip effect, cash flow
bullwhip, and supply chain total cost (Zhang and Chen, 2013).

5.4.1.2 SBO implementation

The execution of the SBO methodology is based on the process referred to in section 5.2.3. In
order to implement the SBO, a number of specific values need to be decided on, including:

e The range of values for decision parameters which are defined by Eqg. (18).

e The parameters for the GA which are set as follows: the population size is 200, the
crossover and mutation rates are set to be 0.8 and 0.1, respectively. To specify an
appropriate population size, a number of population sizes are selected, and the
algorithm is run 15 times for each population size. The results are reported in Table 5.3.
Increasing the population size improves the mean and the standard deviation of the
fitness function. The population size of 200 is an appropriate population size as the
population size of 250 does not improve the best fitness value. Although, it slightly

reduces the standard deviation of the fitness function.

Table 5.3. Impact of population size on fitness function

o Reverse fitness value
Population size _ __
Best (Min) Worst (Max) Mean Standard deviation
50 7055.64 7116.68 7072.37 28.68
100 7049.38 7136.38 7050.40 25.26
150 7046.29 7073.51 7047.80 14.62
200 7035.64 7053.38 7043.72 5.50
250 7035.64 7052.23 7041.52 521

The optimal solution recommends a non-aggressive strategy toward bridging the gap between

the desired inventory and current net inventory, i.e., the value of a for all members is less than
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0.5, and a cautious approach to order quantity for distributor and retailer, i.e., the value of 8

for distributor and retailer is more than 0.5.

To illustrate the effectiveness of the SBO methodology in minimizing the BWE, CFB, and
SCTC, the results of the SBO model in which the end customer demand is not shared among
the members are compared with the results obtained from the SD model in which there is
information sharing between the entities. According to the results shown in Figure 5.9(a), order
quantities of all supply chain members converge with customer demand (8 crates/week) at
week 40. Whilst, before applying the SBO notwithstanding sharing the demand information
within the SC network, the placed orders adjust to customer demand at week 60 (see Figure
5.8(a)). SC members are not required to hold inventory from week 60 until the end of the
simulation in the SBO model (see Figure 5.9(b)) , while in the SD model with information
sharing at the same period the SC members hold 10 crates/week in inventory (see Figure
5.8(b)). Similarly, optimal controllable parameters lead to a 0 day cash conversion cycle for all
the members at week 30 (see Figure 5.9(c)). However, the non-optimal parameter values result
in an 11 day cash cycle for the retailer at week 40 (see Figure 5.8(c)). In addition to the BWE
and CFB reduction, implementing the SBO methodology leads to a 29% decrease in the SCTC
due to the lower inventory levels which is held by the SC members. The SCTC reduced from
£9915.65 obtained from the SD model with information to £7017.94 after employing the SBO
methodology.
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Figure 5.9. Impact of employing SBO for experiment 1
5.4.2 Experiment 2

The second experiment examines the performance of the SBO and information sharing under
stochastic demand where it is assumed that the customer demand fluctuates in the range of
[0,15] (Kimbrough et al. 2002). Figure 5.10(a) illustrates the ordering quantities for each
member of the supply chain before applying the SBO and information sharing. It demonstrates
the amplifications occurring in the orders and the customer’s orders cannot be easily tracked.
The manufacturer placed order (MPO) is 3.4 times more than the highest orders could be placed
by the end customer at week 12. As expected, the performance of the members in tracking the
customer’s demand is inferior to their performance in experiment 1. Therefore, the inventory
levels of the members that are shown in Figure 5.10(b) are higher than the inventory levels in
experiment 1 (see Figure 5.6). In experiment 2 before employing the information sharing and
SBO, the highest inventory level which held by the SC members is 110 which held by the
distributor at week 30 of the simulation (see Figure 5.10(b)). While, in experiment 1 the highest
inventory level held by the SC members before employing the information sharing and SBO is
60 which was held by the manufacturer between weeks 25 and 35 (see Figure 5.6). Figure
5.10(c) depicts the oscillations in cash cycles of the members which are higher than the cash
cycle oscillations in experiment 1. The highest CCC for the SC members before information
sharing and SBO in experiment 2 is 1432 days. While, the highest CCC for the SC members
before information sharing and SBO in experiment 1 is 27 days. The accumulated cost of the
supply chain in this experiment before applying BWE reduction techniques is £14283.42 that
is higher than the total cost in experiment 1.
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Figure 5.10. Results for experiment 2 before using information sharing and SBO
5.4.2.1 Impact of information sharing

The impact of information sharing on reducing the BWE, CFB, and SCTC is shown in Figure
5.11(a)-(c). The ordering quantity of all members is given in Figure 5.11(a), which has a scale
of 0-27. While before information sharing, the placed orders by the SC members has a scale 0-
51 (see Figure 5.10(a)). According to the results shown in Figure 5.10(b), the inventory levels
of the SC members before information sharing has a scale of 0-110. While, after the
information sharing the inventory levels of the SC entities vary in the range of [0, 83] (see
Figure 5.11(b)). According to the results illustrated in Figure 5.10(c), the CCCs of the members
before information sharing has a scale of 0-1432. Although, after the information sharing the
CCCs of the SC entities vary in the range of [0, 712] (see Figure 5.11(c)). In addition to the
BWE and CFB reductions, the SCTC decreased dramatically as a result of implementing the
information sharing strategy. The SCTC reduced by 23 percent, from £14283.42 before

information sharing to £10947.54 after information sharing.
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Figure 5.11. Impact of information sharing for experiment 2
5.4.2.2 Impact of SBO

Using the values for the GA parameters presented in the previous section, i.e., population size
200, crossover 0.8, and mutation 0.1, the SBO is run for 15 times. The standard deviation of
the obtained fitness values is 6.71 and the best fitness value is 8332.83. The order quantities of
the members are shown in Figure 5.12(a), which has a scale of 0-45. The largest order placed
by a member in the SBO method is higher than the largest order placed in the case of
information sharing, i.e., 27(see Figure 5.11(a)). While, the inventory levels of the members,
as illustrated in Figure 5.12(b), are significantly lower than the inventory levels in the
information-sharing scenario. The inventory levels of the SC members in the SBO model
reaches to 0 at week 30 and remains unchanged until the end of the simulation. While, in the
SD model with information sharing the inventory of the retailer who possess the lowest
volatility among the SC members fluctuates in the range of [0, 38] from week 30 until the end
of the simulation (see Figure 5.11(b)). The cash cycle of the members after using the SBO
method is indicated in Figure 5.12(c) that proves the cash flow bullwhip is significantly reduced
comparing the SD model with information sharing. After employing the SBO method, the CCC

of the all members remains at 0 day from week 40 until the end of the simulation. While, after
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employing the information sharing strategy, the CCC of the manufacturer who possess the
lowest volatility in cash to cash cycle among the SC members varies in the range of [0, 225]
(see Figure 5.11(c)).

The SBO method proposes an aggressive approach toward bridging the gap between the desired
inventory and current net inventory for the manufacturer and retailer. This implies that the
value of « for the manufacturer and retailer is less than 0.5. A cautious strategy is needed for
orders in the supply line for the retailer as, the value of g for the retailer is more than 0.5.
Further experiments were performed to investigate if the recommended policy was robust for
all random values in the range of [0-15] and deterministic lead times. 50 sets of random
customer’s demand were generated by MATLAB, and the SBO was run 15 times for each set
to determine the fitness function. The lowest fitness function found would be the optimal
solution for that specific set of random values when all 50 sets of random values are examined.
The results indicate that the aggressive approach to inventory gap for the manufacturer and
retailer and cautious approach to order quantity for the retailer was optimal in 45 sets. This
shows that the recommended policy for inventory replenishment is an effective policy for
diminishing the BWE, CFB, and SCTC when demand varies slightly [0-15], and the lead times
are deterministic. The lower inventory levels held by the SC members after employing the SBO
method leads to lower SCTC comparing the information sharing. The total cost of the supply
chain after using the SBO method decreased by 24 percent. The SCTC reduced to £8292.74
from the total cost of £10947.54 in SD model with information sharing.

(@) (b)
¢ 2
-]
c
T ]
=] >
c
By
l ] ] ] : :
T T T 1
60 80 100 120 100 120
weeks
— REO WPO —DPO — MPO — MI




104

40 (c)
20

20

cccC

10

weeks

— RCCC WCCC —DCCC — MCCC

Figure 5.12. Impact of employing SBO for experiment 2
5.4.3 Experiment 3

Experiment 3 extends the experiment 2 through considering the stochastic lead times in
addition to the stochastic demand. The shipping lead time varies in the range of [0, 4] in each
time period. Figure 5.13(a) illustrates the ordering quantities for each member of the supply
chain before applying the SBO and information sharing. It demonstrates the amplifications
occurring in the orders and the customer’s orders cannot be easily tracked. The manufacturer
placed order (MPO) is 2.7 times more than the highest orders could be placed by the end
customer at week 12. Although amplifications occurred in the placed orders, the performance
of the members in tracking the customer’s demand is better than their performance in
experiment 2. Therefore, the inventory levels of the members that are shown in Figure 5.13(b)
are lower than the inventory levels in experiment 2. In experiment 3 before employing
information sharing and SBO, the highest inventory level which held by the SC members is 27
which held by the distributor at week 30 of the simulation. While, in experiment 2 the highest
inventory level held by the SC members before employing the information sharing and SBO is
110 which was held by the distributor at week 35 (see Figure 5.10(b)). Figure 5.13(c) depicts
the oscillations in cash cycles of the members which are lower than the cash cycle oscillations
in experiment 2. The highest CCC for the SC members before information sharing and SBO in
experiment 3 is 40 days. While, the highest CCC for the SC members before information
sharing and SBO in experiment 2 is 1432 days. The accumulated cost of the supply chain in
this experiment before applying BWE reduction techniques is £18387.96, which is higher than
the total cost in experiment 2 notwithstanding the lower levels of the inventory held by the
members. The reason is that uncertainty in lead times affects the on-time delivery of the

products negatively and consequently the stock outs increase. As the unit stock out cost is
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higher than the unit inventory holding cost, the total cost of the supply chain in experiment 3

is higher than the total cost in experiment 2.
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Figure 5.13. Results for experiment 3 before using information sharing and SBO

5.4.3.1 Impact of information sharing

The impact of information sharing on reducing the BWE, CFB, and SCTC is shown in Figure
5.14(a)-(c). The ordering quantity of all members is given in Figure 5.14(a), which has a scale
of 0-23. While before information sharing, the placed orders by the SC members has a scale 0-
40 (see Figure 5.13(a)). Although the ability of the members in tracking the customer’s demand
is ameliorated as a result of information sharing, the inventory levels illustrated in Figure
5.14(b) show amplifications and are higher than the inventory levels before information
sharing. The inventory levels of the SC members before information sharing has a scale of 0-
27(see Figure 5.13(b)). While, after the information sharing the inventory levels of the SC
entities vary in the range of [0, 42] (see Figure 5.14(b)). The higher inventory levels help the
members to mitigate the lost sale, which decreases the total cost to £10672.94 after information
sharing, from the original cost of £18387.96 before information sharing. Figure 5.14(c) depicts
the CCC of the members after information sharing that have risen compared with before

information sharing. The CCC increases are caused by higher days inventory outstanding that
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is caused by higher inventory levels. According to the results illustrated in Figure 5.13(c), the
CCCs of the members before information sharing has a scale of 0-40. Although, after the
information sharing the CCCs of the SC entities vary in the range of [0, 687] (see Figure
5.14(c)).
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Figure 5.14. Impact of information sharing for experiment 3
5.4.3.2 Impact of SBO

Using the values for the GA parameters presented in experiment 1, the SBO is run 15 times.
The standard deviation of the obtained fitness values is 8.59 and the best fitness value is
8761.54. The order quantities of the members that are shown in Figure 5.15(a) have a scale of
0-30. Similar to experiment 2, the largest order placed by a member in the SBO method is
higher than the largest order placed in the case of information sharing, i.e., 23 (see Figure
5.14(a)). Whilst the inventory levels of the members, are illustrated in Figure 5.15(b), are much
lower than the inventory levels in the information-sharing scenario. In the SBO model, the
inventory of the retailer who possess the highest inventory level among the SC members from
week 60 until the end of the simulation remains at 8 crates. While, in the SD model with
information sharing the inventory of the retailer who possess the lowest volatility among the

SC members fluctuates in the range of [0, 42] at the same time period (see Figure 5.14(b)). The
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cash cycle of the members after using the SBO method is shown in Figure 5.15(c) that proves
the cash flow bullwhip is significantly reduced comparing the SD model with information
sharing. After employing the SBO method, the CCC of the retailer who possess the highest
cash to cash cycle among the members remains at 10 days from week 60 until the end of the
simulation. While, in the SD model with information sharing the CCC of the retailer has a scale
of 0-275 (see Figure 5.14(c)).

30 (a)
25 = 15+
W =]
z0
S E 10
P 15 E
2 o c
e £ s
5
I t } } } } | L
] 20 40 &0 g0 100 120 o
weeks weeks
— RPO WPO —DPO — MPO — RI Wl — DI — MI
c
20 (©
w 20
%]
o

10

weeks
— RCCC WCCC — DCCC  — MCCC

Figure 5.15. Impact of employing SBO for experiment 3

The SBO method proposes an aggressive approach to bridging the gap between the desired
inventory and current net inventory for the distributor and the wholesaler. The value of « for
the distributor and wholesaler is less than 0.5, and a cautious strategy is required for orders in
the supply line for the distributor and wholesaler, i.e., the value of g for the retailer is more
than 0.5. Further experiments were performed to investigate if the recommended policy was
robust for all random values in the range of [0-15] and random lead times in the range of [0-4].
50 random sets representing customer’s demand and lead times were generated, and the SBO
was run 15 times for each set to determine the fitness function. The lowest fitness function
found would be the optimal solution for that specific set of random values. To identify the most

frequent policy for bridging the inventory gap and supply line consideration, the recommended
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policies for the random sets are examined. Table 5.4 shows the replenishment policies that

occurred most frequently and the associated mean fitness values.

This experiment proves that the replenishment policy is found by the SBO method. Aggressive
policies by the distributor and wholesaler for inventory gap and cautious policies by the
distributor and wholesaler to supply line are not robust for every set of random customer orders
and lead times within the defined ranges. However, these policies occur most frequently and
provide the highest fitness value. The lower inventory levels held by the SC members after
employing the SBO method leads to lower SCTC comparing the information sharing. The
accumulated cost of the supply chain in the SBO method amounts to £8729.90 which is 18
percent lower than the accumulated cost in the SD model with information sharing.

Table 5.4. Replenishment policies found optimal for random demand and lead times

Replenishment policy Rate of occurrence Mean reverse fitness value

Aggressive distributor and
wholesaler to net inventory gap

) o 23 8876.28
Cautious distributor and

wholesaler to supply line

Aggressive  manufacturer and
retailer to net inventory gap

_ ] ] 19 8935.61
Cautious retailer to orders in

supply line

Non-aggressive  members  to
inventory gap 8 9027.52
Cautious retailer and distributor

5.5. Concluding discussion

Supply chain management seeks to match the supply of products with the demand of customers
and the supply of money with the demand of the agents. Heterogeneous distribution of products
among supply chain members known as the bullwhip effect (BWE) and heterogenous
distribution of cash among supply chain members known as the cash flow bullwhip (CFB),
trigger inefficiencies in operational processes of the members such as purchasing and inventory

management and consequently reduce supply chain service level.

As discussed in section 2.5.2 in chapter 2 and is presented in Table 5.5, Previous research on

the BWE has highlighted the existence of this phenomenon and identified its main causes to
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mitigate its adverse effects (Alwan et al., 2003; Lee et al., 2004; Zhang, 2004; Luong, 2007).
However, there is lack of studies that focus on minimizing the BWE by finding the optimal
values to the controllable decisions of the supply chain members. Moreover, previous research
does not consider the flow of cash in the BWE modelling.

Previous research on the CFB has identified the causes of this phenomenon (Tangsucheeva and
Prabhu, 2013; Goodarzi et al., 2017). There is a lack of studies that focus on minimizing the
CFB through finding the optimal values to the inventory bullwhip contributors including the
desired inventory, the desired supply line, the inventory adjustment parameter, and the supply
line adjustment parameter. Furthermore, price and unit cost are two decision parameters that

assist the decision maker in controlling variations in the CCC.

To fill the gap in the BWE and CFB literature, in this chapter, an SBO model is developed for
reducing the bullwhip effect, cash flow bullwhip, and the total cost in a supply chain under
deterministic demand and lead times, stochastic demand and deterministic lead times, and
stochastic demand and lead times. In this model financial flow modelling is incorporated into
the system dynamics simulation of the beer distribution game to identify the optimal financial
decisions in addition to the optimal operational decisions. This contribution extends previous
supply chain research on minimizing the bullwhip effect (Alwan et al., 2003; Zhang, 2004;
Luong, 2007; Balakrishnan, et al., 2004; Hosoda and Disney, 2006; Tangsucheeva and Prabhu,
2013, 2014; Goodarzi et al., 2017; Sim and Prabhu, 2017) through diminishing the destructive
effects of the bullwhip effect in supply chain financial flow in addition to the physical flow.
Moreover, it incorporates the financial flow modelling into the inventory planning models and
determines the optimal values to the financial decisions parameters, in addition to the inventory
decisions. Finally, it incorporates CFB minimization as an objective function into an SBO

model.

The initial model is developed as in Aslam and Ng (2016) to validate the approach by observing
similar results and then extending the SBO model. The main objective of the proposed SBO
model is to find the optimal values of desired inventory, desired supply line, forecasting
parameter for inventory, forecasting parameter for supply line, sales price per unit, and unit
cost for supply chain entities to make trade-offs between the SCTC, CFB, and BWE. Three
experiments were developed to investigate the ability of the SBO model in identifying the

optimal replenishment policy.
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Current literature Parameters Minimizing Minimizing | Approaches
considered the BWE by | the CFB by
finding finding
optimal optimal
parameter parameter
values values
(Alwan et al., 2003; Inventory control System
Zhang, 2004; Luong, parameters dynamics
2007; Balakrishnan, et
al., 2004; Hosoda and X X Mathematical
Disney, 2006; modelling
Tangsucheeva and
Prabhu, 2013, 2014;
Goodarzi et al., 2017;
Sim and Prabhu, 2017)
Simulation-
Inventory control v v based
This study parameters optimisation
(System
Price dynamics and
Unit cost genetic
algorithms)

The first experiment was the MIT beer distribution game, which employs deterministic demand

and lead times. The SBO found the optimal replenishment policy to be non-aggressive

approach to the inventory gap for all members, and a cautious approach to orders in the supply

line for the retailer and distributor. The second experiment tested random demand and

deterministic lead times. The SBO found the optimal replenishment policy to be an aggressive

approach to the inventory gap for the retailer and manufacturer, and a cautious approach to

orders in the supply line for the retailer. The third experiment extended the second experiment

through considering random lead times in addition to the random customer demand. In this

experiment, an aggressive approach to the inventory gap for the distributor and wholesaler and

cautious approach to orders in supply line for the distributor and wholesaler was identified to

be the optimal replenishment policy.
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Comparing the performance of the developed SBO model with the information sharing strategy
in reducing the SCTC showed that the SBO outperformed the information sharing in all three
experiments. In the first experiment, after employing the SBO technique the SCTC reduced by
29 percent comparing the SCTC of the SD model with information sharing. Similarly, the
SCTC in the SBO model under demand uncertainty, and demand and lead time uncertainties,
i.e., experiments 2 and 3, reduced by 24 percent and 18 percent, respectively comparing the
SD model with information sharing. Decreasing the gap between the SD model with
information sharing and the developed SBO model as the number of stochastic parameters
increase conveys the importance of the information sharing among supply chain members in
mitigating the SCTC.

In this chapter, the uncertainties in economic parameters which refers to macroeconomic,
financial, and market conditions are not considered. While, these uncertainties may have a
tremendous impact on financial and working capital performances in supply chain networks.
In the next chapter the impact of uncertain economic parameters such as short-term interest
rate on working capital performance and profitability, which are measured by the CCC and

economic value added (EVA) index is investigated.
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Chapter 6. Managing the trade-off between financial
performance and liquidity in a supply chain under economic
uncertainty

6.1. Introduction

Supply chain finance that is described as the intersection of the supply chain management and
finance integrates the planning of the financial and physical flows within the supply chain
networks (Stemmler, 2002; Hofmann, 2005). The objective of supply chain finance is to
decrease the cost of capital for supply chain members and accelerate cash flow within the
supply chain networks through applying financing solutions on assets and liabilities. The
financing solutions employed by the supply chain finance could be divided into two categories:
(1) the “finance oriented” solutions that comprises short-term financial solutions on accounts
payable and receivable offered by a third-party creditor (e.g., factoring, reverse factoring), and
(2) “supply chain oriented” solutions where a financial institution such as a bank might not be
involved and consists of solutions on working capital optimisation and sometimes asset-
liability optimisation through cooperation and coordination among supply chain
participants (e.g., VMI financing, fixed asset financing) (Gelsomino et al., 2016). Working
capital optimisation involves optimizing inventories, accounts receivable, and accounts
payable to ensure capability of a firm to continue its operation. The objective of working
capital optimisation is to reduce the current assets and also increase the current liabilities in
order to minimize the capital tied up in the company’s turnover process (Hofmann and Kotzab,
2010).

Economic uncertainty which refers to macroeconomic, financial, and market conditions has a
tremendous impact on financial and working capital performances in supply chain networks
(Longinidis and Georgiadis, 2013). The financial performance represents the profitability of
the supply chain and the working capital performance represents the accessibility of the supply
chain members to necessary funds for continuing their operations. Although considered
together, financial performance and working capital metrics which in this study are economic
value added (EVA) and cash conversion cycle (CCC) are not necessarily moving to the same
direction as each one has a different fundamental objective. The EVA, targets at maximizing

the wealth, while the CCC focuses on minimizing the accumulated capital.
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In this chapter, an SBO framework, including genetic algorithm (GA) and system dynamics
(SD) simulation, that integrates the planning of the financial and physical flows is presented to
manage the trade-off between financial performance and working capital management in

presence of economic uncertainty.

The rest of the chapter is organized as follows. Section 6.2 describes the model assumptions
and the stock management problem. The proposed SBO model is presented in section 6.3.
Section 6.4 illustrates the applicability of the proposed model through a case study. Finally,

concluding remarks are presented in section 6.5.
6.2. Problem Definition and Assumptions

The stock management problem refers to the issue of controlling a system state or stock to meet
some system objectives. For instance, all supply chain participants manage their inventory and
resources to balance production with the demand of their customer. Stocks are solely altered
through modification in their inflow and outflow rates, thus requiring a decision maker to set
the inflow of the stock so as to counteract the drainage of the stock also eliminate any
discrepancy between the current and the desired state of the stock (Sterman, 2000). Sterman
(Sterman, 2006) points out that there is a delay between a decision maker control actions and
its effect on the stock (system state) which needs to be formulated. A firm seeking to increase
its raw material inventory cannot acquire new units immediately but must await delivery of the
orders by the supplier. The control of the stock management problem can be split into two
parts, where the first part pertains to stock and flow structure of the stock management system,
and the second part relates to the decision rules applied by the decision maker to control the
inflow rate of the stock (Sterman, 2000).

The stock management structure can be found in several different application domains such as
inventory management, capital investment, and human resources. In this paper, the stock
management structure of inventory management model presented by Sterman (2000) is
developed through considering the financial flow in addition to physical flow. Moreover, multi-
objective optimisation (MOO) is integrated with the proposed model by implementing SBO
approach. Figure 1 displays the stock and flow structure of an extended version of the inventory
management model developed by Sterman (2000). A new stock variable namely materials
supply line has been added to the original model. The production centre implements a make-
to-stock production strategy, in which the products are manufactured for storage based on

demand forecasts. However, two delays exist in the model: (1) the time lag in filling the
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inventory as the manufacturing of a product takes time, and (2) the time lag in materials
shipment from suppliers known as order lead time. All the units that ordered to be manufactured
but are not yet finished is represented through the work-in-process (WIP) inventory and the
materials which ordered to the suppliers but not yet received is described by materials supply
line. As Figure 1 depicts, the WIP inventory is defined through production start rate and
production rate, while materials supply line is determined by materials order rate and materials

delivery rate.

The original model seeks to specify an adequate production start rate which in time restores
the expected shipments of products from the inventory and ensures the adequacy of work in
process and inventory levels to provide a good customer service level (Sterman, 2006). In
addition to the production start rate, the presented model aims to define a sufficient material
order rate that will in time replace the material usage rate from the materials inventory as well
as keeping a sufficient materials supply line and inventory to provide a good service level for
production line. These objectives are achieved by identifying the optimal values for the
inventory control parameters which have been highlighted in Figure 6.1. For a detailed

information about the inventory management model the reader is referred to (Sterman, 2000).
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Figure 6.1. Stock and flow structure of extended inventory management model
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6.2.1. Economic uncertainty

The concept of economic cycle is applied to model economic uncertainty. Stagnation, boom,
and recession are categories which express the economic cycle. In our model five uncertain
parameters illustrate the uncertainty in economic environment: (1) customer demand, (2)
expected return of the market, (3) risk-free rate of interest, (4) short-term interest rate, and (5)
long-term interest rate (Longinidis and Georgiadis, 2013). During a boom period, economic
prosperity leads to increased purchasing power of customers which results in excessive demand
for products and services. The expected return of the market rises, as the investors who are
optimistic about the future of the companies present in the stock market increase their
investment. Risk-free rate of interest, which is usually the interest rate of a governmental bond,
falls as the risk of default diminishes. The risk of borrower’s default decreases, therefore
financial institutions charge lower short-term and long-term interest rates. On the other hand,
during a recession period all the aforementioned parameters move to the opposite direction. In
a stagnation period, it is assumed that the past shapes the future due to the fact that there are
minor deviations in the value of parameters comparing the preceding period (Longinidis and
Georgiadis, 2013).

The scenario analysis approach is applied to formulate economic uncertainty. Postulated
scenarios are shown in Figure 6.2. In the current period there is no economic uncertainty
resulting in a single scenario branch over the first year. In the start of the second period, there
are three potential conditions, e.g. boom, stagnation, and, recession, which leads to three

scenarios. Each scenario encompasses a set of constant parameter values.
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Figure 6.2. Scenarios tree for economic uncertainty
6.2.2. Economic value added (EVA)

Stewart lii (1994) presented Economic value added (EVA) index to measure the financial
performance of a company. The proposed index measures the economic value created by a
business through deducting cost of capital employed from its operating profit. The calculation
of the EVA index is expressed in Eq. (6.1), where NOPAT is the net operating profit after tax
derived from income statement. WACC is the weighted average cost of capital which indicates
the average rate of return is expected to be paid for the main sources of capital, i.e. debt and
equity, leveraged by the company (Ogier et al., 2004).

EVA = NOPAT — WACC X (Total Debt + Shareholder's Equity) (6.1)

6.3. System-Dynamics Modelling

The proposed model extends the inventory management model developed by Sterman
(Sterman, 2000) through incorporating financial flow modelling also considering economic
uncertainty. Another novelty relates to presenting MOO structure of the model and pareto-

optimal solutions set obtained from the MOO.
6.3.1 Financial Flow Modelling

To measure the efficiency of the financial flow management through the supply chain, the

economic, and working capital performances of the supply chain members should be evaluated.
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In this study, cash conversion cycle (CCC), and economic value added (EVA), indexes are

applied to measure the economic, and working capital performances, respectively.

The financial stock and flow structure is illustrated in Figure 6.3. The end customers place
orders to the manufacturer. The collecetion policy (m) (6.2) defines the amount of order value
must be collected in cash. For instance, m = 0.2 implies that 20 percent of the order value
needs to be paid in cash before the product delivery. These order values accumulate on cash
(6.3). The rest of the order value is integrated in receivable accounts (6.4). To fulfill the end
customer demand, the manufacturer places orders to the raw material suppliers. The payment
policy (n) (6.2) indicates the share of order value paid in cash. The rest of the order cost required
to be paid by the manufacturer to the suppliers is accumulated on payable accounts (6.5). The
value of inventory held in the manufacturer warehouse is determined by inventory value (6.6).
As the manufacturer pays some part of its order value in cash also is being paid in advance by
end customers for some part of its sales revenue, CCC (4.11) may not be an effective tool for
measuring the cash to cash cycle. Days of advance receivement outstanding (DAdRO) (6.7)
and days of advance payment outstanding (DAdPO) (6.8) are incorporated into updated CCC
metric (6.9).
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Figure 6.3. Stock and flow structure of financial flow
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0<mn<1 (6'2)

Cash = INTEGRAL(Cash Inflow — Cash Outflow) (6.3)
Receivable Accounts

(6.4)

= INTEGRAL(Receivable Accounts Inflow

— Receivable Accounts Outflow)

Payable Accounts = INTEGRAL(Payable Accounts Inflow — Payable Accounts Outflow) (6,5)

Inventory Value = INTEGRAL(Inventory value Inflow — Inventory Value Outflow) (6,6)
Average Cash
DAdRO = £2E29° 2450 (6.7)
Revenue/
365
Average Cash 6.8
DAdPO = ~coes)_ (6.8)
365
Updated Cash Conversion Cycle = DIO + DSO — DPO — DAdRO + DAdPO (6,9)

The income statement is a fiancial statement which represents the earnings also the costs
incured by a company in a fiscal year. Eq. (6.10)-(6.12) formulate the income statement. Net
sales (6.10) is the product of shipment rate and sales price. Earning before interest and taxes
(EBIT) (6.11) is calculated by subtracting COGS (6.12), depreciation, and administrative
expenses from net sales. To calculate depreciation (6.13), the sum of years’ digits method
(Dhaliwal, Salamon and Smith, 1982) which is a form of accelerated depreciation is applied. It
is assumed that fixed assets are depreciated within two years (104 weeks) which is the length
of simulation time. Administrative Costs (6.14) is the product of administrative constants
which equals to 0.01 and net sales. Net operating profit after taxes (NOPAT) (6.15) is
determined by subtracting interest expenses (6.16), which includes short-term and long-term
interests expenses, from EBIT and then multiplying the result with the term (1-Tax Rate).
Short-term interest expenses and long-term interest expenses are constants values that are equal
to the weekly payment for short-term and long-term liabilities, respectively. NOPAT is
allocated between dividends, working capital, and retained earnings. Dividends (6.17) is the
product of NOPAT and profit distribution policy (6.18) which is decided in board of directors
meeting. Working capital policy (6.19) indicates the share of NOPAT alloted to working
capital. Finally, the rest of NOPAT is added to retained earnings (6.20).
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Net Sales = Sales Price X Shipment Rate (6.10)
EBIT = Net Sales — COGS — Depreciation — Administrative Expenses (6.11)
COGS = Unit Cost X Shipment Rate (6.12)
Depreciation = 104 - Time + 1 x (Original Value of Fixed Assets — Salvage Value) (6.13)

(1+2+--+104)
5460

Administrative Expenses = Administrative Constant X Net Sales (6.14)

NOPAT = (EBIT — Interest Expenses) * (1 — Tax Rate) (6.15)

Interest Expenses = Short — term Interest Expenses + Long — term Interest Expenses (6.16)

Dividends = NOPAT X Profit Distribution Policy (6.17)
0 < Profit Distribution Policy <1 (6.18)
0 < Working Capital Policy < 1 (6.19)
Retained Earnings = INTEGRAL(Retained Earnings Inflow) (6.20)

The level of equity (6.21) increases by stock value inflow (6.22) which is a function of new
stock rate and unit stock value. Short-term liabilities (6.23) and long-term liabilities (6.24) are
depleted by payment of the short term interst expenses and long term inteerest expenses,
respectively. Invested capital (6.25) accumulates the amount of financing from short term
liabilities, long term liabilities, and equity. WACC (6.26) is a figure expressing the required
return on the invested capital which is determined by multiplying cost of debt (6.27) and cost
of equity (6.28) by their proportional weight and take the sum of the results. Unlike cost of
debt, Cost of equity may not be easily calculated as there is not an explicit value on the return
that the firm’s equity investors required on their investments. Therefore, the capital asset
pricing model (CAPM) is applied as a substitute. The CAPM model calculates expected return
for assets, notably stocks through considering time value of money and risk. The risk-free rate
of interest , which is usually the yield on government bonds such as U.S. Treasuries,
compensates for time value of money, while the second part of the formula represents the

amount of compensation for taking on additional risk. The risk measure (8) is the amount of
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systematic risk existing in an asset. Economic value added (EVA) (6.29) is calculated by

subtracting the cost of invested capital from NOPAT.

Equity = INTEGRAL( Stock Value Inflow) (6.2 1)
Stock Value Inflow = New Stock Rate X Unit Stock Value (6_22)
Short term Liabilities = Integral (—Short term Interest Expenses) (6_23)
Long term Liabilities = Integral(—Long term Interest Expenses) (6.24)
Invested Capital = Integral(Short term Liabilities + Long term Liabilities + Equity) (6_25)
WACC = Equity X Cost of Equity +
~ Invested Capital ost of Equity

Short — term Liabilities + Long term Liabilities

- g X Cost of debt X (1 — Tax Rtae) (6.26)

Invested Capital
Cost of Debt = Short term Liabilities y
ost of Debt = Short term Liabilities + Long term Liabilities
Short ¢ Int trate + Long term Liabilities « (6.27)
orttermnterestrate Short term Liabilities + Long term Liabilities

Long term Interest rate
Cost of Equity = Risk free Rate of Interest + (Expected Return of the Market — (6.28)
Risk free Rate of Interest) X 8
EVA = NOPAT — WACC X Invested Capital (6_29)

Although SD simulation models are considered to be more robust than other type of simulation

models, they are required to be validated through validation tests. The extreme conditon test

(Sterman, 2000), which is one of the validation tests for SD models, is used to show the

robustness of our developed simulation model. The extreme condition test assesses whether

model behaves appropriately according to its inputs values (Sterman, 2000). E.g., the demand

for a product converges to zero when there is a significant increase in the price (Sterman, 2000).

To run extreme condition test in our developed model, sales price per unit of product that is a

model input increases dramatically. Consequently, CCC and EVA grow significantly.
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6.3.2. Multi-objective Modelling of the Extended Inventory Management Model

The main objective of the extended inventory management model is to provide a good customer
service level by meeting customer demand through keeping a sufficient amount of inventory
level. Although keeping high level of inventory ensures the capability of the firm on meeting
the customer demands, it imposes significant holding costs on the manufacturing company.
Thus, a trade-off is required to be made between the sufficient level of inventory and shipment
rate. Furthermore, the downstream flow of material from the suppliers to the firm is required
to be responded by the upstream flow of money which necessitates the availability of the
working capital. Minimization of working capital metric (CCC) expedites the accessibility to
cash through minimizing the inventory level. Finally, profitability is the main objective of all
businesses which in this study is measured by EVA. Maximization of EVA may be achieved
by increasing the shipment rate which leads to increasing the inventory level, even though CCC
minimization seeks to decrease the level of inventory. Consequently, another trade-off is
required to be made between the cash to cash and profitability metrics. The objective functions

are denoted as follows:

) . 3 MaxEVA=MaquVA
Objective functlons{ Min CCC = Min pgp, (6.30)
yT_ EvA »T_.ccc
Where pgys = ==—, fece = =55
Where

Input (Decision parameters)

— WIPAT, MCT, IAT, MOPT, SSC, TAOR, m, MIAT, MSSC, MMIC, NSP,n, PDP, SP, UC, WIPAT, WCP
And Qutput = pgya, Heee

Subject to: 0.25 < WIPAT < 10, 5 < MCT < 15, 5 < IAT < 15, 0.25 < MOPT < 10, 0.25 < S5C <
10, 5<TAOR <15, 0<m <1, 5 < MIAT < 15,0.25 < MSSC < 10,0.25 < MMIC < 10,0 < NSP <1,
0<n<10<PDP<050,7<SP<123<UC<6,025<WIPAT < 10,0 < WCP <0.50, 0 < a <1,
0<pB <1, 0<DDI<30000, 0<DDSL < 35000 (6.31)

a = forecasting parameter for inventory adjustment: denote the aggressiveness of the distributor in

bridging the gap between the desired and current inventory.
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B = forecasting parameter for supply line adjustment: denote the level of consideration of the distributor

to the inventory on-orders at the time of order placement

m = collection policy: denotes the share of the sales is required to be collected in cash

n = payment policy: denotes the share of the raw material purchase is required to be paid in cash
DDI: denote the desired inventory by the distributor

DDSL: represent the desired inventory on order by the distributor

IAT = The inventory adjustment time: represents the time period over which the manufacturer seeks to

bridge the gap between the desired and current inventory of finished products

MIAT = The material inventory adjustment time: represents the time period over which the manufacturer

seeks to bridge the gap between desired and current inventory of the raw material

MSSC = The manufacturer safety stock coverage: represents the time period over which the manufacturer

would like to maintain a safety stock coverage to hedge against volatility in distributor’s demand

SSC = The safety stock coverage: represents the time period over which the distributor would like to maintain

a safety stock coverage in order to meet any variations in retailers’ demands

MMIC = The minimum material inventory coverage: represent the minimum material inventory required

by the manufacturer

MOPT = The minimum order processng time: denotes the minimum time required by the manufacturer to

process and ship a distributor order
PDP = The profit distribution policy: denotes the dividends that is required to be paid to the shareholders
SP = The sales price: The price per tonne of product which is paid to the retailers by the customers

TAOR = The time to average order rate: denotes the time period over which the distributor demand forecast

is adjusted to actual retailers’ orders
UC = The unit production cost: denotes the production cost per tonne of product at the manufacturer

WIPAT = The WIP adjustment time: represents the time required for the manufacturer to adjust its WIP

inventory to its desired level

MCT = The manufacturing cycle time: represents the average delay time of the production process for the

products from start until completion of the product
NSP = New stock parameter: represents the level of the stock that should be issued

WCP = Working capital policy:reprents the share of NOPAT dedicated to the working capital
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The first objective relates to maximizing EVA and the second objective pertains to
minimization of CCC. The objective functions are formulated as the mean of performance

indicators over the simulation period.
6.3.3. Multi-objective Simulation-based Optimisation

Simulation models are descriptive tools which solely depict the current state of the studied
system. On the other hand, optimisation models are prescriptive tools that are able to provide
recommendations to improve the performance of the system. Therefore, integrating
optimisation and simulation leads to a consolidated framework which can be both descriptive
and prescriptive. Such an integrated framework is called simulation-based optimisation (SBO).
SBO is the process of obtaining optimal values for the decision variables, where the objective
functions are measured through the simulation model (Olafsson and Kim, 2002). SBO is an
iterative process which mostly is launched during the optimisation modeling process by
generating initial values for input parameters of the simulation model, i.e., supply chain
decision parameters. The simulation model is then run using inputted values to evaluate system
performance. Thereafter, the performance measures are fed back into the optimisation model.
Based on this feedback a new set of decision parameters are generated and inputted into the
simulation model for evaluation (Aslam, 2013). This iterative process continues until a user-
specified stop criterion has been met. For instance, performing a defined number of evaluations
(Syberfeldt, 2009).

Multi-objective optimisation (MOOQ) is a method is applied to solve problems containing
conflicting objectives that may not be formulated to a common scale of cost or benefit
(Tabucanon, 1996). To solve problems with multiple objectives firstly, non-dominated set of
optimal solutions are obtained. Secondly, the decision maker chooses the optimal solution
based on its preferences (Deb, 2001). Non-dominated solutions are a set of different points in
a frontier called Pareto optimal. The solutions which belong to the Pareto optimal do not have
any superiority over another, however, they dominate all other solutions. A solution S*
dominates another solution S2, if St is significantly better than S? in at least one optimisation

objective, and where St is no worse than S2 regarding all optimisation objectives (Deb, 2001).

In this study, the weighted sum method, one of the most widely-used methods for multi-
objective optimisation (Stanimirovic, Zlatanovic and Petkovic, 2011), is utilized to construct
the Pareto optimal frontier. In this method, multi-objectives are transformed into a single

objective through multiplying each objective function by a weighting factor and aggregating
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all weighted objective functions (Marler and Arora, 2010). The weight of an objective is chosen
in proportion to the relative importance of the objective (Gass and Saaty, 1955). Considering a
multi-objective optimisation problem with m objectives, where w; (i = 1, ..., m) represents
the weighting factor for the ith objective function. If X w; =1and 0 <w; <1, the
weighted sum is a convex combination of objectives (Kim and De Weck, 2006). Therefore, the
solution obtained by each single objective optimisation is a point on the Pareto optimal frontier.
By changing the weighting factors (w;), the single objective optimisation determines a
different optimal solution. The obtained optimal solutions form the set of non-dominated
solutions that might be represented in a two dimensional chart where each point in the Pareto

optimal frontier implies a combination of inventory and financial decisions parameters.

As mentioned in chapter 3, GAs are well suited for parameter optimisation and can also be
extended to multiple objective optimisation (MOQO) (Streichert, 2002). Therefore, in this study,
a GA is employed to specify optimal values to the inventory and financial control parameters
to minimize cash conversion cycle (CCC), while maximizing economic value added (EVA).
The fitness function of the GA is defined as:

FitnessFunction = wl X Ugya — W2 X Ucce wl=w2 =05 (6.32)

6.4. A case study

In order to demonstrate the applicability of the proposed model, numerical experiments are
performed in this section. The data of the case study was introduced in Longinidis and
Georgiadis (2011) and Longinidis and Georgiadis (2013). A manufacturing supply chain
including a manufacturer which implements a make-to-stock production strategy is considered.
In the forward direction, the manufacturer is supplied by raw material suppliers and ships
finished products to the customer zones. To hedge against unexpected variations in customer’s
demand, the manufacturer preserves a certain coverage of expected demand as safety stock.
The suppliers are able to satisfy the entire order of manufacturer. There is no backlog of unfilled
orders, and in the case the manufacturer is not able to meet the customers’ demand, the orders
are lost. In the reverse direction, the manufacturer asks the end customers to prepay a fraction
of their purchasing cost (i.e., collection policy) and also pays a fraction of the procurement cost
(i.e., payment policy) to the supplier. The problem consists of finding the optimal values to the
controllable inventory and financial parameters for the manufacturer in order to make a trade-

off between the CCC, and EVA, under all economic scenarios. As the problem is multi-
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objective, the generated Pareto optimal frontier provides a set of optimal controllable

parameters to be selected based on decision maker’s preferences.

The initial data for running the simulation model are presented in Tables 6.1 and 6.2. Table 6.1
shows the five parameters that express into a large extent the economic uncertainty. These
parameters are in compliance with the scenario tree structure presented in Figure 6.2. The
balance sheet, at the beginning of the simulation period, is presented in Table 6.2. The original
value and salvage value of fixed assets are 210,000 and 168,000, relative money units (rmu)
respectively. Moreover, the administrative constant is considered to be 0.01, the tax rate is 30%

per year, the beta coefficient equals to unity, and stock value is 7 rmu per stock.

Table 6.1. Customer demand and financial parameters related to economic scenarios

| Parameter

SO0 oo T col, | STRY, | STREL, | LTRE, | LREL, | 7 | B | BT [ B
Si 10000 15000 7.00 5.60 4.00 3.00 2.50 | 2.00 | 5.00 | 6.00
S, 10000 10000 7.00 7.00 4.00 4.00 250 | 2.50 | 5.00 | 5.00
S3 10000 5000 7.00 8.40 4.00 5.00 2.50 | 3.00 | 5.00 | 4.00

Table 6.2. Balance sheet at the beginning of simulation time (t=0)

Account rmu?

A.1.Assets 170,000

A.1.1.Tangible assets 170,000

A.1.2.Intangible assets 0

A.2.Current assets 70,000

A.2.1.Cash 29,968

A.2.2. Receivable accounts 28,000

A.2.3. Inventory 12,032

A.Total assets 240,000

B.1.Equity 130,000

B.1.1. Common stock 80,000

B.1.2. Retained earnings 50,000

B.2.Debt 110,000

B.2.1.Short — term liabilities 45,000

B.2.2.Long — term liabilities 65,000

B.Total debt and equity 240,000

8Relative money units
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6.4.1. Results

To assess the effect of economic uncertainty on the model performance the SD simulation
model is required to initialize in a balanced equilibrium. Therefore, all the model stocks
including the inventories and supply lines are set to be equal to their desired values and the
expected order rate is set to be equal to the customer order rate. Figures 6.4(a)- 6.4(d) represent
the inventory, cash to cash cycle, and EVA dynamics for the SC members in scenario 1
obtained from running the SD simulation model for two years, 104 weeks. The distributor
increases placed orders to the manufacturer to meet the surge in customer’s demand occurred
at the week 53 that results in peaking its inventory level at 15000 units of product at week 55.
The inventory of the distributor levels at its new equilibrium at 12700 unit of products at week
70. There is a plunge in manufacturer’s inventory after the demand growth as the
manufacturing cycle time is 5 weeks. At week 58 the inventory of the manufacturer starts to
rise and reaches to its new equilibrium level, 41600 units of products, at week 80. The cash
conversion cycle dynamics follows the pattern in the manufacturer’s inventory which holds the
highest levels of inventory among supply chain members. The cash conversion cycle at the
start of the second-year plummets as a result of fall in the accumulated inventory in the supply
chain network and reaches to its new equilibrium level, 87 days, at week 80. The EVA value
added at the start of the second year increases sharply due to the reduction in inventory levels

of the manufacturer and rise in sales before levelling off at £51700 at week 100.
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Figure 6.4. SD and SBO models performances scenario 1

To implement the presented multi-objective simulation-based optimisation model, a number of
specific values need to be decided on. The range of values for the decision parameters which
defined by Eqg. (6.31). The parameters for the GA which are set as follows: the population size
is 300, the crossover and mutation rates are set to be 0.8 and 0.1, respectively. To specify an
appropriate population size, a number of population sizes were selected and the algorithm was
run 15 times for each population size. The results are reported in Table 6.3. Increasing the
population size improves the mean and the standard deviation of the fitness function until

reaching to the population size that generates the optimal solution, i.e. 300.

Table 6.3. Impact of population size on fitness function

. Fitness value
Population size i _
Worst (Min) Best (Max) Mean Standard deviation
150 59615.64 59723.68 59642.37 3828
200 59596.38 59684.24 59625.40 25.36
250 59487.80 59537.51 59514.29 14.62
300 59422.11 59453.62 59433.72 6.42
350 59422.11 59448.23 59431.51 6.21

For each scenario using the aforementioned parameters, the SBO is run 15 times and the best
fitness value is identified. The simulation system is then run using the optimal decision
parameters obtained from the SBO model that generated the best fitness value. Figures 6.4(a)-
6.4(d) represent the inventory, cash to cash cycle, and EVA dynamics for the SC members in
scenario 1 after employing the SBO methodology. The inventory level of the distributor
decreases after applying the SBO methodology. From week 75 onwards the distributor
inventory remained at 11800 units of products, while before SBO at the same period it levelled
off at 12700 units. The fluctuation in distributor’s inventory after employing SBO is
significantly higher than before SBO. The inventory of manufacturer before SBO fluctuates at
the range of [10000, 15000]. While after using SBO, it is oscillating in the range of [3200,
23000]. Contrary to the distributor’s inventory, the inventory of manufacturer diminished
significantly after using the SBO. The manufacturer’s inventory peaked at 20000 units of
products, while it peaked at 41600 before SBO. Moreover, after SBO the inventory level of the
manufacturer at week 80 is 18000 and continues to decrease, although before SBO, it remains

constant at 41600 units from week 80 onwards. The significant reduction in inventory levels



130

of the manufacturer yields the dramatic fall in cash to cash cycle. The cash conversion cycle
after SBO oscillates in the range of [6, 38] and continues to decrease at week 80 onwards from
33 days. While before SBO, it fluctuates in the range of [36, 114] and remains stable at 87 days
from week 80 onwards. The EVA after SBO follows the same pattern as before SBO except
for more frequent and higher domain oscillations between weeks 53 and 65. Furthermore, after
SBO the EVA reaches to equilibrium level of £75800, while before SBO its equilibrium level
is £51700.

Figures 6.5(a)- 6.5(d) represent the inventory, cash to cash cycle, and EVA dynamics for the
SC members in scenario 2 obtained from running the SD simulation model for two years, 104
weeks. As the customer’s demand remains unchanged during the simulation model, the system
maintains its equilibrium state during the simulation time. The manufacturer inventory and the
cash conversion cycle follow a goal seeking pattern which is achieved at week 10. The EVA

decreases linearly as the invested capital increases linearly.
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Figure 6.5. SD and SBO models performances scenario 2

Figures 6.5(a)- 6.5(d) represent the inventory, cash to cash cycle, and EVA dynamics for the
SC members in scenario 2 after employing the SBO methodology. As in experiment 1, the SBO
methodology reduces the inventory level of the distributor. The distributor’s inventory remains

at 7613 from week 10 until the end of the simulation. While, in the SD model it remains at
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10,000 during the simulation time. Similar to the scenario 1, the inventory level of the
manufacturer diminishes significantly after employing the SBO methodology. Before using the
SBO, the manufacturer’s inventory reaches to 36600 units of products at week 10 and remains
stable until the end of the simulation. While, after employing the SBO, from week 10 onwards
it oscillates in the range of [8500, 17200]. The significant decrease in the manufacturer’s
inventory level prompts reduction in cash to cash cycle. After using the SBO, the cash
conversion cycle from week 10 until the end of the simulation fluctuates in the range of [22,
43] days. Although, in the SD model at the same period it remains stable at 117 days. The EVA
after using the SBO, from week 10 onwards oscillates in the range of [42300, 47500] which is
achieved as a result of reduction in the inventory held by the manufacturer. The EVA in the
SD model is £43300 at the start of the simulation and arrives at £38900 at week 104.

Figures 6.6(a)- 6.6(d) represent the inventory, cash to cash cycle, and EVA dynamics for the
SC members in scenario 3 obtained from running the SD simulation model for two years, 104
weeks. The inventory of the distributor remains unchanged at 10000 units of products until the
end of the first year. At the start of the first-year distributor’s inventory surges to 15000 units
of products and remains stable until the ends of the simulation as a result of slump in customer’s
demands. The inventory of the manufacturer before the start of the second year shows a goal
seeking pattern which reaches its goal, which is 36700 units of products, at week 10. At the
start of the second year it grows significantly and arrives at 50400 units of products at week
60. Between weeks 60 and 80, there is a plummet in manufacturer’s inventory levels before
converging to the new equilibrium level at 26600 at week 80. The cash conversion cycle shows
the similar pattern to the manufacturer inventory. At week 60 the cash to cash cycle peaks at
364 days and its new equilibrium level is 175 days which is achieved at week 80. The EVA at
the start of the second-year plunges as a result of slump in customer’s demand and reaches to

£13569 at the end of the simulation.
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Figure 6.6. SD and SBO models performances scenario 3

Figures 6.6(a)- 6.6(d) represent the inventory, cash to cash cycle, and EVA dynamics for the
SC members in scenario 3 after employing the SBO methodology. The SBO methodology
significantly reduces the inventory of the distributors. After employing the SBO, the maximum
inventory of the distributor is 11227 which is reached at week 53. While in the SD model,
during the second year the inventory of the distributor remains at 15000. The inventory of the
manufacture reduces significantly after using the SBO. The inventory of the manufacture after
employing the SBO peaks at 24524 units of products at week 60. While, in the SD model it
peaks at 50400 units of products at week 60. The inventory of the manufacturer between weeks
80 and 100 varies in the range of [2705, 3819] units of products. However, in the SD model it
remains stable at 26600 units of products at the same period. Using the SBO reduces the cash
to cash cycle significantly as the cash conversion cycle is a function of the inventories held by
the supply chain members. After employing the SBO, the cash conversion cycle varies in the
range of [15, 125] days. While, in the SD model it fluctuates in the range of [48, 364]. In
congruence to the SD model, the EVA in the SBO model shows a significant reduction at the
start of the second year caused by the plummet in customer’s demand. While, in the second
year the EVA values obtained from the SBO model are much higher than the ones attained
from the SD model. In the second year the EVA in the SBO model varies in the range of [19125,
2086] GBP. However, in the SD model it varies in the range of [13569, 14768] GBP.

Figures 6.7- 6.9 illustrate the Pareto optimal frontier for EVA versus CCC in the scenarios 1-
3. The results are determined by specifying the weighting factors for objective functions which
could be selected based on the decision maker’s preferences. To achieve non-dominated
solutions, each single objective optimisation problem is formulated through selecting
weighting factors (w;) that are in the interval of [0,1] and add up to 1. Each point in this frontier

corresponds to a different combination of the decision parameters.
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In order to get a more detailed insight into model’s decision mechanism, two solutions in each
scenario were selected and their optimal decision parameters are presented in Tables 6.4 - 6.6.
Solution 1 represents the optimal decision parameters that result in minimum CCC while
ignoring the added value. On the other hand, Solution 101 represents the optimal decision

parameters that lead to maximum added value while ignoring cash to cash cycle.

As shown in Tables 6.4 - 6.6, solution 1 in all scenarios recommends collection of major share
of the customers’ order value in the form of in advance cash payment, e.g., in scenario 1, m =
0.96, and payment of the major share of the purchased material’s value in the form of credit
payment, e.g., in scenario 1, n = 0.08, as decreasing the level of accounts receivable and
increasing the level of accounts payable yield reduction in the CCC.

Since diminishing the level of inventories, containing materials, finished and unfinished goods,
is another common way to decrease the cash to cash cycle, the values for the inventory
decisions parameters including safety stock coverage (SSC) , material safety stock
coverage (MSSC), Minimum order processing time (MOPT), minimum material inventory
coverage (MMIC) , inventory adjustment time (IAT) , material inventory adjustment
time (MIAT), WIP adjustment time (WIPAT), and time to average order rate (TAOR) in

solution 1 are lower than the values recommended in solution 101.

On the other hand, solution 101 in all scenarios recommends a significant profit margin, e.g.,
in scenario 1 the sales price (SP) is 2.91 times bigger than the unit cost (UC) as it targets at
maximizing the operating profit. Since decreasing the level of invested capital is another way
to maximize EVA, solution 101 in all scenarios recommends allocating 100 percent of the
NOPAT to working capital and dividends, i.e., WCP = 0.5 & PDP = 0.5. Both solutions in
all scenarios have almost the same approach toward the new stock parameter as issuing new

stocks improves neither EVA nor CCC.

Regarding the inventory decisions for the distribution centre, solution 1 in all the scenarios
recommends a lower desired inventory (DCDI) in order to diminish the level of inventory. In
both scenarios 2 and 3, solution 1 recommends a lower level of desired supply line (DCDSL)
as setting high level of desired supply line in presence of stability and shrinkage in demand is
not imperative. Although, in scenario 1, solution 1 recommends a higher level for finished
products within supply line in order to meet increased demand of end customer. Forecasting
parameter for inventory adjustment () and forecasting parameter for supply line adjustment

(B) represent the policy of the distribution centre in relation to bridging the gap between the
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desired and current levels of inventory and supply line, respectively. A high value of a
indicates an aggressive policy to bridge the gap between desired and current inventory level.
In the case of 8, a high value implies that all the orders in the supply line have been taken into
account, when deciding on the amount of orders to be placed with the upstream member.
Neglecting minimization of the CCC, i.e., the weight of CCC in objective function equals to 0,
there is a positive correlation between end customer demand and forecasting parameters for
supply line adjustments (i.e., 8). Although, the forecasting parameter for inventory adjustment

(i.e., @) and the end customer demand move at the same direction.

Considering the values for the EVA, as expected, scenario 3 results in the lowest value for
EVA comparing the other scenarios since there is recession in economic condition in the
second year. Furthermore, the EVA in scenario 2 is lower than scenario 1 as the stagnation in
the second year leads to stability in the end customer demand.

3 ><104 T T T T T T

Solution 1 Scenario 1

Economic value added (EVA)

7r Solution 101 |

7-5 1 Il 1 1 | 1 1
0 50 100 150 200 250 300 350 400

Cash conversion Cycle (CCC)

Figure 6.7. Pareto optimal frontier illustrating the trade-off between EVA and CCC in scenario 1

Table 6.4. Optimal decision parameters of two non-dominated solutions in Scenario 1

Parameter

Weee | Weya | m | IAT | DDI B | MIAT | MSSC | MMIC | MOPT | NSP | n
Solution

Solution 1 1 0 0.96 | 13.37 | 25341 | 0.27 | 6.10 4.16 3.94 0.28 0 0.08
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Solution 101 ‘ 0 ‘ 1 ‘0.52 ‘ 13.39 ‘ 27028 ‘ 0.35‘ 8.35 ‘ 5.25 ‘ 9.44 ‘ 9.74 ‘ 0 ‘0.23‘

Parameter No

PDP| SSC | SP | TAOR | «a DDSL | UC | WIPAT| WCP | picce | Mgva | simul
Solution ation

Solution 1 0.50 | 0.32| 9.29 | 1442 | 047 | 14158 | 4.08 | 3.15 | 0.49 1 33471 | 2332

Solution 101 0.50 | 3.77 | 11.96| 10.42 | 0.81 7179 3.06 | 442 | 0.50 | 362 | 74243 | 2411
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Figure 6.8. Pareto optimal frontier illustrating the trade-off between EVA and CCC in scenario 2

Table 6.5. Optimal decision parameters of two non-dominated solutions in Scenario 2

Parameter
Weeel Wgyal m | IAT | DDI B | MIAT | MSSC | MMIC | MOPT | NSP | n
Solution
Solution 1 1 0 091 | 8.66 | 2362 | 0.31 | 5.23 5.52 6.97 0.25 0 0.09
Solution 101 0 1 | 037 | 12.86| 21722| 0.14 | 1343 | 6.90 8.92 9.48 0 | 042
Parameter No
PDP | SSC | SP | TAOR | a | DDSL | UC | WIPAT| WCP | uccc | #gva | simul
Solution ation
Solution 1 0.50 | 0.25 | 11.31 | 14.11 | 0.45 | 1999 5.93 6.92 0.50 0 21218 | 2346
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Figure 6.9. Pareto optimal frontier illustrating the trade-off between EVA and CCC in scenario 3

Table 6.6. Optimal decision parameters of two non-dominated solutions in Scenario 3

Parameter
Weee | Weva | m | IAT | DDI B | MIAT | MSSC | MMIC | MOPT | NSP n
Solution
Solution 1 1 0 091 | 10.06 | 1381 | 048 | 5.94 5.75 5.24 0.28 0.0005 | 0.39
Solution 101 0 1 0.37 | 12.67 | 11031 | 0.08 | 8.97 6.40 7.75 7.94 0 0.58
Parameter No
PDP | SSC | SP | TAOR | a | DDSL | UC | WIPAT| WCP | pccc | tgva | Simul
Solution ation
Solution 1 0.44 0.33 | 10.27 | 1394 | 042 | 3514 | 5.87 2.48 0.50 2 —4675| 2314
Solution 101 0.50 4.29 | 11.52 9.99 0.27 | 5085 | 3.54 3.23 0.50 | 291 | 14215 | 2486

6.5. Concluding discussion

Given the importance of incorporating financial flow modelling into supply chain planning

models, this chapter presents an SBO framework that incorporates the financial flow modelling
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into the inventory management problem presented by Sterman (2000) under economic
uncertainty. Economic uncertainty triggers uncertainty in the financial status of a company
which may in turn results in sustainability risks. Financial and working capital performances
are two essential pillars of financial status representing the profitability of the supply chain and
the accessibility of the supply chain members to necessary funds for continuing their operation.
To assess the financial and working capital performances, in this chapter, the economic value
added (EVA) and cash conversion cycle (CCC) metrics are used, respectively. These two
metrics are not moving towards the same direction and business managers should find a balance
between them. The proposed model integrates system dynamics (SD) and a genetic algorithm
(GA) to identify the optimal values to the inventory and financial decisions parameters to make
the trade-off between the EVA and the CCC.

As discussed in section 2.5.3 in chapter 2 and is presented in Table 6.7, much of the literature
on the application of the SD modelling for inventory management focuses on evaluating the
impact of various policies on improving the system’s performance in terms of efficiency and
responsiveness. The effects of the improvement policies on the system’s performance are
measured through modifying the values to the decision parameters of the model. In other
words, by applying SD modelling, the modeller is solely able to compare the effects of varied
policies, i.e., different values of the controllable parameters, through performing what-if
analysis which may not be an effective strategy particularly, when the decision parameters are
continuous such as inventory decisions. Therefore, incorporating optimisation algorithms into
the SD simulation is inevitable when the modeller aims to identify the optimal values to the
continuous decision parameters. To fill the gap in inventory management using SD simulation,
In this chapter, the genetic algorithm which is a metaheuristic and is an effective tool for
optimisation of the continuous parameters (Muhlenbein and Schlierkamp-Voosen, 1993) is
applied to identify the optimal values to the inventory decisions parameters such as inventory

and supply line adjustment parameters.

Much of the literature on inventory management under trade credit applied mathematical
modelling approaches, and the simulation-based modelling remains underrepresented.
Moreover, cost minimization or profit maximization are the dominant objective function in the
developed models in the literature, while the literature lacks the studies that manage the trade-
off between profitability and liquidity through developing the multi objective models. Finally,
the literature lacks the studies that consider uncertainties in economic parameters such as

demand and interest rates.
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Table 6.7. Literature on inventory management using SD simulation and working capital management

Current Parameters Finding the | Managing Considering | Approaches
literature considered optimal the trade-offs | the
values to between the | economic
the EVA uncertainty
continuous | maximization
inventory and the CCC
parameters | minimization
(Reyes et al, Inventory System
2013; Peng et al., | control dynamics
2014; Cannella et | parameters X X X
al., 2015; Liao, Mathematical
2008; Teng, modelling
2009; Mahata,
2012; Huang,
2007; Huang and
Hsu, 2008; Teng
and Chang, 2009; | Inventory
Ravichandran, control
2007; Liao, parameters
2008; Teng, Price Simulation-
2009) Unit cost based
Collection v v v optimisation
This study policy (System
Payment dynamics and
policy genetic
algorithms)

To fill the gap in the inventory planning under trade credit literature, in this chapter, a

simulation-based optimisation model which integrates SD simulation and a genetic algorithm

is developed to manage the trade-off between financial performance and liquidity in a supply

chain under economic uncertainty. To assess the financial performance and liquidity, the

economic value added (EVA) and the cash conversion cycle (CCC) metrics are used,

respectively. These two metrics are not moving towards the same direction and business
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managers should find a balance between them. This contribution extends the literature on
supply chain inventory management using system dynamics simulation and supply chain
working capital management (Reyes et al., 2013; Peng et al., 2014; Cannella et al., 2015; Liao,
2008; Teng, 2009; Mahata, 2012; Huang, 2007; Huang and Hsu, 2008; Teng and Chang, 2009;
Ravichandran, 2007; Liao, 2008; Teng, 2009) through incorporating financial parameters
including price, unit cost, collection policy, and payment policy. Moreover, it considers the
EVA and the CCC in the multi-objective optimisation formulation of the inventory
management model developed by Sterman (2000) under economic uncertainty. Finally, it
introduces a new method for measuring the CCC in which the revceiving and payment of the
advance payament are taken into account. The proposed model handles economic uncertainty

through a scenario tree approach.

The developed simulation-based optimisation model is implemented using the data of a real
case study introduced in Longinidis and Georgiadis (2013). Firstly, the conflicting objectives
are given the same level of importance in order to compare the performance of the SBO
approach, in which a genetic algorithm is incorporated into a SD simulation model, with the
performance of the SD simulation model under three economic scenarios. The results show the
superiority of the SBO approach over SD modelling in all three scenarios. Secondly to manage
the trade-offs between the conflicting objectives, the weighted sum method is used to generate
the Pareto efficient frontiers which include the non-dominated optimal solutions. These Pareto
efficient frontiers provide decision makers with a portfolio of alternative optimal inventory and
financial decisions that could be selected based on market condition and the power of the

company within supply chain network.

In the next chapter a hybrid analytical and simulation model that integrates the presented SBO
model in this chapter and mixed-integer linear programming (MILP) is developed to examine

whether the hybrid model outperforms the SBO model.
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Chapter 7. Hybrid analytical-SBO approach to integration of
physical and financial flows in a supply chain under economic
uncertainty

7.1. Introduction

Simulation and optimisation are the most utilized approaches for supply chain modelling. The
advantage of simulation models lies on their ability in modelling the complexities and dynamic
behaviour of the supply chains. Although, they do not provide the capability of obtaining
optimal system configurations (Abo-Hamad and Arisha, 2011). On the other hand, optimisation
models are not effective tools for incorporating the dynamic behaviour and complexities of the
supply chains as the real world supply chain problems are too complex to be formulated in the
form of manageable mathematical equations (Better et al., 2008). While, they are capable of
determining the optimal values to the decision variables and decision parameters. Therefore,
in a supply chain planning problem, it would be beneficial to depict the complex supply chain
system using the simulation modelling and then incorporate an optimisation algorithm into the
simulation model to attain the optimal decision parameter sets. This integrated usage of the two

approaches is knowns as simulation-based optimisation (SBO).

Despite the capability of the SBO in identifying the optimal sets of the decision parameters, it
is not capable of determining the optimal decision variables. This incapability has motivated
the development of the hybrid analytical-simulation models in which the decision variables are
optimised in addition to the decision parameters. Hybrid modelling is an emerging field that
integrates independent optimisation and simulation models to identify the optimal solutions to

the complex supply chain problems in acceptable times.

Considering the financial flow within supply chain planning models is of paramount
importance as implementing the supply chain decisions relies on the availability of the financial
resources. For instance, opening a new facility in the supply chain network is impossible unless
the funding mechanism is explicit. Moreover, the financial and physical flows have a mutual
effect on one another. For example, inventory optimisation leads to savings in the financial
resources which can in turn provide the required resources for implementing other operational

decisions such as production capacity expansion.
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In this chapter, we propose a hybrid analytical-simulation modelling that integrates planning
of cash and material flows within the supply chain networks through combining the
optimisation and the simulation-based optimisation approaches. The hybrid analytical-
simulation model is based on the development of independent mixed integer linear
programming (MILP) and simulation-based optimisation (SBO) models which are combined
to address an integrated supply chain planning and supply chain finance problem. The coupling
of the MILP and SBO models is developed using an iterative process. To demonstrate the
feasibility of the hybrid approach, it is applied to address an integrated strategic supply chain
planning and supply chain finance problem that integrates supplier selection, network design,

and asset-liability management subproblems.

The rest of the chapter is organised as follows. Firstly, the problem description and the
proposed hybrid method is given in section 7.2. The framework of the hybrid analytical-SBO
modelling is presented in section 7.3. Section 7.4 elaborates the developed optimisation,
simulation-based optimisation, and hybrid analytical-SBO models in detail. Next, the results
obtained from the various methods are presented and discussed in section 7.5. Finally,

conclusions are given in section 7.6.
7.2. Problem Description

The general structure of the studied supply chain is depicted in Figure 7.1. The supply chain
includes four stages: (1) suppliers, (2) production centre, (3) distribution centres, and (4)
retailers. In the forward direction, suppliers are in in charge of providing the raw material to
the production centre. The products are then manufactured in the production centre and shipped
to the retailers via distribution centres. The retailers are responsible for meeting end customer
demands which is uncertain and fluctuates in line with economic environment. In the reverse
direction, the end customer pays for the products purchased from the retailers. It is assumed
that the distribution centres and retailers are owned by the production centre and consequently

share a common profit.

In the studied supply chain system, one product and multiple time periods are considered. The
suppliers are able to fulfil the entire order of the production centre, while the capacities of other
SC members are restricted. The factory is able to secure long-term and short-term loans. The
receivable accounts from customers and payable accounts to the suppliers are liquidated at the

end of each period.
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The decisions to be determined by the proposed model are as follows:

The amount of raw material to be purchased from suppliers
The production rate at production centre

The number of required suppliers and distribution centres
The warehousing capacity at SC facilities

The flow of products in the network

The level of short-term and long-term liabilities

The level of equity

The level of fixed and current assets

© 0o N o g bk~ wbhPE

The level of cash

10. Price of the product

Such that economic value added is maximized with respect to the physical and financial
constraints. The optimal price of the product and the optimal warehousing capacity of the
distribution centres are determined by the simulation-based optimisation model, as they can be
formulated as controllable parameters in the SBO model. The optimal values to the remaining
decisions are determined by the analytical model, as they are dynamic variables that cannot be
optimised by the SBO model. The analytical model is a generalization of the SBO model that
is represented by linear relationships, while the SBO model is applied to take into account

interrelationships and nonlinearities rooted in supply chain networks.

D (O  Suppliers

O\ A Production centre

/ D Distribution centres
O <> Retailers

(O  Customers

Figure 7.1. The structure of the studied supply chain
7.3. Hybrid analytical-SBO modelling approach

The objective of the current study is to apply the hybrid approach to address the supply chain
planning problem. The approach consists of building independent analytical and SBO models

and thereafter integrating the solution strategy. The analytical model contains a mixed integer
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linear programming model (MILP). The SBO model combines genetic algorithm and system

dynamics simulation modelling. The connection of the two models is illustrated in Figure 7.2.

Firstly, by setting the initial price, desired cash, profit distribution policy, and stocking
capacities at the production centre, distributors, and retailers, the MILP model is run to decide
on the open or close decision on certain distribution centres, select suppliers and the amount of
raw material which is required to be purchased from each supplier, determine the optimal
production level of the production centre, and the shipment rates between the supply chain

entities are identified so as to maximize the economic value added.

In step 2, the solution suggested by the analytical model is used to construct the system
dynamics simulation model and genetic algorithm is applied to recommend the optimal price
per tonne of the product, the optimal desired cash, the optimum profit distribution policy, and
the optimum stocking capacities at production centre, distributors, and retailers. It is worth
mentioning that formulating the price of the product as a variable within the analytical model
converts the MILP model into a non-linear model which increases computational time
dramatically. The stocking capacities of the SC facilities would be more realistic if obtained
by the SBO model in which interrelationships, nonlinearities, and inventory dynamics have
been considered.

In step 3, the price, the profit distribution policy, the desired cash, and the stocking capacities
were obtained from the SBO model are inputted into the analytical model in which the new
optimal production level of the manufacturer, the new storage locations in the network, the new
suppliers, the new amount of the required raw material, and the new shipment rates between
the members are determined. Taking the results of the second iteration from the analytical
model, the SBO model is then run again to obtain a new solution containing the product’s price,
the desired cash, the profit distribution policy, and stocking capacities at the SC facilities (step
4).

At this time, the information gathered from the SBO model is used to examine whether the
current solution, which is the economic value added of the network, meets the termination
criteria which is set to be zero to five percent discrepancy between the current EVA and the
ideal EVA given by the analytical model. If the termination criteria is satisfied, the solution
suggested by the hybrid approach is accepted, otherwise, the results are used to revise the
problem to be resolved by the hybrid approach in the third iteration, and so on. The revision of

the problem contains the revision of the feasible intervals of the controllable parameters
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including price and warehousing capacities and/or modifying the initial population of the
genetic algorithm. The termination criteria offers a control mechanism to ensure that the

solution obtained by the SBO model honours the set of constraints described in the analytical

model.
Solve the MILP model to find
Input the initial values to the selected suppliers and store the optimal
Start the price, desired cash, distribution centres. optimal decision
a profit distribution policy. raw material purchase, optimal variables  from
and stocking capacities productionlevel. and optimal the MILP model
flow of products in the network
§ . Solve the MILP mo_de.l to find store the optimal Solve the SBO model to
store the optimal the selected suppliers and L. . . .
L. . s . decisions find optimal price. desired
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) § P N . parameters values cash. profit distribution
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. . from the SBO policy, and stocking
model production level, and optimal model canacities b
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Is the EVA obtained
from the SBO model
is within 0% to 5%

Solve the SBO model to
find optimal price, desired
cash, profit distribution
policy. and stocking
capacities

discrepancy from the
EVA obtained from
the MILP model?

Figure 7.2. The hybrid framework

7.4. Model formulation

7.4.1. Analytical model

7.4.1.1. Objective function

To optimise the financial flow, in addition to the product flow, through the supply chain the
financial performance evaluation should be incorporated into the objective function of the
supply chain planning models. Economic value added (Stewart lii, 1994) is a widely used index
which integrates financial and economic performance indicators. This indicator rectifies the
optimistic interpretation of how well the company performed through deducting the cost of
capital employed from its net income. In this study, economic value added (EV A) is applied as
the objective function. The formulation of the EVA is given in Eq. (7.1), where NOPAT is the
net operating profit after tax reported in the income statement and WACC is the weighted
average cost of capital, a figure representing the real costs concerned with the sources of capital
employed by the company (Ogier, Rugman and Spicer, 2004).
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T
EVA, = Z[NOPATt — (WACCYIC,] (7.1)

t=1

The WACC (7.2) is the return needed to compensate capital providers, i.e. creditors and
stakeholders and is obtained via multiplying cost of debt (CD) and cost of equity (CE) by their
proportional weight and take the sum of the results. The cost of debt is the weighted average
of short-term and long-term liabilities. The cost of equity is measured by capital asset pricing
model (CAPM) which contains three elements. The first element risk-free rate of interest (r,)
is the reward for placing capitals in a risk-free asset such as government bonds. The second
element, the difference between the expected return of the market (7, ) and (ry,) is the reward
for placing capitals in an investment which requires taking risks such as stock market bonds.
The third element, the risk measure () is the amount of systematic risk present in an asset.

Invested capital (1C) (7.3) accumulates the amount of financing from debt and equity.

E, STL, + LTL,

WACC = —CE, + ————CD .
c, " + IC, t (7.2)

IC, = STL, + LTL, + E, Vt. (7.3)

To calculate the NOPAT (7.4), the taxable income (TI) is multiplied by tax rate (tr). The TI
(7.5) is determined by subtracting the interest paid (/P) from the earnings before interest and
taxes (EBIT). The IP (7.6) is the interest paid for both short-term and long-term financing
received from credit institutions. The IP is calculated by multiplying short term liabilities (STL)
and long term liabilities (LTL) by short term interest rate (STR) and long term interest rate
(LTR), respectively and take the sum of the results. The EBIT (7.7) which is the gross income
of a company is calculated by subtracting the total cost (T'C) from the net sales (NTS). The
revenue of the chain (7.8) is obtained by multiplying the sales amounts of each customer by its

price and aggregating the results.

NOPAT, = TI,(1 — tr,) Vt. (7.4)
TI, = EBIT, — IP, Vt. (7.5)
IP, = STL.STR, + LTL,LTR, Vt. (7.6)
EBIT, = NTS, — TC, Vt. (7.7)
R
NTS, = Z SR,.pri, Vt. (7.8)
r=1
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The total cost (7.9) of the chain contains the production cost at the production centre (PC), the
transportation cost between centres (TRC), the inventory holding cost at the centres (HC), fixed
costs of the centres (FC), cash holding cost (CC), and the cost of raw material purchased from
the suppliers (RMC). Eq. (7.10) shows the operating cost at the production centre which is
obtained via multiplying production rate (PR) and unit production cost (upc). The operating
costs are the costs associated with the required activities to produce final products. The
transportation cost (TRC) (7.11) includes the transportation cost from the supplier to the
manufacturer (tc), the manufacturer to the distributor (tcc), and the distributor to the retailer
(tcd). Eqg. (7.12) represents the holding cost of products incurred by the manufacturer,
distribution centres, and retailers. This cost encompasses the holding cost of the raw materials
(hr) and the holding cost of the product (hp) at the production centre, in addition to the holding

cost of safety stock at the distribution centres and retailers.

TC, = PC, + TRC, + HC, + TFC, + CHC, + RMC, Vt. (7.9)
PC, = upc,PR, Vt. (7.10)
S D R D
TRC, = Z teo Ko + Z tccpSCar + Z Z tedg SDly, V. (7.11)
s=1 d=1 r=1d=1
D
FIR, + FIR,_ FIP, + FIP,_ FIOg + FI104,_
HC, = hr, ( t t 1>+hpt < t t 1>+zhodt ( dt dt 1)
2 2 & 2
. - (7.12)
FIS, + FIS,_
+Z hs”( 5 1)
r=1

The fixed cost (7.13) contains all the expenses incurred by a SC member such as employee
salaries that do not depend on the number of goods and services provided by the member. This
cost is obtained for the distribution centres by multiplying the fixed cost (fcd) by a binary
variable that indicates the activity of the distribution centre. The fixed costs of the production
canter (fcp) and retailers (fcr) are not multiplied by the binary variable as it is assumed that
they are situated fixed locations. Companies hold cash in order to pay to their suppliers for
their services also cover unexpected expenses which may arise. Cash holding cost (7.14) is the
opportunity cost of choosing to hold cash rather than investing in more profitable options such
as buying stocks. This cost in each period is calculated via multiplying unit cash cost (ucc) by
the average amount of cash during the period. The raw material cost (7.15) is the cost of
purchasing raw material from different suppliers which is determined through multiplying the

amount purchased (X) by the price of each unit (rmc).



147

D R
TFCt = Z dethdt + prt + Z fCTrt Vt. (7.13)
a=1 r=1
CHC, = ucc, (%) vt. (7.14)
s
RMC, = ) Xgrmcg Vt. (7.15)

7.4.1.2. Constraints

In this section, the constraints of the model which were categorised into physical flow

constraints and financial flow constrains are presented.
7.4.1.2.1. Physical flow constraints

Constraints (7.16) shows the inventory level of raw materials held in production centre at each
time period is equal to the inventory left at the end of previous period plus the amount of the
purchased material from the suppliers minus the amount consumed for producing the final
products. The available inventory of products held in production centre at the end of period
t (7.17) equals to the inventory held at the end of period t — 1 plus production rate during the

period, minus products transported from the plant to distribution centres during the same

period.
S
FIR, = Z Xse — PRyo, + FIR,_; Vt. (7.16)
s=1
D
FIP, = PR, — Z SCy4 + FIP,_, VL. (7.17)
d=1

Constraints (7.18) and (7.19) state that the inventory level at each distributor and retailer
member is equal to the amount of product that flows into the member inventory from the
upstream echelon plus the inventory that is left over from the previous time, minus the amount

of product that flows out of the member to the downstream echelon.

R
FlOg4 = SCyy — Z SDIye + FlOge_, Vd,t. (7.18)
r=1
D
FIS,, = Z SDIge — SRy + FIS,_,  V7,t. (7.19)
d=1
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Constraints (7.20) enforces the amount of products shipped from each retailer to be less or

equal to the end customer demand.

SR, < d,. Vr,t. (7.20)

Constraint (7.21) enforces the sum of products sold to end customers to be equal to the sum of
the products sent to the retailers. Constraint (7.22) states that the sum of products shipped to

the retailers should be equal to the products sent to the distribution centres.

D
SR, = » SDI;, Vr,t. (7.21)
R
Z SDIg.. = SCy Vd,t. (7.22)
r=1

Constraints (7.23) and (7.24) enforce that at least one of the supply and distribution centres

are open at each time period.

S

ZZ“ >1 vt (7.23)
s=1

D

z Yu=1 Vvt (7.24)
d=1

Constraints (7.25)-(7.28) state that the inventory level of the production centre, distribution
centres and retailers at any time period must be greater than their specified safety stock levels
known as the desired inventories (DI) which are determined by the simulation-based

optimisation model.

DIRM < FIR, < caprm, Vt. (7.25)
PDI < FIP, < cap, Vt. (7.26)
Y4:DDI; < FIOy4 < Yycapdy, Vi, d. (7.27)

RDI,. < FIS,; < capry,

Ve, r.

(7.28)
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Constraint (7.29) controls the production rate of the production centre not to exceed the

available production capacity and not to be lower than zero.

0 < PR, < prcap, Vt. (7.29)

7.4.1.2.2. Financial flow constraints

Constraint (7.30) formulates the basic equation of the balance sheet. This equation illustrates
the equality of the assets to equity (E') and debts. The assets comprises of fixed assets (FA) and
current assets (CA) while the debts includes short-term liabilities (ST L) and long-term liabilities
(LTL). Depreciation (DPR) is calculated in constraint (7.31) by multiplying fixed assets and

depreciation rate.

FA, + CA, = E, + STL, + LTL, Vt. (7.30)

DPR, = dr,FA, Vt. (7.31)

The fixed assets (FA) value (7.32) at each time period is determined through aggregating the

fixed assets of the SC members and then deducting the depreciation rate.

D R
FA, = Z DyCDy Yy, + PCFAV, + Z RFAV, Vt. (7.32)

d=1 r=1

Constraint (7.33) formulates the current assets (CA) which is composed of cash (CS), receivable

accounts (RA), and inventory value (INR).

CA; = CS; + RA, + INR, + CA,_, Vt. (7.33)

Constraint (7.34) shows the amount of cash available which is obtained by aggregating total
amount of loans (STL + LTL), new issued stocks, and the operating profit which is accessible
in the form of cash. The amount of investment in fixed assets (FA) diminishes the cash level.
The portion of the operating profit that is not accessible in the form of cash is accumulated in

the receivable accounts (RA) (7.35).

CS; = cssNOPAT, + STL, + LTL, + NIS, — FAI, Vt. (7.34)
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RA, = (1 — css) NOPAT, Vvt. (7.35)

Constraint (7.36) indicates the inventory value which is determined via multiplying sales price

of each member in their corresponding inventory and then taking the sum of the results.

D R
INR, = FIR, rmp + (FIPt + Z FIO04 Yy + Z FIS”> pri Vt. (7.36)

d=1 r=1

The equity value (E) at any time period is calculated in constraint (7.37) through aggregating
the accumulated equity from the previous period, operating profit (NOPAT), and the profit

obtained from issuing new stocks in the market (NIS).

E, = NOPAT, + E,_, + NIS, Vt. (7.37)

Constraint (7.38) ensures that the cash level at any time period does not exceed the desired cash
level determined by the SBO model.

CS, < DCS Vt. (7.38)

7.4.2. Simulation-based optimisation model

In this study, the inventory management simulation and genetic algorithm optimisation
constitute the simulation-based optimisation model. The inventory management model is
developed based on the stock management structure (Sterman, 2000) which relates to the issue
of controlling a system state or stock to meet some system objectives. For instance, all supply
chain members manage their inventory to meet the demand of their customers. Stocks are solely
modified through altering their inflow and outflow rates, therefore necessitates a decision
maker to not only balance the inflow of the stock with its outflow, but also eliminate any
discrepancy between the current and the desired state of the stock (Sterman, 2000).
Furthermore, there is a delay between a decision maker control actions and its effect on the
system state (stock) which is required to be formulated. For instance, a distributor seeking to
increase its inventory is not able to access new units immediately but must await delivery of
the orders by its supplier. The control of the stock management problem is divided into two

parts, where the first part relates to constructing the stock and flow structure of the stock
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management system, and the second part pertains to the decision rules applied by the decision

maker to control the inflow rate of the stock (Sterman, 2000).

The stock and flow structure of the inventory management model is illustrated in Figure 7.3.
The raw material’s inventory (7.39) is replenished by the delivery of placed orders and depleted
by the material usage rate. The suppliers are able to fulfil the entire order of the production
centre. Therefore, the delivery rate of the raw material (7.40) is equal to the desired delivery
rate of the manufacturer. The current material inventory level either meets the demand for

required raw material for production or is able to fulfil part of the demand (7.41).

d(Material Inventor
( 10) Y) = Material delivery rate — Material usage rate (7.39)
Material delivery rate = Desired material delivery rate (7.40)
Material usage rate
) (7.41)
= Min(Production start rate X Material usage per unit, Material Inventory)

The production start rate (7.42) is determined by the desired production rate and the feasible
production from material inventory. The unfinished products are aggregated in work in process
(WIP) inventory (7.43) and are converted into finished goods (FG) (7.44) after elapsing the
production lead time (L,). The inventory of the finished products (7.45) is replenished by the
production rate and depleted by the shipment to the suppliers.

Production start rate

= Min(Desired production start rate, Feasible production from materials) (7.42)
dwip Z:)e ntory) = Production start rate — Production rate (7.43)
Production rate = Delay(Production start rate, L, initial value) (7.44)
d(FG I;lge)ntory) = Production rate — Shipment rate (7.45)
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The amount of products which are shipped to each distribution centre (MSR,) (7.46) is a
function of desired shipment rate determined by the desired shipment rate of each distributor
which is equal to the distributor’s order and the maximum shipment rate (7.47) that is calculated
via dividing the on hand inventory of finished goods by a fixed minimum order processing time
(MMOPT) for the manufacturer. The on hand inventory of finished goods (7.48) is calculated
by subtracting the shipped products from the finished goods inventory, and its value must
always be positive. It is assumed that distributor 1 precedes distributor 2 and distributor 2
precedes distributor 3 when the manufacturer allocates the inventory of finished goods to the

distributors.

MSR,; = Min(Maximum shipment rate,, Desired shipment rate;) Vd. (7.46)
Manufacturer FG on hand Inventory
, . _ ) 1.47
Maximum shipment rate, VMMOPT vd ( )
d-1
FG on hand Inventory = Max (O, Manufacturer FG Inventory — z MSRd> vd. (7.48)
d=1

The shipped products by the manufacturer to each distribution centre are accumulated in
distributors supply lines (7.49) and arrive after a fixed lead time (Lq4) (7.50) that represents the
transportation time from manufacturer to each distribution centre. The inventory of each
distributor (7.51) is replenished by arrival of the shipped products and depleted by shipment to
the retailers.

d(Distribut SL
(Distributory SL) _ MSR, — Arrival, Vd. (7.49)
a(t)
Arrivaly = Delay(MSRg, Ly, initial value) vd. (7.50)
d(Distributory I t
(Distri u;{:) nventory) _ Arrival; — DSR, V. (7.51)

The amount of products which are shipped from each distribution centre to each retailer
(DSRy,) (7.52) is a function of the distributor on-hand inventory and the retailer order. The on-
hand inventory of finished goods (7.53) for each distributor is calculated by subtracting the
shipped products from its inventory, and its value must always be positive. It is assumed that
retailer 1 precedes retailer 2 and retailer 2 precedes retailer 3 when the manufacturer ships the

inventory to the distributors.



154

DSRy, = Min(Retailer order,, Distributor on hand inventory,) Vr,d. (7.52)
r—1

Distributor on hand Inventory, = Max (0, Distributor Inventory, — Z DSRdr> vd. (7.53)
r=1

The shipped products by the distributors to each retailer are aggregated in retailers supply lines
(7.54) and arrive after a fixed lead time (Lq4,) (7.55) which relates to the transportation time
from each distributor to any retailer. The inventory of each retailer (7.56) is replenished by
arrival of the shipped products and depleted by shipment to the end customers. Finally, each
retailer either meets the demand of its end customer or is able to fulfil part of the demand by
its current inventory level (7.57).

D
d(Retailer; SL
d(Retailer; SL) = Z DSR,, — Arrival, Vr. (7.54)
d(t)
d=1
Arrival, = Delay(DSRg;, Lgy, initial value) Vr. (7.55)
d(Retailer. Invent
(Retailer; Inventory) = Arrival, — RSR, V. (7.56)
d(t)
RSR, = Min(ECD,, Retailer Inventory,) Vr. (7.57)

The proposed inventory management model is extended through incorporating financial flow
modelling in addition to the physical flow modelling. The financial stock and flow structure is
depicted in Figure 7.4. The inventory of cash (7.58) is replenished by receiving cash from end
customers and is depleted by cash payment to the suppliers and the third-party creditors. The
initial value of the cash level is the sum of Short-term and long-term liabilities. Retailers collect

part of customers’ order values in cash, while the remaining part of the customer debt is
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accumulated in receivable accounts (RA) and is paid after d. weeks. The cash inflow (7.59) is
calculated by aggregating the customers’ cash payment and receivable accounts (7.60) from d..
weeks ago. The updated collection policy (um) (7.61) which is a parameter between 0 and 1
indicates the amount of customers’ order value that must be collected in cash and is calculated
by adding the cash adjustment to the original collection policy. The updated cash collection
policy cannot exceed 1. Adjustment for cash (7.62) is calculated via multiplying cash gap
percentage and the forecasting parameter for cash adjustment (y) which represents the
aggressiveness of the decision maker in bridging the gap between the desired and current cash
levels. The outflow of cash (7.63) is prompted by payment to the suppliers, repayment for
short-term and long-term liabilities, investment for fixed assets, and the total cost. When the
manufacturer places an order to his suppliers, he pays part of the order value in cash and the
outstanding debt is paid after d, weeks. The payment policy (n) that is a parameter between 0
and 1 shows the amount of manufacturer’s order value that must be paid in cash. The remaining
part of the manufacturer’s debt is accumulated in payable accounts (PA) and is paid after d,
weeks (7.64).

d(Cash
(d(t) ) _ Cash inflow — Cash outflow (7.58)
R
Cash inflow = Z um SR, pri + RA outflow (7.59)
r=1
RA outflow = Delay(RA inflow, d. , initial value) (7.60)
um = Min(m + CS Adjustment, 1) (7.61)
DCS - CS
CS Adjustment =y (—) (7.62)
CcS
s
Cash outflow = Z n X; Sprig — PA outflow — STL payment — LTL payment (7.63)
s=1 '
—FA investment — Total cost rate
PA outflow = Delay(PA inflow, d4, initial value) (7.64)

The total cost comprises the elements presented in Eq. (7.9), although they are not congruent
in terms of formulation. The production cost (7.65) is calculated via multiplying unit
production cost (upc) by production start rate which might not be equal to the production rate
recommended by the optimisation model. The transportation cost (7.66) contains the shipment

rates which are constrained by the maximum shipment capacity of each SC member. The
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inventory dynamics and cash dynamics are considered for measuring the inventory holding
cost (7.67) and cash holding cost (7.68), respectively. While the optimisation model solely
takes into account the inventory and cash levels at the start and the end of each time period.
The fixed cost is determined by the optimisation model and inputted to the SBO model as an
exogenous constant. The material order rate within the SBO model is recommended by the
MILP model, therefore, the raw material costs determined by the simulation and optimisation

models are identical.

PC = Production start rate X upc (7.65)
5 D R D
TCR = Z teXs + Z tccyMSR, + Z Z tcdy, DSR4, (7.66)
s=1 da=1 r=1d=1
HC = hr Average(FIR) + hp Average(FIP) + ho Average(FIO) + hs Average(FIS) (7.67)
CHC = ucc Average(CS) (7.68)

The payment to the third-party creditors depletes the levels of short-term (7.69) and long-term
liabilities (7.70) with a fixed rate. The initial levels of the short-term and long-term liabilities
is determined by the optimisation model. In each time period the equity level rises by NOPAT
rate (7.71). The WACC (7.72) is determined by including the elements of the cost of equity
and cost of debt that were elaborated in Eq. (7.2).

d(Short — term Liabilities)

10) = —Short term liabilities payment (7.69)
d(Long — term Liabilities
(Long 10) ) = —Long term liabilities payment (7.70)
d(Equity)
- 7.71
0] NOPAT (7.71)
E, STL, + LTL, (STL, LTL,
WACC, = (E (17, + (T, — rft)ﬁ)> + Ic, ( T, STR, + T—LtLTRt> (1—tr) (7.72)
Cost of equity

Cost of debt

The other constituent of the SBO model is genetic algorithm that is responsible for determining
the optimal values to the exogenous parameters of the simulation model known as controllable
parameters. Desired inventory (DI), desired supply line (DSL), forecasting parameter for
inventory adjustment (o), and forecasting parameter for supply line adjustment () constitute

the controllable parameters of the distributors and retailers. Service level or safety stock
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coverage, minimum order processing time, manufacturing cycle time, WIP adjustment time,

and inventory adjustment time comprise the controllable parameters of the manufacturer.

In this study, a GA is employed to specify optimal values to the simulation controllable
parameters so as to maximize the economic value added (EVA). To determine the optimal
values of the decision parameters, an optimisation problem which encompasses the objective
function and the constraints on the controllable parameters is formulated as follows:

L i I EVA
Objective function: Max EVA = Max pgy, Where ugya = Zf+

Decision parameters:

p, Ar1 , Ara2s Ar3, Bp» Bris Br2s Brs, m,n, DDI, DDSL, DIC, IAT, MIAT, MSSC, MMIC, MOPT, PDP, R1DI, R1DSL
R2DI, R2DSL, R3DI, R3DSL,SP, TAOR, UPC, WIPAT

Subject to:

0 < ap, dpy , Arz, Arz < 1; 0 < By, Br1, Pr2 Bra < 1; 0 <m,n < 1;0 < DDI < 60; 0 < R1DI,R2DI, R3DI
<30; 0 < DDSL < 60;0 < R1DSL, R2DSL, R3DSL < 30;1 < IAT < 5;1 < MIAT < 5;

0 < MSSC <2;0<SSC<2;0<MMIC <5;1<MOPT <3;0<PDP<1;200 <SP < 250;

5 <TAOR < 10;80 < UPC < 120; 1< WIPAT <5;0 <DC <2000; 1 < MCT <3

ap, Ar1 , X2, Ar3: denote the aggressiveness of the members in bridging the gap between the desired and current

inventory.

Bo, Br1, Br2, Br3: denote the level of consideration to the inventory on-orders at the time of order placement
m = collection policy: denotes the share of the sales is required to be collected in cash

n = payment policy: denotes the share of the raw material purchase is required to be paid in cash
DDI,R1DI,R2DI, R3DI: denote the desired inventory by distributor and retailers

DDSL,R1DSL, R2DSL, R3DSL: represent the desired inventory on order by distributor and retailers

IAT = The inventory adjustment time: represents the time period over which the manufacturer seeks to

bridge the gap between the desired and current inventory of finished products

MIAT = The material inventory adjustment time: represents the time period over which the manufacturer

seeks to bridge the gap between desired and current inventory of the raw material

MSSC = The manufacturer safety stock coverage: represents the time period over which the manufacturer

would like to maintain a safety stock coverage to hedge against volatility in distributor’s demand
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SSC = The safety stock coverage: represents the time period over which the distributor would like to maintain

a safety stock coverage in order to meet any variations in retailers’ demands

MMIC = The minimum material inventory coverage: represent the minimum material inventory required

by the manufacturer

MOPT = The minimum order processng time: denotes the minimum time required by the manufacturer to

process and ship a distributor order
PDP = The profit distribution policy: denotes the dividends that is required to be paid to the shareholders
SP = The sales price: The price per tonne of product which is paid to the retailers by the customers

TAOR = The time to average order rate: denotes the time period over which the distributor demand forecast

is adjusted to actual retailers’ orders
UPC = The unit production cost: denotes the production cost per tonne of product at the manufacturer

WIPAT = The WIP adjustment time: represents the time required for the manufacturer to adjust its WIP

inventory to its desired level
DC = The desired cash: denotes the level of cash desired to be held by the manufacturer

MCT = The manufacturing cycle time: represents the average delay time of the production process for the

products from start until completion of the product
7.4.3. Hybrid analytical-SBO model

The hybrid MILP-SBO approach seeks to utilize the advantages of the both the MILP and SBO
models. In the hybrid model, the decisions recommended by the MILP model and the decisions
which are obtained by the balancing loops in the simulation model are integrated to determine
the amount of the raw material to be purchased, the production start rate, and the shipment rates
across the network. The material delivery rate (7.73) in this model is a function of the desired
delivery rate from the SBO model and the material order rate from the MILP model. The
production start rate (7.74) is determined by the desired production rate and the feasible
production from the material determined by the inventory management model and the
production rate recommended by the MILP model. The shipment rate of the manufacturer
(7.75) is determined by the maximum shipment rate to each distributor, the desired shipment
rate of each distributor, and the shipment rate suggested by the MILP model. The amount of
products which are shipped from each distribution centre to each retailer (DSR,,.) (7.76) is a
function of desired shipment rate of the distributor determined by the MILP model and the

maximum shipment rate and the inventory of the distributor which are obtained from the SBO
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model. The shipment rate of each retailer (7.77) is calculated by its customer inventory, its

inventory level, and the shipment rate obtained from the MILP model.

s
Material delivery rate = Min (Desired material delivery rate, Z XS> (7.73)
s=1

Production start rate

(7.74)
= Min(Desired production start rate, Feasible production from material, PR)
MSR,; = Min(Maximum shipment rate,, Desired shipemnt ratey, SC;) Vd. (7.75)
DSR4, = Min(Retailer order,, Distributor inventoryy, SDl;.) Vr,d. (7.76)
RSR, = Min(ECD,, Retailer Inventory,,SR,) Vr. (7.77)

7.5. Results and discussion

The advantages of the hybrid analytical-SBO modelling is investigated by comparing with
individual optimisation and SBO methods through conducting the empirical tests. The data of
the case study including the inventory holding, production, and transportation costs introduced
in Longinidis and Georgiadis (2011) and Longinidis and Georgiadis (2013) is used to provide
the data on the parameters which represent the economic uncertainty. The range of parameters
values expressed in Longinidis and Georgiadis (2011) is extended to ensure that the optimal
parameter values lie in the searching boundary.

The numerical experiment is scaled as follows: the number of customer zones, retailers, and
distributors is three; the number of production centre is one; the number of suppliers is two,
and the number of time periods is two one-year period. Tables 7.1 and 7.2 present the
production, inventory holding, and cash holding costs in each time period. The transportation
costs from suppliers to production centre, from production centre to distributors, and from
distribution centres to the retailers are given in Tables 7.3-7.5, respectively. Table 7.6 shows
the values to the four of the uncertain parameters that represent the economic uncertainty in
each scenario. The fifth uncertain parameter which is demand of the customers in each scenario
is represented in Table 7.7. The sales price of the product and the production capacity are
presented in Table 7.8. Three models are developed based on analytical, SBO, and hybrid
analytical-SBO methods. Results of each model are analysed and presented as follows.



Table 7.1. Production and cash holding cost
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Production cost Cash holding cost
t=1 t=2 t=1 t=2
58.6 60.9 1.06 1.10
t = Time period
Table 7.2. Inventory holding cost
Production centre Distributors Retailers
t=1 t= t=1 t=2 t=1 t=2
58.6 60.9 8.2 8.9 8.2 8.9

Table 7.3. Transportation cost from suppliers to production centre

Production centre

To
From t=1 t=2
Supplier 1 15.2 194
Supplier 2 18.6 20.7

Table 7.4. Transportation cost from production centre to distribution centres

Distribution centre 1

Distribution centre 2

Distribution centre 3

To
From t=1 t=2 t=1 t=2 t=1 t=2
Production centre 20.2 23.4 25.2 61.4 65.8 72.3
Table 7.5. Transportation cost from production centre to distribution centre
To Retailer 1 Retailer 2 Retailer 3
From t=1 t=2 t=1 t=2 t=1 t=2
Distribution centre 1 25.7 34.3 52.6 54.5 95.4 79.8
Distribution centre 2 32,5 50.4 12.5 15.2 15.3 17.6
Distribution centre 3 89.1 68.9 69.4 63.1 29.3 33.6




Table 7.6. Uncertain parameters in each scenario
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Parameter
Scenario

STRES—_]O STR£S=]53 LTR£S=]0 LTRF=153 rf[io rf[tsis3 r?ﬂ:o 13;153

S1 7.00 5.60 4.00 3.00 2.50 2.00 5.00 6.00

S, 7.00 7.00 4.00 4.00 2.50 2.50 5.00 5.00

S3 7.00 8.40 4.00 5.00 2.50 3.00 5.00 4.00

Table 7.7. Demand of the customer in each scenario
) Customer 1 Customer 2 Customer 3
Scenario

t=1 t=2 t=1 t=2 t=1 t=2
S 750 1125 730 1095 570 855
S, 750 750 730 730 570 570
S; 750 500 730 487 570 380

Table 7.8. Sales price and production capacity

pri prcap
235.6 270.94 2500 2500

7.5.1. Analytical model

The analytical model solely considers the economic uncertainty through scenario analysis and
ignores the lead times rooted in material delivery and cash payment. The values of the
parameters in the MILP model are randomly generated in the feasible interval of the
parameters’ values using MATLAB software. For instance, to determine the unit production
cost of the product in each time period, two random data in the interval of [58-62] were
generated. To simplify the model formulation and also diminish the number of solving periods,
the material delivery and cash payment lead times are assumed to be zero; otherwise, the
solving period must be subdivided into shorter time periods, in this model weeks, in order to
accommodate the lead times. Neglecting the material delivery and cash payment lead times
and assuming zero safety stock, the model recommends keeping no inventory at all the SC
members that results in a higher NOPAT comparing both SBO and hybrid MILP-SBO in which

inventory, including finished goods and raw materials are held. To establish a meaningful
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contrast between the analytical model and the other two models, it is assumed that the SC
members hold safety stock to hedge against the demand uncertainty. The safety stocks values
are set to be equal to the desired inventory values obtained from the SBO model. The analytical
model is then used to determine the optimal network design and the production rates at the
plant. Table 7.9 shows the storage locations and the supplier determined by the analytical
model for the three scenarios. Considering the possible economic conditions at the start of the
second year, the analytical model suggests purchasing the raw material from the supplier no. 1
and to open the Distribution centre no. 2.

Table 7.10 illustrates the analytical model results for some physical and financial variables in
each scenario. Demand variability which is caused by the economic uncertainty drives the
production rate. Demand growth in scenario 1, is responded by increasing the production rate,
while the demand shrinkage in scenario 3 is dealt through decreasing the production rate. In
scenario 2, the model recommends diminishing the production rate at the year two, although
the customer’s demand has remained unchanged. The reason is that the demand is partially met

by the safety stock.

The equality of the right and left sides of the balance sheet in each time period shows the
accuracy of the financial modelling. The profitability, NOPAT, and the economic performance,
EVA, of the chain decrease when the economy diminishes in size as increasing cost of goods
sold is not offset by neither demand growth nor reduction in financing expenses, i.e., cost of

equity and cost of debt.

The structure of the current assets in each year for the three scenarios is illustrated in Figure
7.5. Inall the scenarios at the end of the second year the highest and lowest shares of the current
assets belong to cash and inventory value, respectively. The inventory level at the end of the
second year for all scenarios is similar and is equal to the safety stock, despite the demand
differences. The structure of the capital in each year for all scenarios is depicted in Figure 7.6.
The analytical model in all three scenarios recommends using long-term liabilities as the source
of financing rather than short-term liabilities and issuing new stocks due to its lower interest
rates. The growth of the equity at the second year for all scenarios is triggered by the addition

to retained earning which is set to be 45 percent of the NOPAT.
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Table 7.9. Optimal storage locations and supplier selection by the analytical model under scenario 1, 2, and 3

Decision Suppliers Distribution centres
variables S1 S2 DC1 DC?2 DC 3
Open/Close | t=1 | t=2 | t=1 | t=2 | t=1|t=2 | t=1|t=2 |t=1 ]| t=2
Open=1
Close=0 1 0 0 0 1 1 0 0
Table 7.10. the optimal decision variables in each scenario
Decision Scenario 1 Scenario 2 Scenario 3
variables t=1 t=2 t=1 t=2 t=1 t=2
PR 2227.2 2500 2227.2 1890 2227.2 1207
SC 2027.2 2660 2027.2 2050 2027.2 1367
SDI 2007.2 2660 2007.2 2050 2027.2 1367
SR 2007.2 2660 2007.2 2050 2027.2 1367
FA+ CA 720,200 768,971 720,200 743,099 720,200 720,261
LTL+STL+E 720,200 768,971 720,200 743,099 720,200 720,261
NOPAT 22222 87475 22222 58999 22222 33623
EVA 43199 8056 -23380
Current assets
100000 Scenario 1
80000 Scenario 2
60000 Scenario 3
40000 [ | I [ |
20000 I I I I I
. - -
Yi Y2 Y1 Y2 YiI o v2

H Inventory value

B Receivable accounts

H Cash

Figure 7.5. Current assets structure
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Capital
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Figure 7.6. Capital structure
7.5.2. System dynamics and Simulation-based optimisation models

The system dynamics simulation model formulates the lead times rooted in distribution and
payment, the collection and payment policies, feedback loops, and nonlinearities exist in the
supply chain network in addition to the economic uncertainty which is taken into account
through scenario analysis. The values of the model parameters such as transportation unit cost
are set to be equal to the ones used in the analytical model. To test the response of the system
to the changes in economic uncertainty parameters, the system is required to initialize in a
balanced equilibrium. Therefore, the initial values to the inventory, and supply line for all the
members and cash are set to be equal to their desired level. The expected order rate is also set

to be equal to the customers’ orders.

The simulation-based optimisation model is constructed through incorporating genetic
algorithm into the SD simulation model. The SBO model enables the modeller to identify the
optimal values to the controllable parameters such as the desired inventory levels at entities to
maximize the objective function, EVA. In order to make a meaningful comparison between the
SD, SBO, and MILP models, the structure of the supply chain network is set to be equal to the

one recommended by the MILP model.

Figures 7.7(a) -7.7(d) represent the inventory and cash dynamics for the SC members in
scenario 1 obtained from running the SD simulation model for two years, 104 weeks. As seen
in Figures 7.7(a) and 7.7(b) the inventory levels for the retailers and distributor plummet at the
start of the second year, week 53, as a result of the 50 percent increase in the customers’
demands prompted by the boom in economy. The system is then endeavours to reach to the

new equilibrium inventory levels. The inventory of manufacturer, Figure 7.7(c), rises at the
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first 20 weeks due to the delay time of the production process known as manufacturing cycle
time. It falls at the start of the second year as a result of demand increase and stabilizes at the
new equilibrium level at 230 tonnes. Figure 7.7(d) shows the inflow and outflow of cash. The
cash inflow is higher than the cash outflow excepting the first 9 weeks in which the material
delivery rate is high and the start of the second year for 6 weeks as a result of growing material

order rate to meet the surge in customer’s demands.
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Figure 7.7. Inventory and cash dynamics for the SC members in scenario 1 obtained from the SD model

Figures 7.8(a)- 7.8(d) represent the inventory and cash dynamics for the members in scenario
1 obtained from the SBO model. The GA reduces the oscillations in the inventory levels,
particularly for the distributor. The inventory peak for the manufacturer diminishes to 124
tonnes of product from 230 tonnes before applying the SBO. As the excess cash is penalized
in the SBO model, the GA aims to minimize the gap between the cash inflow and outflow so

as to minimize the total cost which consequently maximizes the EVA.
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Figure 7.8. Inventory and cash dynamics for the SC members in scenario 1 obtained from the SBO model

Figures 7.9(a)-7.9(d) show the inventory and cash dynamics for the SC members in scenario 2

obtained from the SD model. There are no oscillations in the inventory levels as the customers’

demands remains stable during the simulation time, therefore, the inventory levels indicate a

goal seeking pattern except the inventory level of the distributor which remains unchanged

during the simulation time. The cash dynamics is illustrated in Figure 7.9(d). The cash inflow

exceeds the cash outflow excepting the first 9 weeks in which the material shipment rate from

the supplier is high which causes higher payment.
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Figure 7.9. Inventory and cash dynamics for the SC members in scenario 2 obtained from the SD model

Figure 7.10(a)-7.10(d) represent the inventory and cash dynamics in scenario 2 after employing

the SBO technique. The inventory levels of the retailer 1, retailer 2, and retailer 3 arrive at their

customer order at weeks 15, 30, and 45, respectively as the retailer 1 precedes the retailer 2 and

the retailer 2 precedes the retailer 3 in shipment of the product from the distribution centre. The

inventory levels for the distribution centre reaches to the retailers’ order, 39.3 tonnes of

product, at week 40. The SBO model significantly reduces the inventory level held by the

manufacturer. The inventory peak for the manufacturer after applying SBO is 140 tonnes of

products, which lasted for a week, while before applying the SBO, the manufacturer was

holding the 200 tonnes of product from week 10 onwards. As shown in Figure 7.10(d) the SBO

model seeks to minimize the difference between the cash inflow and outflow in order to

minimize the cash cost.
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Figure 7.10. Inventory and cash dynamics for the SC members in scenario 2 obtained from the SBO model

Figures 7.11(a)-7.11(d) show the inventory and cash dynamics in scenario 3 using the SD
model. The inventory level of the retailers and the distributor rise as a result of 50 percent
decrease in the customers’ demands. The inventory of manufacturer, Figure 7.11(c), rises at
the first 20 weeks due to the delay time of the production process known as manufacturing
cycle time. It rises at the start of the second year as a result of plummet in demand and stabilizes
at the new equilibrium level at 175 tonnes. The inflow of cash is higher than its outflow at the
first 9 weeks due to the significant delivery of the raw material from the supplier. The cash
inflow supersedes the cash outflow between week 10 and week 52. From the start of the
recession period, week 53, until the end of the simulation, the outflow of cash exceeds its inflow

as a results of demand fall.
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Figure 7.11. Inventory and cash dynamics for the SC members in scenario 3 obtained from the SD model

Figures 7.12(a)-7.12(d) illustrate the inventory and cash dynamics in scenario 3 after using the
SBO in the case of economic recession at the start of the second year. Applying the SBO
diminishes the inventory levels for the SC members. The impact of the SBO methodology on
inventory reduction grows as we move toward the upstream members. The inventory of the
manufacturer before using the SBO fluctuates in the range of [100, 227], while after using the

SBO, the inventory level of the manufacturer varies in the range of [50, 120]. The SBO strives
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to mitigate the gap between the cash inflow and outflow to minimize the cash cost, although

after plunge in demand the cash outflow outstrips the cash inflow which leads to a zero cost of

cash.
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Figure 7.12. Inventory and cash dynamics for the SC members in scenario 3 obtained from the SBO model

Table 7.11 shows the values of the EVVA obtained from the SD and SBO models in each

scenario. The values of the EVA in all scenarios show the superiority of the SBO modelling,

in which the GA is incorporated into the SD model, over the SD simulation modelling which

lacks the GA. Moreover, as expected, it is observed that in all scenarios the EVA obtained from

the SBO model is significantly lower than the one determined by the analytical model due to

the assumption that the analytical model does not consider the distribution and payment lead

times.

Table 7.11. EVA obtained from the SD and SBO models in each scenario

EVA (GBP) Percentage difference Percentage difference
Scenarios D SBO between the SBO model between the SBO model
and the SD model and the analytical model
Scenario1 | 26452 32840 +2415% % 23.98% %
Scenario 2 4636 6008 +2959% 25.45% &
Scenario 3 -35924 -28414 +20.91% 21.53% §
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7.5.3. Hybrid Analytical-SBO

The hybrid analytical-SBO approach integrates the advantages of the both SBO and MILP
models. The hybrid approach not only formulates the distribution and payment lead times, the
collection and payment policies, feedback loops, and nonlinearities, but also uses the optimal
decision variables determined by the MILP model to decide on the quantity of the order to be
placed to the suppliers, production rate at the manufacturing site, and the shipment rates in the
supply chain network. Figures 7.13(a)-7.13(d) represent the inventory and cash dynamics for
the SC members in scenario 1 after using the hybrid approach. The hybrid approach is more
efficient than the SBO approach in managing the inventory of the SC members. Both the
inventory peaks and the oscillation in inventory ranges fall after using the hybrid approach.
The inflow and outflow of cash in the hybrid model are lower than the ones from the SBO
model as the optimal shipment rates between the SC members are used in the shipment rates
equation. Lower inventory and cash levels in the hybrid approach yield lower inventory and

cash costs comparing the SBO model.
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Figure 7.13. Inventory and cash dynamics for the SC members in scenario 1 obtained from the hybrid model

Figures 7.14(a)-7.14(d) illustrate the inventory and cash dynamics for the SC members in
scenario 2 after using the hybrid approach. Although the performance of the hybrid approach
in decreasing the inventory levels for the retailers and distributor is not noticeably better than
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the SBO performance, using the hybrid approach leads to a significant reduction in the
inventory levels for the manufacturer. The inventory of the manufacturer in the hybrid model
from week 30 until the end of the simulation fluctuates in the range of [30, 60] tonnes of
product, while the inventory value at the same period in the SBO model remains stable at the
level of 92 tonnes of product. Although the gap between the cash inflow and cash outflow in
the SBO model is narrower than the one in the hybrid model, the number of weeks in which
the cash outflow outstrips the cash inflow in the hybrid model are 40 weeks, week 20 to 60,
more than the SBO model that results in the lower cash costs in the hybrid model compared to
the SBO model.
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Figure 7.14. Inventory and cash dynamics for the SC members in scenario 2 obtained from the hybrid model

Figures 7.15(a)-7.15(d) illustrate the inventory and cash dynamics for the SC members in
scenario 3 after using the hybrid approach. Comparing the SBO model, although applying the
hybrid approach does not considerably diminish the inventory levels for the SC members, it
reduces the oscillations in the inventory levels of the members. As in scenario 2, the gap
between the cash inflow and cash outflow in the SBO model is narrower than the one in the
hybrid model, while the number of weeks in which the cash outflow outstrips the cash inflow
in the hybrid model are 30 weeks, weeks 20 to 50, more than the SBO model that results in the

lower cash costs in the hybrid model compared to the SBO model.
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Figure 7.15. Inventory and cash dynamics for the SC members in scenario 3 obtained from the hybrid model

Table 7.12 shows the values of the EVA obtained from the hybrid model and the number of
iterations performed to meet the stopping criterion, which set to be 5% difference between the
EVA determined by the analytical and hybrid models, in each scenario. The results indicate the
maximum stopping iterations of two in all scenarios. Although, it is not feasible to prove the
fast convergence for all the test results as the GA is a stochastic search algorithm. The hybrid
approach outperforms the SBO approach as it noticeably decreases the gap between the EVA
obtained from the MILP and SBO models.

Table 7.12. EVA obtained from the hybrid model in each scenario

Percentage difference between | Percentage difference

) Number of | the hybrid approach and the between the hybrid
Scenarios EVA (GBP)

iterations analytical model approach and the SBO

model
Scenario1l | 38045 2 11.93%J) +15.85%
Scenario 2 6849 2 -14.98% +14.42% B

Scenario 3 26657 2 -14.02%, +6.18% A
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The performance of the MILP-SBO model in maximizing the EVA is compared with the
performances of the SBO model under three economic scenarios. The first scenario assumes
boom at the second year of the simulation that results in increase in customer demand and
expected return of the market and decrease in risk-free rate of interest, short-term interest rate
and long- term interest rate. The MILP-SBO significantly reduced the inventory levels for the
supply chain members and the cash held in the supply chain. Moreover, the EVA of the supply
chain increased by almost 16% from £32840 to £38045. The second scenario assumes
stagnation at the second year of the simulation that results in stability in customer demand,
expected return of the market, risk-free rate of interest, short-term and long-term interest rates.
The MILP-SBO significantly reduced the inventory levels at the manufacturer and the cash
held in the supply chain. The EVA of the supply chain increased by 14% from £6008 to £6849.
The third scenario assumes recession at the second year of the simulation that results in
decrease in customer demand and expected return of the market and increase in risk-free rate
of interest, short-term and long-term interest rate. The differences between inventory levels of
the supply chain members in SBO and MILP-SBO models are negligible as 50% reduction in
customers’ demand at the second year makes holding high inventory levels unnecessary.
Although, the MILP-SBO model reduces the oscillations in the inventory levels of the
members. The EVA of the supply chain increased by 6.18% from £-28414 to £-26657.

7.6. Conclusions

strategic supply chain planning models, in which the strategic decisions such as network design
and the tactical decisions such as inventory planning are integrated, show more realistic
viewpoint of supply chain decisions; as different decisions in the supply chain are related to
each other and deciding on them in an integrated manner results in better performance (Lainez
et al., 2008; Gupta and Dutta, 2011). Moreover, incorporating flow of cash into the strategic
supply chain planning models is of paramount importance as implementing the supply chain

decisions relies on the availability of the financial resources.

As discussed in section 2.5.4 in chapter 2 and is presented in Table 7.13, Previous research on
integrated strategic supply chain planning and supply chain finance mostly applied MILP
modelling, while the hybrid analytical-simulation approach which are more efficient than the
analytical approaches in capturing the nonlinearities, delays, and feedback loops exist in such
problems have remained underrepresented. Previous studies take into account a limited number

of uncertainties, mostly uncertainty in demand, while there is lack of studies that consider a
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wide range of uncertainties in the economic parameters. To fill the gap in the literature, in this
chapter, a hybrid analytical-simulation model is developed to address an integrated strategic
supply chain planning and supply chain finance problem under economic uncertainty. The
strategic supply chain planning problem includes supplier selection, network design, inventory
planning, and the supply chain finance problem includes asset-liability optimisation. The
proposed hybrid model integrates a mixed integer linear programming model and an SBO
model to maximize the EVA generated in a supply chain network in presence of uncertainty in
economic parameters. This contribution extends the previous research on strategic supply chain
planning and supply chain finance (Yousefi and Pishvaee, 2018; Melo et al., 2006; Ramezani
et al., 2014; Cardoso, et al., 2016; Zhang et al., 2017; Melo et al., 2006; Naraharisetti et al.,
2008; Ramezani et al., 2014; Zhang et al., 2017) by applying the hybrid modelling and
considering the economic uncertainty. The developed hybrid model identifies the optimal
values to the decision parameters such as inventory control parameters and optimal values to

the decision variables such as the flow of products between supply chain entities.

Table 7.13. Strategic supply chain planning and supply chain finance literature

Current Parameters Hybrid Considering Approaches
literature considered modelling the economic

uncertainty
(Yousefi and Inventory control Analytical
Pishvaee, 2018; parameters
Melo et al., 2006; Fixed and current X X simulation
Ramezani et al., assets

2014; Cardoso, et
al., 2016; Zhang et
al., 2017; Melo et
al., 2006;
Naraharisetti et
al., 2008;
Ramezani et al.,
2014; Zhang et al.,
2017)

Short-term and long-

term liabilities
Equity

Simulation-based

optimisation
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Payment policy
Desired Cash
Fixed and current

assets

This study Inventory control Hybrid
parameters analytical-
Price Simulation
Unit cost (simulation-
Collection policy based

optimisation and
mixed-integer
linear

programming)

Short-term and long-
term liabilities

Equity

The hybrid approach is initialized by solving the MILP model to determine the optimal values
to the raw materials required to be purchased from the suppliers, the production rate at the
manufacturing site, and the flow of finished products between the SC members considering the
existing constraints in the financial and physical flows. The solution suggested by the MILP
model is then used to construct the SBO model in which the distribution and payment lead
times, the feedback loops, and nonlinearities rooted in a SC networks are formulated through
applying an SD simulation approach. Thereafter, the embedded GA in the SBO model is run
to identify the optimal values to the price per tonne of the product, the desired cash, the profit
distribution policy, and the stocking capacities at the SC members. In the next stage, the
constraints of the optimisation problem are revised in accordance with the optimal parameter
values recommended by the SBO model and the optimisation model is run to generate a new
set of parameter values to be inputted into the SBO model. The iterative process between
optimisation and SBO models continues until the stopping criterion which is 5% difference
between the EVAs obtained from the models is met.

The hybrid approach enables the modeller to not only take into account the lead times, feedback
loops, and nonlinearities which exist in the supply chain networks, but also dramatically bridge
the gap between the desired EVA, the EVA obtained from the analytical model, and the real
EVA, the EVA gained from the simulation optimisation model. To demonstrate the efficiency
of the proposed model, the performance of the proposed model in solving a test problem from
the recent literature is compared with the performance of the conventional simulation-based
optimisation approach. The results of the comparison show that the developed hybrid
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analytical-simulation model outperforms the simulation-based optimisation model in all the

predicted scenarios.
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Chapter 8. Conclusions and future work

8.1. Introduction

This chapter presents the overall conclusions and key contributions of the thesis as well as
managerial implications that this work has provided. Finally, some directions for future work

are provided based on the research conducted in this thesis.
8.2. Overall conclusions

Supply chains are composed of suppliers, manufacturers, distributors, and retailers that are
integrated with regard to the physical, financial, and information flows across the supply chain
networks. Considering the financial flow within supply chain models is of paramount
importance as implementing supply chain decisions relies on the availability of the financial
resources. For instance, opening a new facility in the supply chain network is impossible unless
the funding mechanism is explicit. Moreover, the financial and physical flows have a mutual
effect on one another. For example, inventory optimisation leads to savings in the financial
resources which can in turn provide the required resources for implementing other operational

decisions such as production capacity expansion.

Research regarding the management of supply chain has been performed for a long time.
However, most of the studies focus on addressing the problems such as inventory planning
which are related to the planning of physical flow and overlook the planning of the financial
flow. It is only in the last decade that the research community has started to incorporate
financial flow planning into the supply chain models. Therefore, more research in this area is
required to be performed. To contribute to the literature of the financial flow planning in supply
chains, this research incorporates financial flow planning into the supply chain models to
ensure that the financial resources are available to the supply chain members at the right time
while the profitability of the supply chain is maximized. It also provides a more realistic view
to supply chain total cost by considering the cash holding cost as a constituent of the total cost.

In general, supply chains are complex networks composed of various entities where uncertain
external factors, conflicting objectives related to responsiveness and efficiency, and delays in
the flows including product, information, and cash have to be taken into account. Therefore,
effective tools should be applied to analyse and optimise the performance of the supply chain

networks. In order to study supply chain networks, analytical approaches such as optimisation
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models have been frequently utilized to provide optimal values to the decision variables for
supply chain members (Wu, 2006; Torabi and Hassini, 2008; Govindan et al., 2014; Hamta et
al., 2015). Although pure mathematical models are useful in many cases, they may not be able
to depict complex relationships, including feedback loops and delay functions, between supply

chain entities existing in real-world problems (Mele et al., 2006).

On the other hand, simulation has been proved to be an efficient tool to describe and analyse
inherent dynamic behaviour of complex systems such as supply chains (Dominguez, Cannella
and Framinan, 2015; Macdonald et al., 2018). Although, it is not able to determine the optimal
values to the decision parameters and decision variables in the supply chains. The SBO and
hybrid analytical-SBO modelling that integrate simulation and optimisation are effective tools
for analysing and optimizing the performance of the supply chain networks as they integrate

the benefits of the simulation and optimisation modelling.

This work applies SBO and hybrid analytical-SBO frameworks to address four integrated
physical and financial flows planning problems. A comprehensive literature review has shown
that most of the studies that considered financial flow planning within supply chain networks
presented a deterministic single objective mathematical model to represent the supply chain
systems. However, the supply chains need to be depicted through multi-objective stochastic
models that consider uncertainties in the exogenous parameters such as customer demand and
manage the trade-offs between conflicting objectives such as bullwhip effect minimization and
total cost minimization. Simulation and optimisation are effective tools for modelling the
stochasticity in the supply chain networks and managing the trade-offs between conflicting
supply chain objectives, respectively. Therefore, to represent the supply chain networks by
multi-objective stochastic models, the simulation and optimisation modelling are required to
be integrated. This integrated framework is called SBO modelling when a simulation model
and an optimisation algorithm are integrated and is called hybrid analytical-SBO modelling

when a simulation model and an optimisation model are paired.

The literature review on the application of the SBO for supply chain optimisation revealed that
employing the system dynamics simulation within the SBO framework is far from adequate.
Moreover, the literature on the hybrid analytical-simulation for supply chain optimisation
showed that research on applying the hybrid analytical-SBO approach for supply chain

optimisation is still in its infancy. In this study, system dynamics is used as the simulation
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methodology within the SBO framework and an integrated physical and financial flows

planning problem is also addressed using the hybrid analytical-SBO approach.

The developed SBO framework in this study integrates the system dynamics simulation and
the genetic algorithm and is implemented through two academic case studies related to the beer
distribution game and one real-world application extracted from the literature. The first SBO
framework for the beer game case study aims to manage the trade-offs between conflicting
cash conversion cycle (CCC) minimizations for the supply chain members and minimize the
collaborative CCC of the supply chain. While, the second developed SBO framework for the
beer game case study aims to minimize the bullwhip effect, cash flow bullwhip, and the total
cost of the supply chain. The developed SBO framework for the real-world case study aims to
manage the trade-off between the economic valued added and cash conversion cycle which

represent profitability and liquidity indexes, respectively.

The proposed analytical-SBO framework in this study integrates mixed integer linear
programming and the SBO and is implemented through one real-world case study extracted
from the literature. The developed analytical-SBO framework aims to integrate the planning of
cash and material flows within supply chain networks through addressing an integrated
strategic supply chain planning and supply chain finance problem that integrates supplier
selection, network design, and asset-liability management subproblems. In this problem, the
profitability of the supply chain network is maximized while considering the uncertain external

factors and delays exist in the supply chain network.
8.3. Summary of contributions

The main contributions of this research are discussed as follows:

The first contribution of this thesis that was presented in chapter 4 is the development of an
SBO model for working capital management in a supply chain. In this model financial flow
modelling is incorporated into the system dynamics simulation of the beer distribution game
and minimizing the cash conversion cycle for supply chain members and minimizing the
collaborative CCC of the supply chain are considered as optimisation objectives. This
contribution extends the previous research on working capital and supply chain management
by using the SBO modelling for managing the trade-offs between conflicting CCCs
minimization for supply chain members and minimizing the collaborative CCC of the supply
chain (Theodore Farris and Hutchison, 2002; Ruyken et al., 2011; Lind et al., 2012; Hofmann
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and Kotzab, 2010; Ruyken, Wagner and Jonke, 2011). The genetic algorithm is applied to
identify the optimal values to the controllable parameters including price, unit cost, forecasting
parameter for the inventory, forecasting parameter for the supply line, desired inventory, and
desired supply line for each supply chain member so as to make the trade-offs between
conflicting CCCs for the supply chain members and minimize the collaborative CCC of the
supply chain. The results showed that the CCCs of the supply chain entities and the
collaborative CCC of the supply chain could be significantly decreased through identifying the
optimal controllable parameters.

The second contribution of this thesis that was presented in chapter 5 is the development of an
SBO model for reducing the bullwhip effect, cash flow bullwhip, and the total cost in a supply
chain under deterministic demand and lead times, stochastic demand and deterministic lead
times, and stochastic demand and lead times. In this model financial flow modelling is
incorporated into the system dynamics simulation of the beer distribution game to identify the
optimal financial decisions in addition to the optimal operational decisions. This contribution
extends previous supply chain research on minimizing the bullwhip effect (Alwan et al., 2003;
Zhang, 2004; Luong, 2007; Balakrishnan, et al., 2004; Hosoda and Disney, 2006;
Tangsucheeva and Prabhu, 2013, 2014; Goodarzi et al., 2017; Sim and Prabhu, 2017) through
diminishing the destructive effects of the bullwhip effect in supply chain financial flow in
addition to the physical flow. Moreover, it incorporates the financial flow modelling into the
inventory planning models and determines the optimal values to the financial decisions
parameters, in addition to the inventory decisions. Finally, it incorporates CFB minimization
as an objective function into an SBO model. The results show that the genetic algorithm is able
to find the optimal financial and inventory decisions parameters for each member of the supply

chain to reduce the total cost, bullwhip effect, and cash flow bullwhip.

The main objective of the proposed SBO model is to find the optimal values of the desired
inventory, desired supply line, forecasting parameter for inventory, forecasting parameter for
supply line, sales price per unit, and unit cost for supply chain entities to make trade-offs
between the supply chain total cost, cash flow bullwhip, and bullwhip effect. Three
experiments were developed to investigate the ability of the SBO model in identifying the
optimal replenishment policy. The first experiment was the beer distribution game, which
employs deterministic demand and lead times. The SBO found the optimal replenishment
policy to be non-aggressive approach, i.e., forecasting parameter for inventory less than 0.5, to

the inventory gap for all members, and a cautious approach to orders in the supply line, i.e.,
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forecasting parameter for supply line less than 0.5, for the retailer and distributor. The second
experiment tested random demand and deterministic lead times. The SBO found the optimal
replenishment policy to be an aggressive approach to the inventory gap for the retailer and
manufacturer, and a cautious approach to orders in the supply line for the retailer. The third
experiment extended the second experiment through considering random lead times in addition
to the random customer demand. In this experiment, an aggressive approach to the inventory
gap for the distributor and wholesaler and cautious approach to orders in supply line for the
distributor and wholesaler was identified to be the optimal replenishment policy. However, the
recommended policy may not be optimal for every set of random customer demand and lead
times. The results demonstrated the superiority of the SBO approach over system dynamics
modelling with and without information sharing between supply chain members as it can
manage the CFB within supply chain networks through deriving optimal values for the
inventory, supply line, and financial decisions parameters in presence of conflicts between
supply chain objectives. While, system dynamics is solely able to compare the effects of varied
policies, different values of the controllable parameters, through performing what-if analysis
which may not be an effective strategy particularly, when the decision parameters are

continuous.

The third contribution of this thesis that was presented in chapter 6 is the development of an
SBO model for managing the trade-offs between financial performance and liquidity in a
supply chain under economic uncertainty. To assess the financial and liquidity performances,
the economic value added (EVA) and the cash conversion cycle (CCC) metrics are used,
respectively. These two metrics are not moving towards the same direction and business
managers should find a balance between them. This contribution extends the literature on
supply chain inventory management using system dynamics simulation and supply chain
working capital management (Reyes et al, 2013; Peng et al., 2014; Cannella et al., 2015; Liao,
2008; Teng, 2009; Mahata, 2012; Huang, 2007; Huang and Hsu, 2008; Teng and Chang, 2009;
Ravichandran, 2007; Liao, 2008; Teng, 2009) through incorporating financial parameters
including price, unit cost, collection policy, and payment policy. Moreover, it considers the
EVA and the CCC in the multi-objective optimisation formulation of the inventory
management model developed by Sterman (2000) under economic uncertainty. Finally, it
introduces a new method for measuring the CCC in which the revceiving and payment of the
advance payament are taken into account. The proposed model handles economic uncertainty

through a scenario tree approach. Using the data of a real case study introduced in Longinidis
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and Georgiadis (2013), firstly the conflicting objectives are given the same level of importance
in order to compare the performance of the SBO approach, in which a genetic algorithm is
incorporated into a system dynamics simulation model, with the performance of the system
dynamics simulation model under three economic scenarios. The results show the superiority
of the SBO approach over system dynamics modelling in all three scenarios. Secondly to
manage the trade-offs between the conflicting objectives, the weighted sum method is used to
generate the Pareto efficient frontiers which include the non-dominated optimal solutions.
These Pareto efficient frontiers provide decision makers with a portfolio of alternative optimal
inventory and financial decisions that could be selected based on market condition and the

power of the company within supply chain network.

The fourth contribution of this thesis that was presented in chapter 7 is the development of a
hybrid analytical-SBO model for integrating supply chain network design, supplier selection,
and asset-liability management problems under economic uncertainty. The proposed hybrid
model integrates a mixed integer linear programming model and an SBO model to maximize
the EVA generated in a supply chain network in presence of uncertainty in economic
parameters. This contribution extends the previous research on strategic supply chain planning
and supply chain finance (Yousefi and Pishvaee, 2018; Melo et al., 2006; Ramezani et al.,
2014; Cardoso, et al., 2016; Zhang et al., 2017; Melo et al., 2006; Naraharisetti et al., 2008;
Ramezani et al., 2014; Zhang et al., 2017) by applying the hybrid modelling and considering
the economic uncertainty. The developed hybrid model identifies the optimal values to the
decision parameters such as inventory control parameters and optimal values to the decision

variables such as the flow of products between supply chain entities.

The hybrid approach is initialized by solving the MILP model to determine the optimal values
to the raw materials required to be purchased from the suppliers, the production rate at the
manufacturing site, and the flow of finished products between the SC members considering the
existing constraints in the financial and physical flows. The solution suggested by the MILP
model is then used to construct the SBO model in which the distribution and payment lead
times, the feedback loops, and nonlinearities rooted in a supply chain network are formulated
through applying system dynamics simulation approach. Thereafter, the embedded GA in the
SBO model is run to identify the optimal values to the price per tonne of the product, the desired
cash, the profit distribution policy, and the stocking capacities at the supply chain members. In
the next stage, the constraints of the optimisation problem are revised in accordance with the

optimal parameter values recommended by the SBO model and the optimisation problem is
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run to generate a new set of parameter values to be inputted into the SBO model. The iterative
process between optimisation and SBO models continues until the stopping criterion which is
5% difference between the EVAs obtained from the models is met. The hybrid approach
enables the modeller to not only take into account the lead times, feedback loops, and
nonlinearities which exist in the supply chain networks, but also dramatically bridge the gap
between the desired EVA, the EVA obtained from the analytical model, and the real EVA, the
EVA gained from the SBO model.

8.4. Managerial implications

The managerial implications of each contribution are discussed as follows:
8.4.1. Managerial implications of the contribution 1

In addition to matching the supply of products with the demand of customers within supply
chain networks, the supply of cash is also required to be matched with the demand of supply
chain members. Single company perspective in which each supply chain member decides
independently on its cash flow decisions such as payables period results in heterogeneous
distribution of cash among supply chain entities. Therefore, it is imperative for supply chain
managers to ensure that the available cash in the network is fairly distributed among the supply
chain members. This is achieved through collaborative working capital management in which
the conflicts between cash flow optimisation objectives for supply chain members are
managed. The proposed SBO model in this study assists supply chain managers to manage the
conflicting objectives through identifying the optimal inventory and financial parameters for

supply chain members.

8.4.2. Managerial implications of the contribution 2

Working capital optimisation in addition to the total cost optimisation plays a pivotal role in
boosting the efficiency of supply chain management. Therefore, it is imperative that working
capital metrics such as the cash conversion cycle (CCC) are incorporated into the supply chain
models. The CCC represents the performance of a firm in managing its capital. The lower the
CCC, the more successful the firm is in managing its capital. High volatility in the CCCs of
the supply chain members caused by the bullwhip effect yields volatility in liquidity that may
trigger inefficiencies in operational processes of the members such as purchasing, and
consequently reduce SC service levels. Given the results of our study, supply chain managers
should control the fluctuations in the CCCs of the supply chain members, if they want to
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manage the liquidity within the supply chain networks. The proposed SBO model in this
research allows supply chain managers to mitigate the CFB significantly under the
deterministic and stochastic demand and lead time. This is achieved through identifying the
optimal values for the sales price, unit cost, and inventory decisions of the members. In the
original model of the BG, the CCC for the SC members ranges from 30 to 500 days. While,
after employing the SBO methodology, the CCC ranges from -15 to 32 days. In presence of
demand uncertainty in the BG model, the cash to cash cycle ranges from -5 to 1500 days.
Although, after employing the SBO methodology the CCC ranges from -5 to 40 days. In
presence of uncertainty in demand and lead times in the beer game model, the CCC ranges
from -5 to 40 days. While after applying the SBO technique, the CCC ranges from -5 to 32
days.

In addition to the CFB reduction, the proposed SBO model assists supply chain managers to
reduce the supply chain total cost (SCTC) significantly. In the original model of the BG the
SCTC amounted to £10816. While, after employing the SBO methodology, the SCTC
decreased to £7017.94. In presence of demand uncertainty in the BG model, the SCTC
amounted to £14283.42. Although, after employing the SBO methodology the SCTC reduced
to £8292.74. In presence of uncertainty in demand and lead times in the BG model, the SCTC
amounted to £18387.96. While after applying the SBO technique, the SCTC diminished to
£8729.90. Moreover, the results of the conducted experiments show the superiority of the
proposed SBO model over the information sharing strategy which is usually implemented by
the supply chain managers to mitigate the SCTC. After employing the SBO technique the
SCTC reduced by 29 percent comparing the SCTC of the SD model with information sharing.
Similarly, the SCTC in the SBO model under demand uncertainty, and demand and lead time
uncertainties, reduced by 24 percent and 18 percent, respectively comparing the SD model with
information sharing. Decreasing the gap between the SD model with information sharing and
the SBO model as the number of stochastic parameters increase conveys the importance of the
information sharing among supply chain members in mitigating the SCTC. Therefore, SC
managers who are in charge of managing SC networks which encounter various uncertainties
could benefit from significant cost reduction through applying the information sharing strategy.
Although, the information sharing strategy is not as efficient as the SBO technique in cost

reduction.
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8.4.3. Managerial implications of the contribution 3

Supply chains aim to provide a good customer service level by meeting customer demand. The
higher the inventory level at supply chain members, the lower the possibility of losing customer
demand. Although keeping high levels of inventory at supply chain members ensures the
capability of the supply chain on meeting the customer demand, it imposes significant holding
costs on supply chain members. Thus, supply chain managers should make a trade-off between
minimizing the inventory levels at the supply chain members and maximizing the shipment
rate to the customer. In this contribution, Minimizing the inventory levels at the supply chain
members is achieved by minimizing the cash conversion cycle of the supply chain. While,
maximizing the shipment rate to the customer is achieved through maximizing the economic
value added of the supply chain. Furthermore, minimizing the cash conversion cycle enables
the supply chain managers to decrease the cost of capital for supply chain members and
accelerate cash flow within the supply chain networks by optimizing receivables level and

payables level in addition to the inventory levels.

Implementing the decisions related to supply chain planning problems rely on availability of
the financial resources. Therefore, the dynamics of the financial flow in a supply chain should
be tracked along with the dynamics in the physical flow. Considering the dynamics of the
financial flow in a supply chain necessitates incorporating the financial decision parameters
such as collection policy into the supply chain planning models. The values to the financial
decision parameters are decided on by the financial managers. The proposed model in this
study promotes constructive cooperation between supply chain and financial mangers as it
integrates inventory decisions such as inventory adjustment time made by supply chain
managers and financial decisions such as collection policy made by the financial managers.
Moreover, the estimation of the uncertain economic parameters such as short-term interest rates
under various scenarios requires the active participation of the financial managers.
Participation of the financial managers in modelling of the supply chain planning problems
increases the possibility of the allocating the required financial resources for implementing the
solutions recommended by the model as the allocation decisions are mainly made by the

financial managers.
8.4.4. Managerial implications of the contribution 4

Businesses need to keep sufficient cash to meet their operations expenses such as buying raw

material and also pay dividends to their investors. The higher the cash level held by a business,
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the lower the possibility of business inability in meeting operations expenses and paying
dividends. Although, keeping high cash level by a business ensures its capability in meeting
operations expenses and paying dividends, it imposes cash opportunity cost on the business. In
other words, the business is forgoing the return that would have been derived by investing the
cash in alternative options to holding it such as investing the cash in the stock market.
Therefore, business managers need to make a trade-off between adequacy of cash for meeting
the business expenses and minimizing the opportunity cost that the business incurs as a result
of holding cash. This contribution helps the business managers in making this trade-off by
considering cash holding cost as an element to the total cost of the business and ensuring the

cash level by the business is minimized.

Integrating supply chain problems provide a more explicit picture of the supply chain dynamics
and consequently the solutions obtained from the integrated models are more realistic
compared to the solutions obtained from the segregated problems. Although, the integration
may result in nonlinear models which require significant amount of time to identify the optimal
solutions. Therefore, a trade-off is required to be made between the solution quality and the
computational time. Hybrid analytical-SBO approach in which independent optimisation and
SBO models are integrated through a feedback structure combines the advantages of the
complex SBO models and abstract optimisation models. The SBO models are powerful tools
in capturing uncertainties, nonlinearities, and delays exist in supply chain networks. Although,
they may not result in global optimal solutions due to applying stochastic optimisation
algorithms. On the other hand, optimisation models generate global optimal solutions.
However, incorporating nonlinearities in these models may significantly increase the
computational time. Applying the hybrid analytical-SBO approach enables the supply chain

managers to access realistic high-quality solutions in a reasonable time.

Supply chains are exposed to uncertainties in macroeconomic and macroeconomic parameters
that may have significant impact on their profitability. Business managers need to ensure that
the impact of these uncertainties is taken into account while measuring the profitability of their
supply chains. Otherwise, the profitability of the supply chain may provide a misleading view
of the financial health of the supply chain. In this contribution, uncertainties in four
macroeconomic parameters including short-term interest rate, long-term interest rate, expected
return of the market, and risk-free rate of interest an uncertainty in one macroeconomic
parameters that is demand are considered to assist the business managers to obtain a more

realistic view to the profitability of their supply chains.
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8.5. Limitations and future work

In this study, it is assumed that there is either full trade credit or partial trade credit among
supply chain members. While in some real world supply chains the full trade credit and partial
trade credit coexist. In other words, in these supply chains some members receive full trade
credit from their suppliers and offer partial trade credit to their customers. The coexistence of
the full trade credit and partial trade credit in a supply chain has not been considered in this
study and could be addresses in future research. From cash flow perspective, existence of the
either full trade credit or partial trade credit policy results in fairer distribution of the cash
among supply chain members compared to coexistence of the full trade credit and partial trade
credit policy. The reason for this is the accessibility of the partial trade credit merely for some

members of the supply chain and not all of them.

Trade credit policy which is the basis of the financial flow modelling in this study is one of the
financing solutions that are common in supply chain networks. There are many other financing
solutions in supply chains such as factoring and reverse factoring that are employed in supply
chains and can be used for modelling of the financial flow in supply chains. Future research

might predicate financial flow modelling on financing solutions other than trade credit.

As it was explained in chapter 2 of this study some of the supply chain financing solutions
such as factoring and reverse factoring require a third-party finance provider such as banks.
Although these solutions expedite the access of the supply chain members to cash, they are
accessible for small supply chains that do not contain companies with high business volume
and annual turnover. The small supply chains will be not be able to avail of these financing
solutions, unless they become part of supply chains that contain big brands and key players in

their industry.

Although minimizing the cash conversion cycle for a supply chain ensures the homogenous
distribution of the cash among supply chain members, it may not be appealing to the supply
chain members which have a sub zero cash conversion cycle before minimizing the cash
conversion cycle for the supply chain. Therefore, one of the implementation difficulties of the
current study is to convince supply chain members with a sub zero cash conversion cycle to
improve the cash conversion cycle of the other supply chain members in expense of increasing

their own cash conversion cycle.
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The opportunity cost of holding cash heavily relies on the economic condition. For instance,
when the economy is growing the opportunity cost to the cash holding is high as a higher return
than cash holding could be obtained by investing the cash in the stock market or other growing
markets. Although, when the economy is shrinking the opportunity cost to the cash holding is
negligible as the return on the alternative options to cash holding is low or there might be no
return at all. Therefore, the other main difficulty to the implementation of the current study is
to convince supply chain managers to minimize the cash level when there is no consensus on

the future economic condition.

In addition to the assumptions and limitations of the study as a whole, the limitations of each

contribution are discussed as follows.
8.5.1. Limitations and future work of the contribution 1

To recognize directions for future research, the limitations of the contribution 1 are elaborated
as follows. Firstly, our simulation model was developed based on the beer distribution game
structure (Sterman, 1989; Joshi, 2000). Similar simulation models can be developed to manage
the conflicting CCC minimization objectives for other supply chain networks. Secondly, in this
contribution, anchoring and adjustment heuristic (Tversky and Kahneman, 1974) was
employed as an inventory ordering policy. There are other replenishment policies such as
reorder point-order quantity (Q,r) which may be integrated into future research. Thirdly, the
performance of the other optimisation algorithms in managing the conflicting working capital
objectives can be compared with the GA performance in future work. Another research topic
is to use collaborative cash conversion cycle (CCCC) by which the CCC of the supply chain
network is measured as objective function rather than the CCC by which the CCC of each

supply chain member is measured.
8.5.2. Limitations and future work of the contribution 2

To recognize directions for future research, the limitations of the contribution 2 are elaborated
as follows. Firstly, our simulation model was developed based on the beer distribution game
structure (Sterman, 1989; Joshi, 2000). Similar simulation models can be developed to control
cash flow bullwhip (CFB) for other supply chain networks. Secondly, in this contribution,
anchoring and adjustment heuristic (Tversky and Kahneman, 1974) was employed as an
inventory ordering policy. There are other replenishment policies such as reorder point-order
quantity (Q,r) which may be integrated into future research. Thirdly, other BWE contributors

such as order batch and lead time have not been optimised in this study. Another research
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opportunity may arise by extending this paper through considering the aforementioned
parameters. Fourthly, further work can be carried out to identify an optimisation algorithm
which is more effective than the GA in CFB minimization under lead time uncertainty. Another
research topic is to define other metrics rather than cash conversion cycle to measure cash flow

bullwhip and controlling CFB through tuning its controllable parameters.
8.5.3. Limitations and future work of the contribution 3

The limitations of this contribution that need to be studied in the future research are as follows.
Firstly, the presented simulation-based optimisation model manages the trade-off between
economic profitability and working capital efficiency under economic uncertainty, although
there are other trade-offs such as trade-off between working capital efficiency and credit
solvency that can be considered in future research. Secondly, the uncertainty of other financial
parameters such as tax rate could be considered in supply chain inventory management and
working capital management problems. Thirdly, future research might extend our model by
considering the fixed assets as an endogenous variable rather than a constant or incorporating
leaseback of fixed assets into invested capital. Fourthly, Future research might consider a two-
part trade credit policy in which some of the supply chain members receive full trade credit
from their suppliers and offer partial trade credit to their customers Finally, future research can
employ other optimisation algorithms to manage trade-off between economic profitability and
working capital efficiency and compare the performance of these algorithms with performance
of the GA that is presented in this study.

8.5.4. Limitations and future work of the contribution 4

The limitations of this work that need to be studied in the future research are as follows. Firstly,
this study only examines the use of hybrid approach to address a strategic supply chain planning
and finance problem. In future research other integrated supply chain planning problems such
as integrated network design, distribution and transportation planning could be solved using
the hybrid approach. Secondly, the simulation approach applied in this study is SD, it would
be interesting to investigate the capability of optimisation-SBO models that employ simulation
models rather than SD in addressing supply chain planning problems. Finally, multi-objective
optimisation can also be incorporated into the developed MILP-SBO model as an extension to

the present study.
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The remaining studies that applied the simulation-based optimisation modelling for addressing

supply chain problems are presented as follows.

Table 2.5. Continued

Article

Research scope

Optimization
algorithm

Simulation model

Optimization objective

Diaz and Bailey (2011)

SC inventory planning

Simulated Annealing

NA

Min: Total cost

Otamendi and Doncel

SC network design and

GA

Spreadsheet simulation

Min: Total cost

(2012) inventory planning DES Max: Service reliability
SC configuration design,
.. production and N Spread sheet simulation
Kabirian et al. (2013) |. . GA Max: Profit
inventory planning , and DES
revenue management
Kulkarni and Niranjan . Min: Total cost
(2013) Inventory planning OptQuest DES
i Max: Service level
SC supplier selection, Min: Total cost
Maliki et al. (2013) facility location, and NSGAII DES
distribution planning Min: supply lead time
Hybrid metaheuristic
algorithm (Difterential
Duan and Liao (2013) | SC inventory planning | Evolution, Harmony NA Min: Total cost
Search, Hooke and
Jeeves direct search)
Min:sustainability
Georgiadis and sC v planni Proposed MOO D dimensions pt;rlormance
Athanasiou (2013) capacily planning methodology cos
Min: remanufacturing
Liand Wang (2014) Inventory control PSO NA Min: Total cost
Chavez and Castillo- SC transportation . . Min: Transportation time
Villar (2014) lannin Simulated Annealing DES
P & Min: Transportation cost
. - GA Min: Total cost
Fischer et al. (2014) SC flexibility PSO DES Max: Delivery reliability
. Min: Total work-in-
Aslam and Ng (2015) | S production and NSGAIL SD process
inventory planning
Pitzer and Kronberger S(; nétwqu dESlgﬂA and GA NA Min: Total cost
(2015) distribution planning
. . . Reinforcement Learning .
Mortazavi et al. (2015) | SC inventory planning Algorithm ABS Min: Total cost
ABS Min: Total cost
Ye and You (2015a) | SC inventory planning | Trust-region method .
Monte Carlo L
Max: Service level
Ye and You (2015b) SC. network des1gp and Trust-region method DES Min: Total cost
nventory planning Monte Carlo
Essoussi (2015) SC mventory planning OptQuest DES Min: Total cost
ABS Min: Total inventory cost
Chu et al. (2015) SC inventory planning |Cutting Plane Algorithm
Monte Carlo -
Max: Demand fill rate
- SC inventory planning Response Surface DES .
Hlioui et al. (2015) and quality control Methodology Continuous Simulation Min: Total cost
Shahi and Pulkki (2015)] SC inventory planning OptQuest ABS Min: Total inventory cost
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Article

Research scope

Optimization
algorithm

Simulation model

Optimization objective

Giilleret al. (2015)

SC inventory planning

Multi objective particle
swarm optimization

Object-oriented

Min: Total inventory
cost

Zhang et al. (2015)

planning and scheduling

(MOPSO) Simulation Max: Service level
Min: Makespan
. Min: Total performance
Remanufacturing process GA Monte Carlo score (electricity

consumption or pollutant
emissions)

Diaz et al. (2016)

Inventory planning

Simulated Annealing
Pattern Search

Discrete Markov-
modulated Chain

Min: Total inventory

(2018)

Ranking and Selection cost
DMC
(SAPS&RS) ( )
Min: Inventory holding
SC inventory planning and|  Proposed MOO . cost
Aslam and Ng (2016) bullwhip effect methodology SD Min: Backlog cost
Min: Bullwhip effect
. . . Proposed algorithm by Min: Inventory cost
Davoodi et al. (2016) | SC inventory planning authors Monte Carlo Max: Fill rate
Peirleitner et al. (2016) | SC inventory plannin NSGA-II ABS Min: Total cost
' P & Max: Service level
Monte Carlo Min: Total daily
Ye and You (2016) SC inventory planning | Trust-region method Object-oriented operation cost
simulation Max: Service level
Bandaly ct al. (2016) SC mventog plamlng and GA Monte Carlo Min: Total opportunity
financial hedging cost
Yang et al. (2016) Production planning and OptQuest DES Max: On-time delivery
control rate
Woerner et al. (2016) | SC inventory planning CLM&IPA DES Min: Holding cost
SCi ; Janni d Decomlf.i)s:_l onttbased Min: Total holding cost
Avei and Selim (2017) ° TYEROTY planming andj - murosjective NA Min: Premium freights
flexibility differential evolution ratio
algorithm (MODE/D)
Keramydas et al. SC network design and Min: Total cost
(2017) inventory planning OptQuest DES Min: CO2 emissions
Integrated biomass supply Min: Dry matter loss
Chavez et al. (2017) analysis and logistics Simulated Annealing DES Min: Percentage of
(IBSAL) moisture content
. SC production and .
Mokhtari et al. (2017) . . Grid search Monte Carlo Max: Total profit
inventory planning
Shahi et al. (2017) SC Production and OptQuest ABS Max: Net annual profit
inventory planning
Buisman et al. (2017) | SC inventory planning NA NA Max: Profit
Min:sustainability
Sudarto, Takahashi and SC capacity plannin Proposed MOO D dlmensmnzciirformance
Morikawa (2017) >t capacity p & methodology ’ . S
Min: remanufacturing
capacity expansion
Kara and Dogan . . Qlearning alganthm Min: Total inventory
SC inventory planning Sarsa algorithm Monte Carlo
(2018) cost
GA
. Min: inventory cost
Afshar-Bakeshloo et al. . . .
st oo etat ge inventory planning OptQuest DES Min:backlog cost

Min: emission cost
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