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Abstract 

Stochastic Local Search (SLS) algorithms are well known for their ability to efficiently find models of random instances of the 

SAT problem, especially for uniform random k-SAT instances. Two processes affect most SLS solvers—the initial assignment of 

the variables and the heuristics that select which variable to flip. In the last few years, the work on generating the appropriate initial 

assignment has not been paid much attention or seen much progress, while most SLS solvers focused on the heuristic algorithm. 

The present work aims to improve SLS algorithms on uniform random k-SAT instances by developing effective methods for 

generating the initial assignment of variables in a controlled way. Firstly, the allocation strategy introduced recently for 3-SAT 

instances is extended to initialize the initial assignment on random k-SAT instances. Then a concept of an initial probability 

distribution of the clause-to-variable ratio of the instance is introduced to determine the parameters of the allocation strategy. This 

combined method is added to the beginning of six state-of-the-art SLS algorithms in order to generate initial assignments of 

variables in a controlled way instead of generating them randomly, resulting in six extended SLS algorithms named 

WalkSATlm_E, DCCASat_E, Score2SAT_E, CSCCSat_E, Probsat_E, and Sparrow_E, respectively. They are then evaluated in 

terms of their capabilities and efficiency on uniform random k-SAT instance from the random track of SAT Competitions in 2016, 

2017, and 2018. Experimental results show that these improved SLS solvers outperform their original performance, especially 

WalkSAT_E, Score2SAT_E and CSCCSat_E outperform the winner of the random track of SAT competition in 2017. In addition, 

based on the initial probability distribution method, the present work proposes a parameter tuning and analysis of random 3-SAT 

instances and provides an additional comparative analysis with the state-of-the-art random SLS solvers based on large-scale 

experiments.  

 

Keywords: Probability Distribution · Satisfiability (SAT) · Focused random walk (FRW) · Stochastic local search (SLS) 

1 Introduction 

The propositional satisfiability (SAT) problem is one of the most widely studied NP-complete problems and has been 

extensively studied in many domains of computer science and artificial intelligence due to its significant importance in 

both theory and applications25,30. Considering a propositional formula F in the Conjunctive Normal Form (CNF) 

defined on a set of Boolean variables, the SAT problem asks whether there exists a truth assignment to the variables of 

F that satisfies all clauses in F. 

There are many optimization algorithms for solving SAT problems, which are divided into two main categories: one 

is complete, the other is incomplete. Although the incomplete SAT solvers cannot guarantee either to find the solutions 

or prove a given boolean formula unsatisfiable, some of them are surprisingly more effective than complete solvers on 

finding models of satisfiable formulae for random SAT instances29. The incomplete SAT solvers are mainly based on 

the Conflict Driven Clause Learning (CDCL) strategies32,39, and the incomplete SAT solvers are mainly based on 

Stochastic Local Search (SLS) strategies, which are among the best-known methods for solving SAT instances13,52.  

An SLS algorithm starts a truth assignment of the variables of F by generating randomly. Then it explores the search 

space to minimize the number of falsified clauses. To do this, it iteratively flips the truth value of a variable selected 

according to some heuristic at each step18-20,28. An SLS algorithm for SAT switches between two different modes, 

which are greedy (intensification) mode and random (diversification) mode. The former aims at increasing the number 

of satisfied clauses, while the latter tends to explore the search space well and prevent the search from being stuck in the 

local minima. 
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Random SAT instances are generated using random models, including uniform random k-SAT2 or hard random 

SAT9. Hard random SAT instances exhibit some particularly statistical properties and are hard to solve by SLS 

algorithms, except for the complete algorithms like Sparrow2riss8. Uniform k-SAT instances remain very difficult for 

all algorithms, including SLS algorithms and CDCL algorithms. As reported in the literature34, the performance of the 

SLS algorithms are often evaluated on uniform random k-SAT benchmarks. These benchmarks have a large variety of 

instances to test the robustness of algorithms, and by controlling the instance size and the clause-to-variable ratio, they 

provide adjustable hardness levels to assess the solving capabilities. Moreover, the performance of the algorithm is 

usually stable on uniform random k-SAT instances, either good or bad. Thus, we can easily recognize good heuristics 

by testing SLS algorithms on uniform random k-SAT instances, and these heuristics may be beneficial for solving 

application problems. Furthermore, uniform random k-SAT instances are widely used as benchmarks in the 

international SAT competitions, and uniform random k-SAT at the phase transition has been cited as one of the hardest 

track of SAT problems37. 

Although SLS is well known as the most effective approach for solving uniform random k-SAT instances, the 

performance of SLS algorithms on such instances has stagnated for a long time. Indeed, such instances remain 

challenging for all kinds of algorithms. The famous SLS algorithm WalkSAT has shown that mixed random walk is the 

superior strategy45, and can solve random 3-SAT instances near the phase transition with one million variables31. The 

states-of-the-art in this direction SLS algorithms include Sparrow3, Probsat4,5, CCASat13, FrwCB 34, WalkSATlm 21, 

respectively. They have shown good performance on random instances with long clauses (k>3). A few further progresses 

such as DCCASat37, CSCCSat35, dimetheus20, Score2SAT22, and yalsat10
, have also been made in this direction. Sparrow 

and Probsat won the random track of SAT Competitions in 2011 and 2013, respectively. For random instances at the 

phase transition1, DCCASat and WalkSATlm are good at solving random 5-SAT and 7-SAT instances; and for random 

instances near the phase transition, Sparrow and Probsat are good at solving random 5-SAT and 7-SAT instances. 

CCASat, CSCCSat, Score2SAT, yalsat, and dimetheus have shown good performance on all uniform random k-SAT 

instances for k∈ {3, 5, 7}.  Especially, CCASat, dimetheus and yalsat won the random track of SAT Competitions in 

2012, 2016, and 2017 respectively, and CSCCSat won the silver of the random track of SAT Competition in 2016. 

Score2SAT won the bronze of the random track of SAT Competition in 2017. Note that CSCCSat shows better 

performance than yalsat on uniform random k-SAT instances at the threshold ratio of phase transition. WalkSATlm 

shows the best performance among these solves on random 3-SAT instances at the threshold ratio of phase transition. 

Although current SLS solvers can solve effectively uniform random k-SAT instances, observing the champion 

solvers of the random track of SAT Competition in the last few years, we find that the best SLS algorithms have not 

solved nearly half of all uniform random k-SAT instances of SAT Competition. Therefore, there are still several spaces 

for further improvement in SLS solvers.  

Note that two strategies that potentially affect the efficiency of SLS solvers are the initial assignment of the variables 

and the heuristics that select and flip a variable according to a variable selection heuristic iteratively until it seeks out a 

solution or timeout. In the last few years, the work on generating the appropriate initial assignment has not been paid 

much attention or no significant breaking method, and most SLS solvers focused on the heuristic algorithms. The 

present work aims to improve SLS algorithms on uniform random k-SAT instances by developing effective and 

efficient methods for generating the initial assignment of variables. 

One of the concepts introduced by the same author team26 places a good foundation on the present work, called the 

allocation strategy, which is based on the ratio of the number of occurrences of positive and negative literals for each 

variable in each instance and is utilized to generate the initial assignment on random 3-SAT instances. It is shown that 

the allocation strategy based on the initial information of the inherent properties of each instance has an obvious effect 

in improving the GSAT algorithm for random 3-SAT problems46. A natural question arises: Whether the allocation 

strategy can also be used to improve the performance of SLS algorithms for solving uniform random k-SAT problems? 

The present work provides a positive answer to this question by extending the allocation strategy from uniform 

random 3-SAT to uniform random k-SAT instances. More specifically, a concept of initial probability distribution P(r) 

(r is the clause-to-variable ratio of the instance) is proposed to effectively determine the parameter setting for the 

 
1 The clause-to-variable ratio for which 50% of the uniform random formulas are satisfiable. For most algorithms, the closer a formula is generated near the 

threshold ratio, the harder it is to solve it  
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allocation strategy. The initial probability distribution is combined with the allocation strategy, which is added to the 

beginning of each algorithm to generate the initial assignment in a controlled way instead of generating an assignment 

randomly. This has resulted in six extended SLS algorithms on solving uniform random k-SAT instances and 

implemented in the corresponding six state-of-the-art SLS solvers - WalkSATlm, DCCASat, Score2SAT, CSCCSat, 

Probsat, and Sparrow, respectively. The extended SLS solvers are named WalkSATlm_E, DCCASat_E, Score2SAT_E, 

CSCCSat_E, Probsat_E, and Sparrow_E, respectively. 

All those algorithms are evaluated through benchmarks in terms of their capabilities and efficiency on uniform 

random k-SAT instances from the random track of the SAT Competitions in 2016, 2017, and 2018, considering both 

the robustness and the runtime criteria. Experimental results show that the versions of improved SLS solvers 

outperform their original versions, and especially WalkSATlm_E, Score2SAT_E, and CSCCSat_E outperform the 

winner of the random track of SAT competition in 2017, and CSCCSat _E outperforms the silver of the random 

satisfiable track of SAT competition in 2016, and CSCCSat_E and WalkSAT_E outperform the second-ranked solver 

probSAT among the SLS solvers in terms of capability for the SAT competition in 2018. Despite their simplicity, the 

proposed allocation strategy and initial probability distributions are effective for improving six SLS solvers on all 

instances. In addition, based on the introduced initial probability distribution method, the present work proposes a new 

hard and easy distribution of random 3-SAT instances and provides additional comparative analysis with random SLS 

solvers based on large-scale experiments. 

The remaining of the paper is organized as follows. Section 2 introduces some required definitions, notations, and 

background. Section 3 presents the allocation strategy and initial probability distributions on uniform random k-SAT. 

Section 4 describes our contribution by detailing the WalkSATlm_E, DCCASat_E, Score2SAT_E, CSCCSat_E, 

Probsat_E, and Sparrow_E, along with experimental evaluations and analyzes the effectiveness of the allocation 

strategy on uniform random k-SAT instances in Section 5. Section 6 presents parameter tuning and related analyses on 

random 3-SAT. Finally, we give some concluding remarks and future directions in Section 7. 

2  Preliminaries 

In this section, we first introduce some basic definitions and notation about SAT problems. Then, we briefly review the 

WalkSATlm, DCCASat, Score2SAT, CSCCSat, Probsat, and Sparrow, and related works. Finally, we introduce the 

allocation strategy, which is also an important component in our improving algorithms. 

2.1 Definitions and Notations 

An instance F of the satisfiability problem (SAT) is defined by a pair 𝐹 = (𝑋, 𝐶) such that 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}is a set 

of n boolean variables (their values belong to the set {true, false}) and 𝐶 = {𝑐1, 𝑐2, ⋯ , 𝑐𝑚}is a set of m clauses. A clause 

𝑐𝑖 ∈ 𝐶 is a disjunction of literals, and a literal is either a variable xi (which is called positive literal) or its negation 
ix

(which is called negative literal). A clause can also be represented by the set of its literals. For a set of literals L, 

𝑣𝑎𝑟(𝐿)is the set of the variables in L. Accordingly, 𝑣𝑎𝑟(𝑐𝑖) is the set consisting of the variables appearing in 𝑐𝑖. The 

size of a clause 
ic is the number of its literals, and it is denoted by|𝑐𝑖| = |𝑣𝑎𝑟(𝑐𝑖)|. If the size of each clause in C is 

equal to k (∀ci ϵ C,|𝑐𝑖| = 𝑘) then the instance is a k−SAT instance, and r = m/n is its clause-to-variable ratio. An 

instance 𝐹 = 𝑐1 ∧ 𝑐2 ∧ ⋯ ∧ 𝑐𝑚  is a conjunction of clauses.  

A satisfying assignment I for instance F is an assignment to its variables such that the instance evaluates to true. If xi 

is true in I (or false) then 𝑥𝑖 ∈ 𝐼 (or ¬𝑥𝑖 ∈ 𝐼). Given an instance F, the boolean satisfiability problem is to find a 

satisfying assignment or prove that none exists. A literal l is said to be satisfied by the current assignment in I if 𝑙 ∈

𝐼and falsified if ¬𝑙 ∈ 𝐼. A clause is satisfied in I if at least one of its literals is true in I, and falsified otherwise. A 

solution of F is an assignment that satisfies all the clauses of F. 

A uniform random k-SAT instance is a formula which contains exactly k distinct variables. The uniform random 

k-SAT instances are generated for two different sizes: medium and huge on SAT Competitions. The clause-to-variable 

ratio of medium-sized instances is equal to the phase-transition ratio. The number of variables differs for all the 

instances. The huge random instances have a few million clauses. For the huge instances, the ratio ranges from far from 

the phase-transition ratio to relatively close, while for each k the number of variables is the same. 
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The popular variable properties used by SLS algorithms for SAT are make(x) and break(x), which are the number of 

clauses that would become satisfied and unsatisfied respectively if variable x was to be flipped, and score(x), which is 

defined as to make(x)-break(x). Usually, SLS algorithms for uniform random k-SAT instances select a variable to flip 

according to scoring functions. A scoring function can be a simple property or any mathematical expression with one or 

more properties. The second level properties consider the satisfaction degree of clauses, which is defined as the number 

of true literals in the clause. A clause with a satisfaction degree of δ is said to be a δ-satisfied clause. For a variable x, 

score2(x) 13, 15 for SAT is defined as make2(x)-break2(x), where make2(x) is the number of 1-satisfied clauses that would 

become 2-satisfied by flipping x, and break2(x) is the number of 2-satisfied clauses that would become 1-satisfied by 

flipping x. The other level properties take into account level make, abbreviated as lmake, which incorporates make(x) 

and make2(x) properties of different levels. The level make has been used in SLS algorithms for SAT16, 21. The age(x) of 

a variable x is defined as the number of search steps that have occurred since x was last flipped. Two variables are 

neighbors if and only if they appear in the same clause. The set of x neighbors is denoted by N(x), which is the set of all 

neighboring variables of variable x. The states of all clauses in which x appears under the current assignment I is 

denoted by CL(x). 

2.2 Configuration Checking for SAT 

The Configuration Checking (CC) strategy was initially introduced for improving local search for the minimum vertex 

cover problem 11. It aims at avoiding cycles in local search, i.e., revisiting the already visited assignments too early. It 

has been successfully used in some areas, such as MVC13, SAT1, 33 and so on. 

In the SAT problems, the CC strategy (NVCC) considers the relationship between a variable xi and its neighbors 

N(xi)13. It defines the configuration C(xi) of a variable xi by the subset of I, which is restricted to the variables of N(xi). 

In other words, we have𝐶(𝑥𝑖) = 𝐼|𝑁(𝑥𝑖)|. The Boolean array NV_Changed is used to implement NVCC. For a 

variable xi, NV_Changed(xi)=1 means that at least one variable in N(xi ) has been flipped since xi’s last flip. A variable 

xi is neighboring-variables-based configuration changed decreasing (NVD) iff 𝑠𝑐𝑜𝑟𝑒(𝑥𝑖) > 0and NV_Changed(xi)=1. 

The notation NVD_vars is used to denote the set of all NVD variables. The other notion in aspiration is the significant 

decreasing (SD) variable. If 𝑠𝑐𝑜𝑟𝑒(𝑥𝑖) > 𝑤, where w  is the averaged clause weight (over all clauses), the variable xi is 

an SD variable. The notation SD_vars is used to denote the set of all SD variables. 

Compared to the NVCC strategy, the CSCC strategy considers the relationship between a variable xi and the states of 

all clauses in which x appears40. C(xi) of a variable xi under the current assignment I is restricted to the variables of 

CL(xi). For a variable xi, a change on any bit of C(xi) is considered as a change on the whole C(xi) vector. The Boolean 

array CS_Changed is used to implement CSCC. For a variable x, CS_Changed(xi)=1 means that at least one clause in 

CL(xi ) has changed its state (from unsatisfied to satisfied or from satisfied to unsatisfied) since xi’s last flip. A variable 

x is clause-states-based configuration changed decreasing (CSD) iff 𝑠𝑐𝑜𝑟𝑒(𝑥𝑖) > 0and CS_Changed(xi )=1. The 

notation CSD_vars is used to denote the set of all CSD variables. The other implementation of the CSCC strategy is to 

employ an integer array ConfTimes for variables. In the beginning, for each variable x, ConfTimes(x) is set to 1. 

Whenever a variable x is flipped, ConfTimes(x) is reset to 0. Then each clause 𝐶 ∈ 𝐶𝐿(𝑥𝑖) is checked whether its state 

is changed by flipping x. If this is the case, for each variable y (𝑦 ≠ 𝑥) in C, ConfTimes(y) is increased by 134. 

2.3 Stochastic Local Search for SAT 

For a CNF formula F, initially, a basic SLS algorithm for SAT randomly generates a complete assignment I, which may  

falsify some clauses. Then, it attempts to find a solution by repeatedly iteratively this assignment by flipping the 

boolean value of one variable (changing its value from false to true, or true to false) according to several variable 

selection heuristics at a time until seeking out a solution (a solution is found) or timeout. SLS algorithms for SAT differ 

by the heuristic used in choosing which variable to flip (for examples, see the literature12, 14, 23). Below we briefly 

overview some popular SLS algorithms with some justifications why they were selected for further improvements. 

WalkSATlm based heuristics: WalkSATlm algorithm utilizes the random walk and the multilevel break properties 
41, 45. Originally introduced in the literature16, the multilevel make is added to WalkSAT for solving uniform random 

k-SAT with k>3. WalkSATlm applies the following variable selection scheme in each step21. First, WalkSATlm 
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randomly selects a falsified clause C, and then it sorts the variables of C according to their break. If there exist variables 

with a break value of 0 in clause C, one of such variables is flipped. If no such variable exists, then with a certain 

probability p (the noise parameter), one of the variables from C is randomly selected to flip; otherwise, one of the 

variables with the equal minimum break value from C is flipped by preferring the variable with the greatest lmake value; 

if there exist variables with the equal greatest lmake value, one of the variables is randomly selected to flip. 

Recently, there has been increasing interest in WalkSATlm due to the improving WalkSAT of its great power on 

random long-clause instances, and WalkSATlm is very competitive with current SLS solvers on uniform random 

k-SAT instances. In 2015, Luo et al. observed that lmake was far more powerful than had been appreciated38.  

DCCASat based heuristics: DCCASat algorithm adopts the configuration checking strategy. Originally introduced 

in the literature37, a novel concept named double configuration checking with aspiration (DCCA) heuristic combines 

NVCC and CSCC for solving uniform random k-SAT with k>3, and DCCA applies the following variable selection 

scheme in each step. First, if CSD_vars is not empty, DCCA selects a variable with the greatest score in CSD_vars; 

otherwise, if NVD_vars is not empty, it selects a variable with the greatest score in NVD_vars; then, if NVD_vars is 

empty, DCCA activates aspiration to select a variable in SD_vars with the greatest score. 

DCCASat is one of the most influential SLS algorithms for SAT, and it is still competitive with the state-of-the-art 

SLS solvers in solving random long-clause instances. DCCASat algorithm serves as the basis of our algorithm in this 

work. 

CSCCSat based heuristics:  CSCCSat solver is a combination of two SLS solvers, FrwCB2014 developed based on 

FrwCB34, which utilizes the linear make function to break ties, and DCCASat2014 improved based on the above 

DCCASat, which utilizes the algorithmic settings for random instances described in the literature38. The procedure of 

CSCCSat can be described as follows. CSCCSat first decides the type of this instance for solving a random SAT 

instance. Then based on the clause-to-variable ratio of the instance, CSCCSat picks either DCCASat2014 or 

FrwCB2014 to solve the instance.  

CSCCSat is very competitive with the state-of-the-art SLS solvers on uniform random k-SAT instances. It won the 

‘3rd Place Award’ in the random SAT track of SAT Competition 2014 and the ‘2nd Place Award in the random SAT 

track of SAT Competition 2016. 

Score2SAT based heuristics: Score2SAT won the ‘3rd Place Award’ in the random SAT track of SAT Competition 

2017. The Score2SAT solver is a combination of DCCASat 37 and WalkSATlm21. The procedure of Score2SAT can be 

described as follows. Score2SAT first decides the type of this instance for solving a random SAT instance. Based on the 

clause-to-variable ratio of the instance, denoted as r, Score2SAT selects either WalkSATlm or DCCASat to solve the 

instance. The procedures of Score2SAT are described as follows. For random 3-SAT instances with r ≤ 4.24, 

WalkSATlm is called; for random 3-SAT instances with r > 4.24, DCCASat is called.  For random 5-SAT instances 

with r ≤ 20.1, WalkSATlm is called; for random 5-SAT instances with r > 20.1, DCCASat is called. For random 

7-SAT instances with r ≤80, WalkSATlm is called; for random 7-SAT instances with r > 80, DCCASat is called. 

Sparrow based heuristics: Sparrow is the winner of the SAT Competition 2011 category random SAT. Sparrow is 

based on gNovelty+ 43, which is the winner of the SAT 2007 Competition category random. When Sparrow reaches a 

local minimum, it computes a probability distribution p(x) defined as an exponential function of the score(x) value on 

the variables from an unsatisfied clause C, and then selects a variable to flip according to this distribution as listed 

below3. The probability distributions is first presented in the SLS solver Sparrow 3. 
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where c1 controls the influence of score(x), and c2 and c3 specify, how quickly and how strongly age(x) starts to affect 

the decision. 

Probsat based heuristics: Probsat is the winner of the random track of SAT Competition 2013. Probsat is a simple 

and elegant SLS solver based on probability distributions4. Under the current assignment I, Probsat uses only the 

make(x) and the break(x) value of a variable x in the probability functions f(x, I), which can have an exponential or a 
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polynomial shape as listed below. The break(x) value is more important than make(x) as discovered in the literature4. 

( )

( )

( , )

( , )
2-2 ( , )

make x I

m

break x I

b

c
f x I

c
=）  

 

 

 

where cb and cm are the parameters of the functions. Probsat applies the following variable selection scheme in each 

step. First, Probsat randomly selects a falsified clause C, and then it sorts random variable x of C according to the 

follow probability function. 

( ) ( )2-4 , ,
z C

f x I f z I
）  

Although WalkSATlm, DCCASAT, CSCCSat, Score2SAT, Sparrow, and Probsat are state-of-the-art SLS solvers, 

they solved only less than half of instances at and near phase transition of the random track of SAT Competition in the 

last three years. This result motivates our work toward improving these SLS solvers on uniform random k-SAT 

instances. 

2.4 Hard and Easy Distributions of SAT Problems 

Originally introduced in the literature42, a detailed study of the average case of SAT testing for random instances has 

been carried out. A random SAT instance that is hard or easy to solve can be predicted in advance for Davis-Putnam 

(DP) 24 procedure, which is a complete algorithm. 

Davis and Putnam explored the hardness of the random 3-SAT problems by DP. The hard and easy distributions 

were based on the number of instances solved by DP. The same variable instances with few clauses are under- 

constrained and have many satisfying assignments, and an assignment is likely to be found early in the search. 

Instances with many clauses are over-constrained (usually unsatisfiable), and thus contradictions are found easily so a 

full search can be completed quickly. Finally, instances in between hard and easy are much harder because they have 

relatively few satisfying assignments, and but the empty clause will only be generated after assigning values to many 

variables, resulting in a deep search tree. 

However, large-scale experiments in satisfiability testing were based on quite easy instances. For example, the 

variable values were only 20 or 50, which is not convincing enough. In the last few years, random SAT instances are 

solved mainly by incomplete solvers--SLS solvers, and complete solvers have no advantage for solving random 

instances at and near the phase transition, which motivates our work toward predicting the hardness of random 

instances based on initial probability distributions, which is a new concept. 

3   Allocation Strategy and Initial Probability Distribution on Uniform Random k-SAT 

The allocation strategy26 for random 3-SAT problem characterizes the greediness of assigning a variable at the 

beginning of the search, as it tends to decrease the number of falsified clauses, which is indeed the aim of the 3-SAT 

problem. It seems short-sighted to take the allocation strategy for solving the 3-SAT problem, and there is no careful 

analysis of the setting of parameters. To address this issue, first, we extend the allocation strategy from random 3-SAT 

to random k-SAT, and then we propose a new concept P(r) (r is the clause-to-variable ratio of the instance) to 

determine the parameters used in the allocation strategy for uniform random k-SAT instances with the same r. 

3.1 Allocation Strategy on Uniform Random k-SAT 

In this section, we first extend the allocation strategy from random 3-SAT to random k-SAT instances. We keep the 

same term “the allocation strategy” for simplicity. The reader can easily distinguish it from the random 3-SAT or 

random k-SAT. The idea of allocation strategy is to give an initial assignment for solving the k-SAT problem and aims 

to guide the trend of optimal truth assignment in advance to accelerate the finding of the optimal solution.  

Definition 1. Given a CNF formula F for a k-SAT instance, the Variable allocation degree function ( )iVad x of a 

( )( )

( )( )

,
2-3 ( , )

,

m

b

c

c

make x I
f x I

break x I
=

+
）
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variable
i nx X is defined as 

1, 0
3 1) ( )

,

i

i i

x

i

x x

pad n
Vad x

p n otherwise

+ =
− = 



 

where 𝑛𝑥𝑖
and 𝑝𝑥𝑖

 are the number of occurrences of negative and positive literals for each variable xi in each formula, 

and pad is a positive decimal parameter greater than 1. 

Note that when 𝑉𝑎𝑑(𝑥𝑖) ≥ 1, it indicates that the number of positive literals is more than the number of negative 

literals for variable xi, and it is called the positive allocation degree (pad) of variable 𝑥𝑖. When 𝑉𝑎𝑑(𝑥𝑖) < 1, it 

indicates that the number of positive literals is less than the number of negative literals for variable xi, and it is called the 

negative allocation degree (nad) of variable 𝑥𝑖. Random SAT is symmetric when it comes to the roles of the truth 

values and the positive and negative occurrences of variables in clauses, thus we set pad*nad≈1. 

This function is so simple that it can be computed with little overhead. It is the underlying function that leads to the 

following allocation strategy. Recall that a variable satisfies allocation strategy by the following definition. 

Definition 2. Given a CNF formula F for a k-SAT instance and its Vad(x) function, a variable xϵ Xn satisfies 

Allocation Strategy(AS) iff ( )Vad x pad or ( )Vad x nad .
  

In this work, we use the notation ASvars to denote the set of all variables which satisfies allocation strategy during the 

search. In the search process, our algorithm prefers to generate the initial assignment of variables in the greedy phase from 

ASvars set. 

Definition 3. Given a CNF formula F for a k-SAT instance and its Vad(x) function, a variable x ϵ Xn is a Uniform 

Variable (UV) if ( )nad Vad x pad  .
  

In this work, we use the notation UVvars to denote the set of all UV variables during the search. In the search process, our 

algorithms prefer to generate the initial assignment of variables randomly from the UVvars set. 

Based on the above definitions, we design a variable allocation value function initializing an assignment. The 

resulting function is dubbed as Vav(x) and is given as follows. 

Definition 4. Given a CNF formula F for a k-SAT instance, and a function 𝜒(𝑥𝑖)that randomly produces 0 or1 for 

each variable xi , the Variable allocation value function 𝑉𝑎𝑣(𝑥𝑖) of a variable𝑥𝑖 ∈ 𝑋𝑛is defined as 

( )

1 , ( )

3 2) ( ) 0 , ( )

,

i

i i

i i

Vad x pad

Vav x Vad x nad

x UVv rx a s




− = 
 

 

where 𝜒(𝑥𝑖) randomly generates 0 and 1 and is presented in such a way 𝑟𝑎𝑛𝑑( )%2 in a procedure (1 means true, 

and 0 means flase in Vav(xi)) and pad is a positive decimal parameter greater than 1, and nad is a positive decimal 

parameter less than 1. 

Its simplicity allows its potential usage in solving k-SAT instances and perhaps other combinatorial search problems. The 

parameters pad and nad can be easily tuned. In our algorithms, when initializing an assignment, the algorithms make 

use of this function. We will show that the function is a better choice than the “traditional” strategy generating an 

assignment randomly.  

A variable xi ϵASvars is initially assigned in a deterministic way, i.e., if Vad(xi)>pad, the initial assignment of variable xi is 

1; if Vad(xi)<nad, the initial assignment of variable xi is 0. This is necessary, as the solution of k-SAT instance has 

randomness, and the SLS solvers initially generate an assignment randomly, which leads to unpredictable the objective at 

the beginning of search without any controlling mechanism. If the initial assignment is generated in a deterministic way, 

which maybe guide the next search process, and reduce the search space and speed up the search efficiency. Most SLS 

algorithms for SAT prefer to flip variables in the greedy search mode. The notation of variables of allocation strategy is a 

good alternative to be considered for the initial assignment in the greedy phase.  

Based on the above definitions, we design a function taking account into ratio of the variables satisfying the allocation  

strategy. The resulting function is dubbed as Sd(F) and is given as follows. 
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Definition 5. Given a CNF formula F for a k-SAT instance, the number of variables n, and a function 

𝜙(𝑥𝑖 , 𝑝𝑎𝑑, 𝑛𝑎𝑑)that only produces 0 or 1 for each variable 𝑥𝑖 ∈ 𝑋𝑛  , the Satisfaction degree 𝑆𝑑(𝐹) of ASvars is 

defined as 

( )
1

, ,

3 4) ( )

n

i

i

x pad nad

Sd F
n


=− =


 

where 𝜙(𝑥𝑖 , 𝑝𝑎𝑑, 𝑛𝑎𝑑) = {
1, 𝑥𝑖 ∈ 𝐴𝑆𝑣𝑎𝑟𝑠

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ,  pad is a positive decimal parameter greater than 1, and nad is a 

negative decimal parameter less than 1. 

Based on the large-scale experiments on uniform k-SAT instances of the random track of SAT competition in 2016, 

2017, and 2018, we found that when the parameters pad and nad are fixed, the Sd of ASvars differ by about 10% for 

different k-SAT instances with the same r, k, and n respectively. However, the Sd of ASvars is almost equal for uniform 

k-SAT instances with the same r and k and different n. For example, when pad=1.8 and nad=0.4, based on k-SAT 

instances of random track of SAT competition in 2017, the Sd of ASvars is 0.244 for a 3-SAT instance with r=4.3; the 

Sd of ASvars are equal to 0.269 for other 3-SAT instances with r=4.3; the Sd of ASvars are about 0.240 for 40 different 

3-SAT instances with r≈4.267 and 500≤ n≤12800; the Sd of ASvars are about 0.002 for 40 different 5-SAT instances 

with r≈21.112 and 200≤ n≤590; and the Sd of ASvars are all equal to 0 for 40 different 7-SAT instances with r≈87.79 

and 90≤ n≤180.  

Different settings of the parameters pad and nad will directly affect the Sd of ASvars for SAT instances, and while 

different requirements of Sd of ASvars will indirectly lead to the setting of the parameters pad and nad. Therefore, the 

setting of the parameters pad and nad and Sd of ASvars have an interactive relationship so that the Sd of ASvars 

indirectly affects the performance of the algorithm. 

Lemma 1. Given a CNF formula F  for a k-SAT instance, if satisfaction degree of ASvars is 𝑆𝑑(𝐹), then satisfaction 

degree of UVvars is 1 − 𝑆𝑑(𝐹).
  

Proof. For a variable x, x is a UV variable, meaning that 𝑛𝑎𝑑 ≤ 𝑉𝑎𝑣𝑑(𝑥) ≤ 𝑝𝑎𝑑. If x doesn't belong to UVvars, then 

𝑉𝑎𝑣(𝑥) > 𝑝𝑎𝑑 or 𝑉𝑎𝑣(𝑥) < 𝑛𝑎𝑑, meaning that x belongs to ASvars, so 𝑈𝑉𝑣𝑎𝑟𝑠 ∪ 𝐸𝐴𝑆𝑣𝑎𝑟𝑠 = 𝑋𝑛. As 𝑈𝑉𝑣𝑎𝑟𝑠 =

𝑋𝑛 − 𝐸𝐴𝑆𝑣𝑎𝑟𝑠, thus |𝑈𝑉𝑣𝑎𝑟𝑠| = |𝑋𝑛 − 𝐸𝐴𝑆𝑣𝑎𝑟𝑠|, where  denote the number of elements in a set.  Thus 
|𝑈𝑉𝑣𝑎𝑟𝑠|

|𝑋𝑛|
=

|𝑋𝑛−𝐸𝐴𝑆𝑣𝑎𝑟𝑠|

|𝑋𝑛|
=

|𝑋𝑛|

|𝑋𝑛|
− 

|𝐸𝐴𝑆𝑣𝑎𝑟𝑠|

|𝑋𝑛|
= 1 −

|𝐸𝐴𝑆𝑣𝑎𝑟𝑠|

|𝑋𝑛|
= 1 − 𝑆𝑑(𝐹).  

3.2 Initial Probability Distributions on Uniform random k-SAT 

In this section, we introduce the initial probability distributions P(r) of random instances with the clause-to-variable r 

based on Sd(F) values of a uniform random k-SAT instance, which is formally defined as follows. 

Definition 6. Given a set of CNF formulas G for k-SAT instances, the clause-to-variable ratio r, and the total number 

of formulas W, the initial probability distributions of r, denoted by P(r), is defined as a function based on Sd(F) of 

ASvars such that 

( )
( )

3 5) F G
Sd F

P r
W

− =


 

From definition 6, we know that the bigger Sd(F) is, the bigger P(r) is, so they have a positive correlation. According 

to definition 5, 𝜙(𝑥𝑖, 𝑝𝑎𝑑, 𝑛𝑎𝑑) and Sd(F) have a positive correlation, and the number of elements in ASvars and 

𝜙(𝑥𝑖 , 𝑝𝑎𝑑, 𝑛𝑎𝑑) have a positive correlation, so the number of elements in ASvars and P(r) have a positive correlation. 

Based on definition 2, the number of elements in ASvars is related to pad and nad. The bigger the nad is, the bigger the 

number of elements in ASvars is; however, the smaller the pad is, the bigger the number of elements in ASvars is. So 

nad and P(r) have a positive correlation, and pad and P(r) have a negative correlation.  

To get a picture of how the value of P(r) varies under different values of the parameters pad and nad, we have done 

a uniform sampling of pad ϵ [1.0, 3.0] and nad ϵ [0.1, 1.0] on all random 3-SAT instances with 6000 variables with 
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r≈4.267 from the random track of SAT competition in 201850 (see below). 

 
Fig. 1. Parameter space P(4.267) plot: The plot shows the relationship between parameters pad and nad under the same value of  P(4.267). The brighter the area 

the bigger the value of P(4.267) with that parameter settings. 

According to Fig.1, when the value of P(4.267) is fixed, the relationship between pad and nad is hyperbolic. As 

mentioned in Section 3.1, it turns out that nad and P(r) have a positive correlation, and pad and P(r) have a negative 

correlation, i.e., pad*nad≈1.  

To generate balanced instances, Balint6 has assumed the same positive and negative literals probability for the 

random track of SAT competition in 2018. In general, if we want to get the P(r) value of a certain interval and balance 

the number of variables satisfying Vad>1 and the number of variables satisfying Vad <1, we adjust pad and nad to 

make the difference between the number of variables that satisfy Vav>pad and the number of variables that satisfy 

Vav<nad as small as possible.  

For example, if pad= 1.46 and nad =0.68, then the value of P(21.117) is 0.056 for 40 random 5-SAT instances from 

the random track of SAT competition in 201749. We change the value of P(21.117) from 0.056 to 0.406, if we only 

adjust the value of nad and make the value of nad equal to 0.94, and then the value of P(21.117) is 0.406. However, if 

the allocation strategy removes the condition 𝑉𝑎𝑣(𝑥) > 𝑝𝑎𝑑, then the value of P(21.117) is 0.377 with nad=0.94; and 

if the allocation strategy removes the condition𝑉𝑎𝑣(𝑥) < 𝑛𝑎𝑑, then the value of P(21.117) is 0.029 with pad=1.46.

In ASvars, variables with more negative literals than positive literals occupy 92.9%, and variables with more positive 

literals than negative literals are only 7.1%, so the number of positive and negative literals in ASvars is seriously out of 

balance. That is to say that there is a huge difference in the number of variables that satisfy these two conditions. If pad 

=1.18 and nad = 0.85, then P(21.117)=0.404, which is almost close to 0.406. If the allocation strategy removes the 

condition 𝑉𝑎𝑣(𝑥) > 𝑝𝑎𝑑, then the value of P(21.117) is 0.205 with nad=0.85; and if the allocation strategy removes 

the condition 𝑉𝑎𝑣(𝑥) < 𝑛𝑎𝑑, then the value of P(21.117) is 0.199 with pad=1.18. The number of variables satisfying 

𝑉𝑎𝑣(𝑥) < 𝑛𝑎𝑑 is almost equal to the number of variables satisfying 𝑉𝑎𝑣(𝑥) > 𝑝𝑎𝑑. Therefore, we could adjust pad 

and nad in a balanced way so that the number of variables satisfying a certain condition is not too large or too small. 

In the SLS algorithms, before generating an initial assignment of variables, we can make use of the above-mentioned 

method to analyze the settings of parameters pad and nad and demonstrate the effectiveness of using this method to set 

parameters pad and nad. 

3.3 Parameter Setting of the Allocation Strategy Based on Initial Probability Distribution 

3.3.1 Influences of parameter setting on the performance 

To get a picture of how the performance of the solver varies under different values of the parameters pad and nad, we 

have done a uniform sampling of pad ϵ [1.0, 4.0] and nad ϵ [0, 1.0] (see below). We have taken WalkSATlm solver as 

an example, and WalkSATlm is extended by using the allocation strategy (as detail in algorithm WalkSATlm_E in 

section 4) with the different parameter settings on a set of randomly generated 3-SAT instances with 1000 variables 

with r≈4.267. The cutoff limit was set to 10s.  

In the case of 3-SAT, a good choice of the parameters is nad >0 (as expected) and pad>1. For example, pad =1.8 and 

nad = 0.56 (see Fig. 2 left diagram and the survey in the following Table 1) are an optimal setting. In the interval pad ϵ  
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Fig. 2. Parameter space performance plot: The left and right plot show the performance of different combinations of parameters pad and nad. The darker the area 
the better the success rate (suc rate) of the solver with that parameter settings. The brighter the area the better the average runtime (agv time) of the solver with that 

parameter settings. 

 

[1, 2.5] and nad ϵ [0.15, 0.25], the optimal choice of parameters can be described by a constant function: nad=0.2. In 

fact, in the interval pad ϵ [1.5, 2.5], the nad has three choices of intervals, [0.15, 0.25], [0.45, 0.58], and [0.85, 0.9], 

respectively. In the right plot of Fig. 2, the area between two green lines is the time cost for selecting the highest success 

rate on the left graphic data. From the right plot, in the interval pad ϵ [1, 2], the preferred interval for the parameter nad 

is between 0.75 and 0.9; in the interval pad ϵ [1.75, 3], the preferred interval for the parameter nad is about between 0.1 

and 0.6. In the process of solving the 3-SAT instances, different parameters nad and pad have a direct impact on the 

performance of the algorithm. For the running time, it can be found through experiments that even a difference of more 

than 2 times may occur, and it can affect the success rate of the solution. As shown in Fig. 2, when pad=3 and nad=0.6, 

the success rate is 39%. When pad=1.8 and nad=0.56, the success rate is 43%. As mentioned in Section 3.1, it turns out 

that the relationship between pad and nad is pad*nad≈1, i.e., 1.8*0.56≈1. 

It turns out that the parameters pad and nad should firstly satisfy two conditions. The first condition is to ensure 

that the algorithm has the highest success rate. The second condition is to ensure that the algorithm takes the 

least time. Therefore, combining the left and right plots, the preferred interval of the parameters pad and nad are [1.5, 

2.5] and [0.5, 0.6] respectively. In our algorithms, under the two conditions, in order to balance the number of variables 

satisfying 𝑉𝑎𝑣(𝑥) < 𝑛𝑎𝑑 and 𝑉𝑎𝑣(𝑥) > 𝑝𝑎𝑑, the parameters also should satisfy the third condition, which is to 

make the difference between the number of variables that satisfy Vav(𝑥)>pad and the number of variables that 

satisfy Vav(𝑥)<nad as small as possible, and the parameters should be set to satisfy pad*nad≈1. Thus, we set 

parameters pad=1.8 and nad=0.56, and if the allocation strategy removes the condition 𝑉𝑎𝑣(𝑥) > 𝑝𝑎𝑑, the value of 

P(4.267) is 0.161 with nad=0.56, and if the allocation strategy removes the condition 𝑉𝑎𝑣(𝑥) < 𝑛𝑎𝑑, the value of 

P(4.267) is 0.153 with pad=1.8. Based on the parameters pad=1.8 and nad=0.56, we test the P(4.267) of the above 

instances which is 0.330, and P(4.267) is 0.328 on 3-SAT instances at the phase transition of random track of SAT 

competitions in 201648, 2017 and 2018. 

3.3.2 Enhancing the parameter setting using initial probability distribution 

According to the above method, the parameter setting of each track of k-SAT instances needs to test 40 sets of data. If 

the parameters of each track of k-SAT instances with the different clause-to-variable ratio of r are set according to the 

graphic analysis, it will take plenty of time to test. Here, we propose a new method to determine the parameters, and the 

implementation is simpler and has less overhead —if P(r) can be guaranteed to be between 0.33 and 0.40 for these 

parameters on random 3-SAT, 5-SAT, and 7-SAT with the clause-to-variable ratio of r, it is the optimal parameter 

setting. If P(r) is greater than 0.40, the number of positive and negative literals of each variable that satisfies the 

allocation strategy is almost equal. Then there is the initial assignment of more variables generated in a controlled way, 

which can be too greedy to determine. If P(r) is less than 0.33, most variables belong to UVvars that do not satisfy the 

allocation strategy. Then there is the initial assignment of more variables generated randomly, which cannot show the 

superiority of our method. Without loss of generality, we set P(r) as about 0.33, 0.37, and 0.40 for these parameters on 

random 3-SAT, 5-SAT, and 7-SAT with the clause-to-variable ratio of r respectively, and the obtained parameter 

setting could be optimal. 
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For different parameter settings, the satisfaction degree Sd(F) of each instance F is likely to be the same, that is, 

initial probability distribution P(r) on uniform random k-SAT instances with the clause-to-variable ratio of r is the 

same, so it is not necessary to test the success rate and the running time of each instance again (the success rate and 

average running time of the extended solvers based on the allocation strategy are almost the same, respectively). This 

can be illustrated using the following examples: 

Example 1: considering a set of randomly generated 5-SAT instances with n=100 and r≈21.117, we found that Sd(F) 

of each instance F with the parameters pad=2 and nad=0.7, is the same as that with the parameters pad=3 and nad=0.7, 

that is, P(21.117) corresponding to these two parameters is the same, and then their success rate and average running 

time are 48%, 0.135 and 48%, 0.138, respectively. It follows that by checking the initial probability distribution for 

each type of uniform random k-SAT instances, we can avoid a lot of unnecessary testing and save plenty of time in 

analyzing the optimal parameter settings. 

Example 2: If P(21.117) is set to be about 0.37, the parameters pad and nad can be quickly adjusted into the new and 

better ones: pad=1.26 and nad=0.87, respectively. Under these settings, the P(21.117) is 0.359 on 5-SAT instances at 

the phase transition of the random track of SAT competition 2016, 2017, and 2018. We have done a uniform sampling 

of pad ϵ [1.0, 4.0] and nad ϵ [0, 1.0] with the cutoff limit of 10s to verify that this is a set of better parameter settings by 

testing the above randomly generated 5-SAT instances with n=100 and r≈21.117. Then we get a picture of how the 

performance of improving WalkSATlm based on the allocation strategy varies for different values of the pad and nad 

in Fig.3. 

 
Fig. 3. Parameter space performance plot: The plot shows the performance of different combinations of parameters pad and nad. The brighter the 

area the better the average runtime (agv time) of the solver with that parameter settings. 

According to the experimental results, we found that the success rate of the solver under different combinations of 

pad and nad is the same, so we only show the average running time in Fig. 3. It can be seen that a good choice of the 

parameters is nad >0.6 (as expected) and pad>1.0 from Fig. 3. When the pad belongs to [1.8, 4.0], the optimal choice 

of parameters can be described by a constant function: nad=0.7. When the pad belongs to [1.25, 1.8], the parameter 

nad and pad are linear. P(21.117) has been set to be about 0.37 in Example 2. If the parameters satisfy the third 

condition, then we can get pad=1.26 and nad=0.87, which is a good choice. 

As mentioned, it turns out that the influence of initial probability distributions is rather strong, and thus is 

reasonable and still leads to a good approach for the parameter setting– also because the implementation is simpler and 

has less overhead. In detail, while WalkSATlm generates a random assignment, WalkSATlm_E does so by the 

allocation strategy based on the initial probability distribution to reduce blind random assignment. It is reasonable to 

generate an assignment using the inherent properties of each instance (ratio of the number of occurrences of positive 

and negative literals for each variable), which capture complementary information to random property. 

4  Six Improved SLS Solvers for Uniform random k-SAT Instances 

In this section, we detail the part of our contribution which consists of improving SLS solvers, which adopt the 

allocation strategy and initial probability distributions into their SLS algorithms to determine the initial assignments of 

the variable in a controlled way to guide the search in the greedy mode when handling uniform random k-SAT 
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instances. The resulted in six extended SLS solvers are named WalkSATlm_E, DCCASat_E, CSCCSat_E, 

Score2SAT_E, Sparrow_E, and Probsat_E, respectively.  

The extended SLS algorithms differ from the original SLS algorithms only in the method of determining the initial 

assignment of variables except for Score2SAT_E. At the beginning of each extended SLS algorithm for each solver, the 

initial assignment is generated in a controlled way by using the allocation strategy and initial probability distributions 

instead of generating them randomly. 

More specially, each extended SLS algorithm starts from computing the Vad(x) of each variable x and then generates 

a complete assignment based on Vav(x), which combines an assignment of variables satisfying the allocation strategy 

and using initial probability distribution generated in a controlled way with an assignment of other variables that do not 

satisfy the allocation strategy and generated randomly. If no variables satisfy the allocation strategy, each extended 

algorithm will generate a random assignment like most SLS algorithms. After initialization, each extended algorithm 

executes a loop until it finds a satisfying assignment or reaches a limited number of steps denoted by maxSteps. 

For simplicity’s purpose, we denote six extended SLS algorithms with the same names as the corresponding SLS 

solvers, that is WalkSATlm_E, DCCASat_E, CSCCSat_E, Score2SAT_E, Sparrow_E, and Probsat_E, respectively. The 

pseudo-code of each algorithm is summarized below.  

4.1 The WalkSATlm_E Algorithm 

This section presents the WalkSATlm_E algorithm in the Algorithm 1, which adopts the allocation strategy based on the 

variable allocation value function to guide the search in the greedy mode when handling uniform random k-SAT 

instances. The difference essentially is without greedy initial assignment and some changes in WalkSATlm vs 

WalkSATlm_E. 
 
Algorithm 1:  WalkSATlm_E (F)  

Input: CNF-formula F, k, MaxTries, MaxSteps 

1  Parameters Noise parameter p ϵ [0, 1] 

    Output: A satisfying assignment σ of F, or “no solution found” 

2  begin 

3       k ←Maximum clause length; 

4       for i = 1 to MaxTries do 

5         σ ←a generated truth assignment for F by Variable Allocation value function; 

6                for j = 1 to MaxSteps do                         

7                         if σ satisfies F then Return σ; 

8                          C ←an unsatisfied clause chosen at random; 

9                         if ( k= =3 ) 

10                               With probability p 

11                                     v ←a random variable in C; 

12                               With probability 1 − p 

13                                         v ← a variable in C with minimum number of clauses from true to false;  

14                      else 

15                          if   ∃ variable x ϵ C with break(x) = 0 then v ← x, breaking ties by preferring the one with the greatest lmake value; 

16                        else 

17                               With probability p 

18                                     v ←a random variable in C; 

19                                With probability 1 − p 

20                                      v ←a variable in C with the minimum break, breaking ties by preferring one with the greatest lmake value;  

21                        σ:= σ with v flipped; 

22      Return “no solution found”; 

23 end 

 

4.2 The DCCASat_E Algorithm 

Before getting into the details of the DCCASat_E algorithm, we first introduce three components employed in the 

algorithm. 

CW weighting scheme. For the sake of diversification, DCCASat_E employs the CW clause weighting scheme (Luo 

et al, 2013). When a local optimum is reached, the clause weights are updated as follows. If DCCASat_E solves 

random 3-SAT instances, CW increases clause weights of all unsatisfied clauses by one; further, if the averaged clause 



 13 

weight 𝑤 exceeds a threshold w, each clause weight is smoothed as 𝑤(𝑐𝑖) = ⌊𝑝 × 𝑤(𝑐𝑖)⌋ + ⌊𝑞 × 𝑤⌋, where 0 ≤ 𝑝 ≤ 1 

and 0 ≤ 𝑞 ≤ 1. If DCCASat_E solves uniform random k-SAT (k>3) instances, CW adopts the PAWS scheme [47]. 

The weight of each clause is initiated as 1. With probability sp, where 0 1sp  , for each satisfied clause whose 

weight is larger than one, its weight is decreased by one; with probability 1-sp, the weight of each unsatisfied clause is 

increased by one.  

Function FG. The function which prefers to pick the variable x with the greatest 𝑎𝑔𝑒(𝑥) for random 3-SAT 

instances, and the function which prefers to select the variable x with the greatest ℎ𝑠𝑐𝑜𝑟𝑒2(𝑥) = 𝑠𝑐𝑜𝑟𝑒2(𝑥) +
[𝑎𝑔𝑒(𝑥)/𝛾], where  is a positive integer18 for uniform random k-SAT instances (k>3). 

Function FR. The function which prefers to select the variable x with the greatest 𝑎𝑔𝑒(𝑥) for random 3-SAT 

instances, and the function which prefers to select the variable x with the greatest ℎ𝑠𝑐𝑜𝑟𝑒(𝑥) = 𝑠𝑐𝑜𝑟𝑒(𝑥) +
[𝑠𝑐𝑜𝑟𝑒2(𝑥)/𝑑] + [𝑎𝑔𝑒(𝑥)/𝛽]for uniform random k-SAT instances (k>3), where d  and   are positive integers18, 19. 

The DCCASat_E algorithm is outlined in Algorithm 2, as described below. The difference essentially is without 

greedy initial assignment and some changes in DCCASat vs DCCASat_E. 

 
Algorithm 2:  DCCASat_E (F) 

    Input: CNF-formula F, MaxTries, MaxSteps 

    Output: A satisfying assignment σ of F, or “no solution found” 

1  begin 

2 σ ←a generated truth assignment for F by Variable Allocation value function; 

3         for i = 1 to MaxTries do 

4                for j = 1 to MaxSteps do                         

5                       if σ satisfies F then Return σ; 

6                             if   ∃𝑥 ∈ 𝐶𝑆𝐷_𝑣𝑎𝑟𝑠 then v ←a variable x in 𝐶𝑆𝐷_𝑣𝑎𝑟𝑠 with the greatest score(x), breaking ties by function FG; 

7                      else 

8                              if  ∃𝑥 ∈ 𝑁𝑉𝐷_𝑣𝑎𝑟𝑠 then v ←a variable x in 𝑁𝑉𝐷_𝑣𝑎𝑟𝑠with the greatest score(x), breaking ties by function FG; 

9                              else 

10                                      if  ∃𝑥 ∈ 𝑆𝐷_𝑣𝑎𝑟𝑠 then v ←a variable x in 𝑆𝐷_𝑣𝑎𝑟𝑠 with the greatest score(x), breaking ties by function FG; 

11                                else 

12                                        activate clause weighting scheme CW; 

13                                         C ←an unsatisfied clause chosen at random; 

14                                          v ←a variable in C by function FR; 

15                      σ:= σ with v flipped; 

16      Return “no solution found”; 

17 end 

 

4.3 The CSCCSat_E Algorithm 

Before getting into the details of the CSCCSat_E algorithm, we first introduce one technique employed in the 

algorithm.  

FrwCB solver. The FrwCB scheme is based on FrwCB [34] and applies the following variable selection method in 

each step. FrwCB35 first selects an unsatisfied clause C randomly and then it employs the FrwCB scheme to pick a 

variable from C. If CSD_vars in C is not empty, FrwCB selects a variable x with the greatest score(x) in CSD_vars, and 

break ties by preferring a variable x with the greatest ConfTimes(x) for random 3-SAT instances and the greatest lmake 

function for uniform random k-SAT instances (k>4); if CSD_vars in C is empty, with a probability p, FrwCB picks a 

variable x with the greatest ConfTimes(x) in the break minimum variable of clause C and break ties by preferring the 

least recently flipped one for random 3-SAT instances and the greatest lmake function for uniform random k-SAT  

instances (k>4); otherwise FrwCB selects a variable x in clause C with the greatest ConfTimes(x), and break ties by 

preferring the least recently flipped one and  the greatest lmake function for uniform random k-SAT  instances (k>4). 

The FrwCB_E algorithm is outlined in Algorithm 3, as described below. FrwCB_E differs from FrwCB only in the 

method of initial assignment.  

The CSCCSat_E solver is a combination of FrwCB_E and DCCASat_E described in Algorithm 2. The procedure of 

CSCCSat_E can be described as follows. For solving an SAT instance, CSCCSat_E first decides the type of this 

instance. Then based on the properties of the instance, CSCCSat_E calls either FrwCB_E or DCCASat_E to solve the 

instance. For random 3-SAT with 𝑟 ≤ 4.24 , CSCCSat_E calls FrwCB_E; for random 3-SAT with 𝑟 > 4.24 , 
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CSCCSat_E calls DCCASat_E. For random 5-SAT with 𝑟 ≤ 20.1, CSCCSat_E calls FrwCB_E; for random 5-SAT 

with 𝑟 > 20.1, CSCCSat_E calls DCCASat_E. For random 7-SAT with 𝑟 ≤ 80, CSCCSat_E calls FrwCB_E; for 

random 7-SAT with𝑟 > 80, CSCCSat_E calls DCCASat_E. 

 
Algorithm 3:  FrwCB_E (F) 

    Input: CNF-formula F, MaxSteps 

    Output: A satisfying assignment σ of F, or “no solution found” 

1  begin 

2  σ ←a generated truth assignment for F by Variable Allocation value function; 

3        initialize ConfTimes(x) as 1 for each variable x; 

4         for j = 1 to MaxSteps do                         

5                      if σ satisfies F then Return σ; 

6                             C ←an unsatisfied clause chosen at random; 

7                           if   ∃𝑥 ∈ 𝐶𝑆𝐷_𝑣𝑎𝑟𝑠 then v ←a variable x in 𝐶𝑆𝐷_𝑣𝑎𝑟𝑠 with the greatest score(x), breaking ties by preferring the one with the greatest ConfTimes(x); 

8                      else if With the fixed probability p then 

9                                 v ←a variable x with the greatest score(x) in the break minimum variable x of clause C, breaking ties by preferring the least recently flipped one; 

10                     else 

11                           v ←a variable x with the greatest ConfTimes(x) in clause C, breaking ties by preferring the least flipped one; 

12                      σ:= σ with v flipped; 

13                      update ConfTimes(x); 

14      Return “no solution found”; 

15 end 

4.4 The Score2SAT_E Algorithm 

The Score2SAT_E solver is a combination of DCCASat_E described in Algorithm 2 and WalkSATlm_E described 

in Algorithm 1. The procedure of Score2SAT_E can be described as follows. For solving a random SAT instance, 

Score2SAT_E first decides the type of each instance. Based on the properties of the instance, Score2SAT_E calls either 

DCCASat_E or WalkSATlm to solve the instance. The procedures of Score2SAT are described as follows. For random 

3-SAT, Score2SAT _E calls WalkSATlm_E. For random 5-SAT with 𝑟 ≤ 20.1, Score2SAT_E calls WalkSATlm_E; 

for random 5-SAT with 𝑟 > 20.1, Score2SAT_E calls DCCASat_E. For random 7-SAT, random 7-SAT, Score2SAT 

_E calls WalkSATlm_E.  

In the beginning, based on the properties of the instance Score2SAT_E calls either WalkSATlm_E or DCCASat_E, 

and then computes Vad(x) of each variable x, generates a complete assignment based on the Vav(x) of each variable in 

a controlled way rather than randomly.  

Score2SAT_E differs from Score2SAT in the method of initial assignment and in which solver should be called based 

on the properties of the instance. In detail, based on the properties of the instance, Score2SAT calls one solver at first. 

For random 5-SAT with 𝑟 > 20.1, Score2SAT_E calls DCCASat_E to solve the instance, and otherwise, Score2SAT_E 

calls WalkSATlm_E.  

4.5 The Sparrow_E Algorithm 

The Sparrow_E algorithm is outlined in Algorithm 4, as described below. The difference essentially is without greedy 

initial assignment and some changes in Sparrow vs Sparrow_E. 

Algorithm 4:  Sparrow_E (F)   

Input: CNF-formula F, MaxTries, MaxSteps 

    Output: A satisfying assignment σ of F, or “no solution found” 

1  begin 

2         for i = 1 to MaxTries do 

3                σ ←a generated truth assignment for F by Variable Allocation value function; 

4                for j = 1 to MaxSteps do                         

5                       if σ satisfies F then Return σ; 

6                            C ←an unsatisfied clause chosen at random; 

7                            for x in C do 

8                                 compute probability distribution p(x); 

9                           v ←x according to probability distribution p(x); 

10                       σ:= σ with v flipped; 

11      Return “no solution found”; 

12 end 
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4.6 The Probsat_E Algorithm 

Probsat_E is outlined in Algorithm 5, as described below. The difference essentially is without initial assignment and 

some changes in Probsat vs Probsat_E. The only difference between Probsat_E and Sparrow_E is that the probability 

distributions used to select variable to flip. 

Algorithm 5:  Probsat_E (F) 

Input: CNF-formula F, MaxTries, MaxSteps 

    Output: A satisfying assignment σ of F, or “no solution found” 

1  begin 

2         for i = 1 to MaxTries do 

3        σ ←a generated truth assignment for F by variable allocation value function; 

4                for j = 1 to MaxSteps do                         

5                       if σ satisfies F then Return σ; 

6                          C ←an unsatisfied clause chosen at random; 

7                       for x in C do 

8                                  compute f(x, a); 

9                         v ←random variable x according to probability 
𝑓(𝑥,𝜎)

∑ 𝑓(𝑧,𝜎)𝑧∈𝐶
; 

10                     σ:= σ with v flipped; 

11      Return “no solution found”; 

12 end 

5 Evaluations of six improving SLS solvers 

This section is dedicated to the experimental evaluation of the six improving SLS solvers on uniform random k-SAT 

instances with k ϵ {3, 5, 7}. The evaluation is performed on 450 uniform random k-SAT instances (all satisfiable) at and 

near the phase transition, which are issued from the random track of SAT Competitions in 2016, 2017, and 2018. We 

select these instances because they had different sizes and difficulties (regarding the r values). First, we compare 

WalkSAT_E with WalkSAT, DCCASat_E with DCCASat, CSCCSat_E with CSCCSat, Score2SAT_E with 

Score2SAT, Sparrow_E with Sparrow and Probsat_E with Probsat on random 3-SAT, 5-SAT, and 7-SAT instances at 

the phase transition. Then, we compare WalkSAT_E, DCCASat_E, CSCCSat_E, Score2SAT_E, and Probsat_E with 

SLS solvers on uniform random k-SAT with instances k ϵ {3, 5, 7} at and near phase transition.  

5.1   Benchmarks and Experiment Preliminaries 

All the instances used in these experiments are generated according to the uniform random k-SAT generator51. 

Specifically, we adopt the following three benchmarks. 

1) SAT Competition 2016:  All huge random 3-SAT instances (3.86 ≤ 𝑟 ≤ 4.24, #var=1000000, 20 instances, 1 for 

each size), and all medium random 3-SAT instances (r=4.267, 5000 ≤ #𝑣𝑎𝑟 ≤ 12800, 40 instances, 1 for each 

size), and all uniform random k-SAT instances with k > 3 from the random track of SAT Competition in 2016 (120 

instances, 60 for each k-SAT, k =5, 7), which vary in both size and ratio. 20 extremely huge-sized random 5-SAT 

instances (16.0< r < 19.8, #var=250000, 1 for each size), and 40 medium-sized random 5-SAT instances (r=21.117, 

00 5 0#2 9var  , 1 for each size). 20 extremely huge-sized random 7-SAT instances (55.0< r < 74.0, #var=5000, 1 

for each size), and 40 medium-sized random 7-SAT instances (r=87.79, 90 ≤ #𝑣𝑎𝑟 ≤ 168, 1 for each size). These 

random instances occupy 60% of the random track of SAT Competition in 2016, indicating that the importance of 

uniform random k-SAT instances has been highly recognized by the SAT community. 

2) SAT Competition 2017: All huge random 3-SAT instances (3.86 ≤ 𝑟 ≤ 4.24,#var =1000000, 20 instances, 1 for 

each size), and all medium random 3-SAT instances (r=4.267, 5000 ≤ #𝑣𝑎𝑟 ≤ 12800, 40 instances, 1 for each 

size), and all uniform random k-SAT instances with k > 3 (120 instances, 60 for each k-SAT, k =5, 7) from random 

track of SAT Competition in 2017. These random instances occupy 60% of the random track of SAT Competition 

in 2017. The medium-sized instances vary from 200 variables to 590 variables at r = 21.117, and the huge-sized 

instances vary from r =16.0 to r =19.8 at n=250000 for 5-SAT. The medium-sized instances vary from 90 variables 

to 168 variables at r = 87.79, and the huge-sized instances vary from r =55.0 to r =74.0 at n=5000 for 7-SAT. 

3) SAT Competition 2018: all huge random 3-SAT instances (3.86 ≤ 𝑟 ≤ 4.24,#var =1000000, 20 instances, 1 for  
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each size), and all medium random 3-SAT instances (r=4.267, n=6000, 10 instances), and all uniform random 

k-SAT instances with k > 3 (60 instances, 30 for each k-SAT, k =5, 7) from the random track of SAT Competition 

in 2018. The huge-sized instances vary from r=16.0 to r=19.8 at n=250000, and the medium-sized instances are the 

same variable 250 at r=21.117 for 5-SAT. The huge-sized instances vary from r=55.0 to r=74.0 at n=50000, and 

the medium-sized instances are same variable 120 at r=87.79 for 7-SAT. 

Table 1: Parameter setting of six improving SLS solvers 

Instances 

Class 
Ratio (r) 

Parameters pad and nad for 

improving SLS solvers 

3-SAT 
4.267r   pad=2, nad=0.5 

4.267r   pad=1.8, nad=0.56 

5-SAT 

17r   pad=1.275, nad=0.855 

17 18r   pad=1.26, nad=0.865 

18 19r   pad=1.25, nad=0.85 

19r   pad=1.26, nad=0.87 

7-SAT 

60r   pad=1.08, nad=0.9 

60 66r   pad=1.07, nad=0.91 

66 87.79r   pad=1.06, nad=0.92 

87.79r   pad=1.05, nad=0.92 

The small-sized random 3-SAT instances from the random track of SAT Competitions in 2016, 2017, and 2018 are 

too easy for complete solvers. If we want to solve such instances, we can combine the complete algorithm with the SLS 

algorithm. However, the above instances that are difficult to solve by the complete algorithms and SLS algorithms are 

the key in our experiments. Thus small-sized satisfiable random 3-SAT instances are not included in our experiments. 

Six improved SLS solvers are implemented in C/C++ and compiled by g++ with’-O3’ option. The parameter setting 

of these solvers is reported in Table 1, which is based on some preliminary experiments and the initial probability 

distributions. We believe through more careful tuning, better settings can be found, and thus the performance of the six 

improved SLS solvers can be further improved.  

Competitors: We consider six SLS solvers, i.e., Score2SAT22, Walksatlm21, CSCCSat35,36, DCCASat 37, Probsat4 

and Sparrow3. The corresponding six extended SLS solvers are compared with these original ones, plus an additional 

one of yalsat10. Sparrow and Probsat won the random track of the SAT competitions in 2011 and 2013 respectively, and 

Sparrow combined with a complete algorithm to form a new solver winning the random track of SAT competition in 

2018. CSCCSat won the bronze medal and silver medal of the random SAT track of SAT Competitions in 2014 and 

2016. yalsat and Score2SAT won the gold medal and bronze medal of the random track of SAT competition in 2017 

respectively.  

The top three solvers of the random track of SAT competition in 2018 are the hybrid solvers composed of SLS and 

complete algorithm, but our solvers are all based on SLS algorithms. From the detailed results of the random track of 

SAT competition in 20182, we can see these solvers did not solve any uniform random instances, except that the 

champion solver can solve few instances, so we did not compare the top three solvers with our six solvers. 

The latest binary version of Sparrow is downloaded from the webpage of SAT competition in 20183. The binaries of 

Score2SAT, yalsat, Walksatlm, and DCCASat are downloaded from the webpage of SAT competition in 20174, and the 

binary of CSCCSat is downloaded from the webpage of SAT competition in 20165, and the binary of Probsat is 

downloaded online6. 

All experiments are carried on a workstation under a 64-bit Ubuntu Linux Operation System, using 2 cores of Intel(R) 

Core (TM) i3-3240M 3.4 GHz CPU and 8 GB RAM. Each run terminates upon either finding a satisfying assignment 

 
2http://sat2018.forsyte.tuwien.ac.at/index.php?cat=results 
3http://sat2018.forsyte.tuwien.ac.at/solvers/random/ 
4https://baldur.iti.kit.edu/sat-competition-2017/solvers/ 
5https://baldur.iti.kit.edu/sat-competition-2016/index.php?cat=downloads 
6https://www.satcompetition.org/2013/downloads.shtml 
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or reaching a given cutoff time, which is set to 5000 seconds for k-SAT benchmarks.  

Evaluating Methodology: For k-SAT benchmarks, each solver is performed 20 times on each instance with a cutoff 

time of 5000 seconds from SAT Competition in 2018. In this way, each solver is performed 10 times on each instance 

with a cutoff time of 5000 seconds (the same as in SAT competitions) from SAT Competitions in 2016 and 2017. As 

for performance metrics, we report the success rate in which a satisfying assignment is found (‘suc’) and the penalized 

average run time (‘par 2) (an unsuccessful run is penalized as 2 times cutoff time) for each instance class. The best 

results for each instance class are highlighted in bold font between the improved SLS solvers and their original versions. 

If a solver has no successful run for an instance class, the corresponding ‘par 2’ is marked with “-”. 

5.2    Experimental Results of Six Improving SLS Solvers 

In this section, we present the comparative experimental results of six improved SLS solvers and their competitors on 

each benchmark. For the SAT competition, the standard to rank the solver is using the PAR-2 scheme: The score 

of a solver is defined as the sum of all runtimes for solved instances + 2*timeout for unsolved instances, and the 

lowest score wins. Thus, our experimental results mainly observe the average par 2 of the solvers. 

5.2.1  Results on uniform random k-SAT Competition 2017 

A. Comparison between the extended six SLS solvers with the original SLS solvers 

 

 

 

Fig. 4.  Comparative results of WalkSATlm_E and WalkSATlm on SAT Competition 2017 benchmark consisting of all uniform random 

k-SAT instances with k > 3 and random 3-SAT instances at and near phase transition.  

 

 

Fig. 5. Comparative results of DCCASat _E and DCCASat on SAT Competition 2017 benchmark consisting of all uniform random k-SAT 

instances with k > 3 and random 3-SAT instances at and near phase transition.  

Figs. 4 to 9 show the comparative results between the extended six SLS solvers with the original SLS solvers on the 

uniform random k-SAT benchmark from SAT Competition in 2017. Each solver is performed 10 times on each 

instance class with a cutoff time of 5000 seconds. The left tables show a comparison of the success rate and the average 

runtime. The right plots show a comparison of average runtime distributions.  

As is shown from Figs. 4 to 9, six improved SLS solvers show significantly better performance in terms of the  

Instances Class 

WalkSATlm 

suc 

par 2 

WalkSATlm_E 

suc 

par 2 

3-SAT 
46.7% 

5519 

50% 

5392 

5-SAT 
33.3% 

6751 

41.6% 

6030 

7-SAT 
55.0% 

5065 

53.3% 

5991 

Instances Class 

DCCASat 

suc 

par 2 

DCCASat_E 

suc 

par 2 

3-SAT 
11.7% 

8889 

13.3% 

8748 

5-SAT 
38.3% 

6345 

43.3% 

5947 

7-SAT 
51.6% 

5201 

51.6% 

5211 



 18 

Instances Class 

Score2SAT 

suc 

par 2 

Score2SAT_E 

suc 

par 2 

3-SAT 
41.6% 

5978 

50% 

5392 

5-SAT 
40.0% 

6137 

45.0% 

5763 

7-SAT 
55.0% 

4838 

58.3% 

4523 

 

Fig. 6.  Comparative results of Score2SAT_E and Score2SAT on SAT Competition 2017 benchmark consisting of all uniform random k-SAT 

instances with k > 3 and random 3-SAT instances at and near phase transition. 

Instances Class 

CSCCSat 

suc 

par 2 

CSCCSat_E 

suc 

par 2 

3-SAT 
43.3% 

5880 

48.3% 

5463 

5-SAT 
45.0% 

5768 

43.3% 

5994 

7-SAT 
50.0% 

5265 

56.7% 

4710 

 

Fig. 7.  Comparative results of CSCCSat_E and CSCCSat on SAT Competition 2017 benchmark consisting of all uniform random k-SAT 

instances with k > 3 and random 3-SAT instances at and near phase transition. 

Instances Class 

Probsat 

suc 

par 2 

Probsat_E 

suc 

par 2 

3-SAT 
10.0% 

9047 

11.7% 

8859 

5-SAT 
40.0% 

6207 

38.3% 

6267 

7-SAT 
41.6% 

6125 

50.0% 

5222 

Fig. 8. Comparative results of Probsat_E and Probsat on SAT Competition 2017 benchmark consisting of all uniform random k-SAT 

instances with k > 3 and random 3-SAT instances at and near phase transition. 

Instances Class 

Sparrrow 

suc 

par 2 

Sparrow_E 

suc 

par 2 

3-SAT 
25.0% 

7921 

33.3% 

7166 

5-SAT 
35.0% 

6664 

40.0% 

6144 

7-SAT 
56.7% 

4876 

53.3% 

4942 
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Fig. 9. Comparative results of Sparrow_E and Sparrow on SAT Competition 2017 benchmark consisting of all uniform random k-SAT 

instances with k > 3 and random 3-SAT instances at and near phase transition. 

success rate, the average par 2, CPU time, and the number of solved instances than the original SLS solvers on the 

whole benchmark. 

More specifically, WalkSATlm_E reduces over 2% and 11% of the average par 2 than WalkSATlm on uniform 

random 3-SAT and uniform random 5-SAT respectively. Although WalkSATlm_E performs worse than WalkSATlm 

on uniform random 7-SAT, it shows the best improvement over WalkSATlm on the overall uniform random k-SAT in 

terms of the success rate among the six improved SLS solvers.  

DCCASat_E reduces over 2% and 6% of the average par 2 on uniform random 3-SAT and uniform random 5-SAT 

respectively. Although DCCASat_E performs worse than DCCASat on uniform random 7-SAT, it only increases over 

0.2% of the average par 2 and shows improvement over DCCASat in terms of the success rate on the overall uniform 

random k-SAT.  

Score2SAT_E reduces over 10%, 6%, and 7% of the average par 2 on uniform random 3-SAT, uniform random 

5-SAT, and uniform random 7-SAT respectively, and shows improvement over Score2SAT in terms of the success rate 

on the overall uniform random k-SAT.  

Although CSCCSat_E performs worse than CSCCSat on uniform random 5-SAT, it reduces over 7% and 11% of 

the average par 2 on uniform random 3-SAT and uniform random 7-SAT respectively, and shows improvement over 

CSCCSat in terms of the success rate on the overall uniform random k-SAT.  

Probsat_E reduces over 2% and 15% of the average par 2 on uniform random 3-SAT and uniform random 7-SAT 

respectively. Probsat_E reduces over 2% and 15% of the average par 2 on uniform random 3-SAT and uniform 

random 7-SAT respectively. Although Probsat_E performs worse than Probsat on uniform random 5-SAT, it only 

increases over 0.1% of the average par 2 and shows improvement over Probsat in terms of the success rate on the 

overall uniform random k-SAT.  

Although Sparrow_E performs worse than Sparrow on uniform random 7-SAT, it reduced over 10% and 8% of the 

average par 2 on uniform random 3-SAT and uniform random 5-SAT respectively and shows improvement over 

Sparrow in terms of the success rate on the overall uniform random k-SAT.  

Therefore, the proposed method enhances all six SLS solvers on the whole benchmark in the performance, which 

shows its robustness, indicating the effectiveness of allocation strategy using the initial probability distribution on the 

improved six SLS algorithms. 

B. Comparison on random 3-SAT instances at phase transition from SAT Competition in 2017 

We report the number of solved instances and the average par 2 for the extended six SLS solvers and their original ones, 

plus another SLS solvers yalsat and Dimetheus on random 3-SAT instances at phase transition from SAT Competition 

in 2017 in Table 2. 

Table 2:   Comparative results on all medium random 3-SAT instances at phase transition from SAT Competition 2017 based on 10 runs for each 

instance, with a cutoff time of 5000 seconds. 

 3-SAT 5000-6800 3-SAT 7000-8800 3-SAT 9000-10800 3-SAT 11000-12800 

Sparrow 
suc 

par 2 

10% 

9001 

20% 

8162 

10% 

9150 

20% 

8270 

Sparrow_E 
suc 

par 2 

20% 

8431 

20% 

8032 

10% 

9004 

30% 

7402 

Probsat 
suc 

par 2 

10% 

9151 

19% 

8357 

0% 

- 

9% 

9237 

Probsat_E 
suc 

par 2 

10% 

9001 

20% 

8065 

0% 

- 

10% 

9056 

DCCASat 
suc 

par 2 

10% 

9151 

20% 

8026 

10% 

9008 

28% 

7299 

DCCASat_E suc 10% 30% 10% 30% 
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par 2 9002 7224 9001 7409 

WalkSATlm 
suc 

par 2 

10% 

9001 

35% 

6721 

29% 

7322 

20% 

8031 

WalkSATlm_E 
suc 

par 2 

17% 

8557 

40% 

6580 

30% 

7677 

30% 

7302 

CSCCSat 
suc 

par 2 

10% 

9000 

27% 

7646 

10% 

9004 

30% 

7230 

CSCCSat_E 
suc 

par 2 

10% 

9000 

40% 

6629 

26% 

7742 

30% 

7124 

Score2SAT 
suc 

par 2 

10% 

9002 

20% 

8026 

10% 

9008 

28% 

7479 

Score2SAT_E 
suc 

par 2 

17% 

8557 

38% 

6751 

30% 

7677 

30% 

7302 

Dimetheus 
suc 

par 2 

10% 

9001 

30% 

7482 

10% 

9030 

30% 

7331 

yalsat 
suc 

par 2 

10% 

9001 

30% 

7216 

10% 

9081 

20% 

9370 

Sparrow_E stands out as the best solver and dramatically outperforms others and solves 2 times as many instances as 

Sparrow, CSCCSat, Dimetheus, yalsat, and WalkSATlm respectively did on the instances with 5000 ≤ #𝑣𝑎𝑟 ≤ 6800. 

WalkSATlm_E and Score2SAT_E solve 1.7 times as many instances as WalkSATlm, Score2SAT, yalsat, and 

Dimetheus did on the instances with 5000 ≤ #𝑣𝑎𝑟 ≤ 6800. WalkSATlm_E and CSCCSat_E get the best 40% 

success rate, but WalkSATlm_E has the lowest average par 2 on the instances with 7000 ≤ #𝑣𝑎𝑟 ≤ 8800 . 

WalkSATlm_E and Score2SAT_E significantly outperform their competitors on medium-sized instances with 

9000≤#var≤10800 and 11000≤#var≤12800. The improved SLS solvers reduce the average par 2 compared with the 

original ones on medium random 3-SAT instances at phase transition from SAT competition in 2017. 

C. Comparison between the extended SLS solvers with the state-of-the-art SLS solvers on uniform random k-SAT 

instances from SAT Competition 2017 

To investigate the performance of six improving SLS solvers on uniform random k-SAT instances with various k, we 

compare them with SLS solvers on SAT Competition 2017 benchmark. 

Table 3:   Comparative results on all uniform random k-SAT instances at and near phase transition, different r and variable numbers from SAT 

Competition 2017 

clause-to-variable ratio r<4.267 r=4.267 r<21.117 r=21.117 r<87.79 r=87.79 
Over All 

variable number 106 5000-12800 250000 200-590 50000 90-168 

instance type 3-SAT 5-SAT 7-SAT 
180 

instance number 20 40 20 40 20 40 

Probsat 
suc  

par 2 

10% 

9010 

10% 

9066 

50% 

5139 

35% 

9242 

45% 

5506 

40% 

8936 

31% 

8238 

Probsat_E 
suc  

par 2 

15% 

8592 

10% 

9066 

45% 

5522 

35% 

9134 

50% 

5006 

50% 

5330 

33% 

7353 

Sparrow 
suc  

par 2 

45% 

6626 

15% 

8569 

0% 

- 

35% 

9165 

55% 

4732 

57% 

4994 

35% 

6858 

Sparrow_E 
suc  

par 2 

60% 

5065 

20% 

8217 

0% 

- 

40% 

6144 

50% 

5084 

53% 

5072 

38% 

6504 

DCCASat 
suc  

par 2 

0% 

- 

18% 

8286 

40% 

6244 

38% 

6373 

45% 

5597 

55% 

4924 

34% 

6801 

DCCASat_E suc  0% 20% 50% 40% 55% 50% 36% 
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par 2 - 8159 5258 6370 4769 5248 6655 

WalkSATlm 
suc  

par 2 

90% 

1194 

25% 

7630 

45% 

5603 

28% 

7283 

55% 

4754 

55% 

5196 

45% 

5774 

WalkSATlm_E 
suc  

par 2 

90% 

1106 

30% 

7256 

55% 

4636 

35% 

6728 

55% 

4608 

53% 

5023 

48% 

5374 

CSCCSat 
suc  

par 2 

90% 

1242 

20% 

8154 

55% 

4720 

40% 

6294 

55% 

4778 

48% 

5082 

46% 

5638 

CSCCSat_E 
suc  

par 2 

90% 

1117 

28% 

7492 

55% 

4683 

38% 

5649 

55% 

4760 

58% 

4623 

49% 

5121 

Score2SAT 
suc  

par 2 

90% 

1194 

18% 

8286 

45% 

5603 

38% 

6373 

55% 

4754 

55% 

4924 

46% 

5600 

Score2SAT_E 
suc  

par 2 

90% 

1106 

30% 

7257 

55% 

4636 

40% 

6370 

60% 

4118 

58% 

4681 

49% 

5164 

yalsat 
suc  

par 2 

40% 

6117 

18% 

8372 

60% 

4147 

33% 

6790 

55% 

4520 

43% 

5909 

42% 

5950 

Table 3 reports the average par 2 for each solver on each k-SAT instance class. As shown from Table 3, six improved 

SLS solvers show significantly better performance in terms of the success rate and the average par 2 than the original 

SLS solvers on the whole benchmark. 

Probsat_E reduces 418 of the average par 2 and increases 5% of a success rate than Probsat on uniform random 

3-SAT with r<4.267. Although Probsat_E performs worse than Probsat on uniform random 5-SAT with r<21.117, it 

reduces 108 of the average par 2 than Probsat on uniform random 5-SAT with r=21.117. Moreover, Probsat_E reduces 

500 of the average par 2 and increases 5% of a success rate than Probsat on uniform random 7-SAT with r<87.79, and 

reduces 3606 of the average par 2 and increases 10% of a success rate than Probsat on uniform random 7-SAT with 

r=87.79. Especially, Probsat_E reduces 885 of the average par 2 and increases 2% of a success rate than Probsat on the 

overall results. 

Sparrow_E reduces 1561 of the average par 2 and increases 15% of a success rate than Sparrow on uniform random 

3-SAT with r<4.267, and reduces 352 and increases 5% on uniform random 3-SAT with r=4.267. Sparrow_E reduces 

3021 and increases 5% on uniform random 5-SAT with r=21.117.  Although Sparrow_E performs worse than Sparrow 

on uniform random 7-SAT, it reduces 354 and increases 3% on the overall results. 

DCCASat_E performs better than DCCASat on all uniform random k-SAT except for uniform random 7-SAT with 

r=87.79 in terms of success rate and average par 2. Indeed, DCCASat_E reduces 127 and increased 2% on uniform 

random 3-SAT with r=4.267, and reduces 986 and increases 10% on uniform random 5-SAT with r<21.117, and 

reduces 3 and increases 2% on uniform random 5-SAT with r=21.117, and reduces 828 and increased 10% on uniform 

random 7-SAT with r<87.79. Although DCCASat_E performs worse than DCCASat on uniform random 7-SAT with 

r=87.79, it reduces 146 and increased 2% on the overall results. 

WalkSATlm_E performs better than WalkSATlm on all uniform random k-SAT except for uniform random 7-SAT 

with r=87.79.  In fact, WalkSATlm_E solves only 2% of success rate less than WalkSATlm on uniform random 7-SAT 

with r=87.79. However, WalkSATlm_E reduces 88, 374, 967, 555, 146, and 173 of the average par 2 than WalkSATlm 

on all uniform random k-SAT respectively, and reduces 400 and increases 3% on the overall results. Moreover, 

WalkSATlm_E shows significantly better performance than other solvers on the whole uniform random 3-SAT and the 

uniform random k-SAT with k>3 near the phase transition. 

CSCCSat_E performs better than CSCCSat on all uniform random k-SAT except for uniform random 5-SAT with 

r=21.117.  Although CSCCSat_E solves only 2% of success rate less than CSCCSat on uniform random 5-SAT with 

r=21.117, CSCCSat_E reduces 645 of the average par 2 than CSCCSat on uniform random 5-SAT with r=21.117. 

Moreover, CSCCSat_E reduces 662 and increased 8% on uniform random 3-SAT with r=4.267, and reduces 125 on 

uniform random 3-SAT with r<4.267, and reduces 37 on uniform random 5-SAT with r<21.117, and reduces 459 and 

increases 10% on uniform random 7-SAT with r=87.79, and reduces 18 on uniform random 7-SAT with r<87.79. 

Especially, CSCCSat_E solves 3% of the success rate more than CSCCSat and reduces 512 of the average par 2 than 
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CSCCSat on the overall results. Furthermore, CSCCSat_E shows significantly better performance than other solvers 

on the uniform random k-SAT with k>3 at the phase transition and on the overall results. 

Score2SAT_E performs better than Score2SAT on all uniform random k-SAT.  Specifically, Score2SAT_E reduces 

88, 1029, 967, 3, 636, and 243 of the average par 2 than Score2SAT, and solves 0%, 12%, 10%, 2%, 5%, and 3% of 

the success rate more than Score2SAT on all uniform random k-SAT respectively. Moreover, Score2SAT_E solves 3% 

of the success rate more than Score2SAT and reduces 436 of the average par 2 than Score2SAT on the overall results. 

Especially, Score2SAT_E shows significantly better performance than other solvers on the uniform random k-SAT 

with k<7 near the phase transition.  

Overall, it is worth noting that Score2SAT_E and CSCCSat_E solve six instances and seven instances respectively, 

which are not solved by all submitted solvers from the random track of SAT Competition in 2017. Table 3 also shows 

that CSCCSat_E solves most k-SAT instances for each k, which illustrates its robustness. These results confirm the 

superiority of CSCCSat_E over its competitors.  

The good performance of WalkSATlm_E, CSCCSat_E, and Score2SAT_E is also clearly illustrated by Fig.10 on the 

SAT Competition 2017 benchmark. CSCCSat_E solves more instances than all the other competitors. Overall, 

CSCCSat_E solves 89 instances, while the best original solver named CSCCSat solves 82 instances, indicating the 

efficiency of CSCCSat_E. Indeed, it solves 13 instances more than yalsat, 8 instances more than Score2SAT, 6 

instances more than CSCCSat, 28 instances more than DCCASat, 8 instances more than WalkSATlm, 26 instances 

more than Sparrow, and 34 instances more than Probsat. WalkSATlm_E and Score2SAT_E are also better than SLS 

competitors. Score2SAT_E solves 2 instances more than WalkSATlm_E, 12 instances more than yalsat, 7 instances 

more than Score2SAT, 5 instances more than CSCCSat, 27 instances more than DCCASat, 7 instances more than 

WalkSATlm, 25 instances more than Sparrow, and 33 instances more than Probsat. 

 

Fig. 10:   Comparison of run time distributions on the SAT Competition 2017 benchmark consisting of all random 3-SAT instances with   and all 

uniform random k-SAT instances with k > 3 with a cutoff time of 5000 seconds. 

5.2.2 Results on uniform random k-SAT Competition 2016 

Table 4:  Comparative results on all uniform random k-SAT instances at and near phase transition, different r and variable numbers from SAT 

Competition 2016 

clause-to-variable ratio r<4.267 r=4.267 r<21.117 r=21.117 r<87.79 r=87.79 
Over All 

variable number 106 5000-12800 250000 200-590 50000 90-168 

instance type 3-SAT 5-SAT 7-SAT 
180 

instance number 60 60 60 

Probsat par 2 9026 6789 6020 7278 

Probsat_E par 2 8765 6391 5887 7016 

Sparrow par 2 8678 7914 5682 7424 
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Sparrow_E par 2 7881 7890 5153 6975 

CSCCSat par 2 6936 6141 5688 6255 

CSCCSat_E par 2 6653 6166 5557 6125 

DCCASat par 2 9744 6394 5982 7373 

DCCASat_E par 2 9712 6104 6014 7277 

WalkSATlm par 2 6932 6019 5569 6173 

WalkSATlm_E par 2 6869 6120 5516 6168 

Score2SAT par 2 6932 5960 5661 6184 

Score2SAT_E par 2 6869 5901 5516 6095 

yalsat par 2 5500 5950 5866 6359 

Table 4 reports the average par 2 for each solver on each k-SAT instance class at and near phase transition, where 

each solver is performed 10 runs for each instance with a cutoff time of 5000 seconds. 

Probsat_E performs better than Probsat on all uniform random k-SAT.  Specifically, Probsat_E reduces 261, 398, 

and 133 of the average par 2 than Probsat on all uniform random k-SAT respectively. Moreover, Probsat_E reduces 262 

of the average par 2 to Probsat on the overall results.  

Sparrow_E performs better than Sparrow on all uniform random k-SAT in terms of average par 2. Specifically, 

Sparrow_E reduces 797, 24, and 529 of the average par 2 than Sparrow on all uniform random k-SAT respectively. 

Moreover, Sparrow_E reduces 449 of the average par 2 to Sparrow on the overall results.  

CSCCSat_E reduces 283 on uniform random 3-SAT and 131 on uniform random 7-SAT. Although Sparrow_E 

performs worse than Sparrow on uniform random 5-SAT, it reduces 130 on the overall results.  

DCCASat_E performs better than DCCASat on all uniform random k-SAT except for uniform random 7-SAT in 

terms of average par 2. Although DCCASat_E performs worse than DCCASat on uniform random 7-SAT, 

DCCASat_E reduces 32 on uniform random 3-SAT and 290 on uniform random 5-SAT. Moreover, DCCASat_E 

reduces 96 of the average par 2 to DCCASat on the overall results.  

WalkSATlm_E performs better than WalkSATlm on all uniform random k-SAT except for uniform random 5-SAT 

in terms of average par 2. Although WalkSATlm_E performs worse than WalkSATlm on uniform random 5-SAT, 

WalkSATlm_E reduces 63 on uniform random 3-SAT and 53 on uniform random 7-SAT. Moreover, WalkSATlm_E 

shows significantly better performance than other solvers on the uniform random 7-SAT. Score2SAT_E performs 

better than Score2SAT on all uniform random k-SAT in terms of average par 2. Specifically, Score2SAT_E reduces 63, 

59, 145, and 89 of the average par 2 than Score2SAT on all uniform random k-SAT respectively. Moreover, 

Score2SAT_E reduces 89 of the average par 2 than Score2SAT on the overall results. And Score2SAT_E shows 

significantly better performance than other solvers on the uniform random k-SAT with k>3.  

 
Fig. 11:   Comparison of run time distributions on the SAT Competition 2016 benchmark consisting of all random 3-SAT instances with 𝑟 ≤
4.267 and all uniform random k-SAT instances with k > 3 with a cutoff time of 5000 seconds 
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Overall, although yalsat has the lowest average par 2, CSCCSat_E stands out as the best solver on uniform random 

3-SAT in terms of success rate. Actually, all the competitors become ineffective on the 3-SAT instances at the phase 

transition, while CSCCSat_E significantly reduces the average par 2 for this instance class. Score2SAT_E stands out as 

the best solver on the uniform random k-SAT instance with k>3 in terms of average par 2. Six improved SLS solvers 

show significantly better performance than original solvers on the overall results, which shows its robustness, 

indicating the effectiveness of allocation strategy based on the initial probability distribution on the improved six SLS 

algorithms. The good performance of six improved SLS solvers is also clearly illustrated by Fig. 11, which summarizes 

the run time distributions of the solvers on the SAT Competition 2016 benchmark. 

5.2.3     Results on uniform random k-SAT Competition 2018 

Table 5 reports the comparative results of six improved SLS solvers and their original two plus yalsat and probSAT7 in 

terms of average par 2. Table 5 indicates the better performance of the improved SLS on an instance class in bold font. 

Table 5:  Comparative results on all uniform random k-SAT instances at and near phase transition, different r and variable numbers from SAT 

Competition 2018 

clause-to-variable ratio r<4.267 r=4.267 r<21.117 r=21.117 r<87.79 r=87.79 
Over All 

variable number 106 6000 250000 250 50000 120 

instance type 3-SAT 5-SAT 7-SAT 
90 

instance number 30 30 30 

Probsat par 2 7266 4750 4786 5600 

Probsat_E par 2 8167 4084 4380 5543 

Sparrow par 2 5666 7422 3294 5453 

Sparrow_E par 2 5526 7410 3191 5375 

CSCCSat par 2 3200 4203 4207 3903 

CSCCSat_E par 2 3061 4008 4334 3737 

DCCASat par 2 9110 4999 4972 6329 

DCCASat_E par 2 9186 4530 4510 6075 

WalkSATlm par 2 3392 4262 3901 3852 

WalkSATlm_E par 2 3282 3959 4024 3755 

Score2SAT par 2 3340 4120 4266 3941 

Score2SAT_E par 2 3392 3948 4024 3756 

yalsat par 2 4859 3425 4900 4362 

probSAT par 2 3653 3845 4043 3881 

For the 3-SAT class, CSCCSat_E solves the most instances. Actually, all the competitors become ineffective on the 

3-SAT instances at the phase transition, while CSCCSat_E reduces an average par 2 of 4% on this instance class. For 

the 5-SAT class, although yalsat exhibits the best performance, the extended SLS solvers show a great improvement. 

Especially, Probsat_E reduces an average par 2 of 14% than Probsat, and CSCCSat_E reduces an average par 2 of 5% 

than CSCCSat, and DCCASat_E reduces an average par 2 of 9% than DCCASat, and WalkSATlm_E reduces an 

average par 2 of 7% than WalkSATlm, and Score2SAT_E reduces an average par 2 of 4% than Score2SAT on this 

instance class. For the 7-SAT class, Sparrow_E exhibits the best performance. Although CSCCSat_E and 

WalkSATlm_E perform worse than their original versions, CSCCSat_E reduces 166 of the average par 2 than 

CSCCSat, and WalkSATlm_E reduces 97 of the average par 2 than WalkSATlm on the overall results. Moreover, the 

extended SLS solvers show significantly better performance than the original ones on the overall results. Indeed, 

Probsat_E reduces 57 of the average par 2 to Probsat, and Sparrow_E reduces 78 of the average par 2 to Sparrow, and 

DCCASat_E reduces 254 of the average par 2 than DCCASat, and Score2SAT_E reduces 185 of the average par 2 than 

Score2SAT on the overall results.  

Six improved SLS solvers show significantly better performance than original solvers on the overall results, which 
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shows its robustness, indicating the effectiveness of allocation strategy based on the initial probability distribution on 

the improved six SLS algorithms. 

5.3    Experimental Analyses of the allocation strategy based on the initial probability distribution 

To demonstrate the effectiveness of the allocation strategy based on the initial probability distribution, we carry out 

extensive experiments to evaluate WalkSATlm and WalkSATlm_E on random k-SAT instances k ϵ {3, 5, 7} at and 

near phase transition about the average number of the unsatisfied clauses with fixed steps and then we compare 

WalkSATlm_E with WalkSATlm as well as SLS solvers on the following uniform random k-SAT instances generated 

randomly with k = 3, 5, 7 at and near the phase transition. 

1) 3SAT Huge:  3-SAT instances generated randomly according to the random k-SAT model (r=4.1, n=106, 100 

instances) 

2) 5SAT Huge: 5-SAT instances generated randomly according to the random k-SAT model (r=17.0, n=250000, 100 

instances) 

3) 7SAT Huge: 7-SAT instances generated randomly according to the random k-SAT model (r=62, n=50000, 100 

instances) 

4) 3SAT Medium:  3-SAT instances generated randomly according to the random k-SAT model (r=4.267, n=7000, 

100 instances) 

5) 5SAT Medium: 5-SAT instances generated randomly according to the random k-SAT model (r=21.117, n=300, 

100 instances) 

6) 7SAT Medium: 7-SAT instances generated randomly according to the random k-SAT model (r=87.79, n=160, 

100 instances) 

 
(a) 

 
(b) 

Fig. 12: The average number of unsatisfied clauses variation plot. The (a) plots show the comparative variation of the average number of 

unsatisfied clauses with 100000 steps between WalkSATlm and WalkSATlm_E on all generated uniform huge random k-SAT instances near the 

phase transition. The (b) plots show the comparative variation of the average number of unsatisfied clauses with 2000 steps between WalkSATlm 

and WalkSATlm_E on all generated uniform medium random k-SAT instances at the phase transition. 

Table 6:  Experimental results on the k-SAT Huge and Medium benchmark. There are 600 instances in each class and each solver is executed one 

time on each instance with a cutoff time of 2000 seconds. 

clause-to-variable ratio r=4.1 r=4.267 r=17 r=21.117 r=62 r=87.79 
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variable number 106 9000 250000 300 50000 160 

instance type 3-SAT 5-SAT 7-SAT 

instance number 100 100 100 100 100 100 

WalkSATlm par 2 227 3258 61 2461 257 3344 

WalkSATlm_E par 2 223 3117 59 2452 252 2901 

Dimetheus par 2 224 3278 375 5453 119 2914 

ProbSAT par 2 380 3159 63 1994 17 3654 

yalsat par 2 417 3308 69 2469 69 3333 

Score2SAT par 2 227 3154 61 2366 257 2922 

The comparative results of WalkSATlm_E and WalkSATlm are displayed in Fig. 12 and Table 6. According to Fig. 

12, the average number of unsatisfied clauses of WalkSATlm_E decreases faster than that of WalkSATlm within the 

same steps on random instances. The performance of WalkSATlm_E is significantly better than that of WalkSATlm 

from Table 6, which indicates that the allocation strategy based on the initial probability distribution is suitable for SLS 

algorithms on generating appropriate initial assignments for solving random 3-SAT, 5-SAT, and 7-SAT.  More careful 

observations show that WalkSATlm_E stands out as the best solver and significantly performs better than its 

competitors on random 3-SAT instances, 5-SAT instances with r=17, and 7-SAT instances at the phase transition. 

Although WalkSATlm_E performs worse than ProbSAT on random 5-SAT instances at the phase transition and 

random 7-SAT instances with r=62, WalkSATlm_E does show better performance than Dimetheus (it is the first place 

among the SLS algorithms in SAT Competition 2018 and the winner of random satisfiable track in SAT Competition 

2016) on random 5-SAT instances at the phase transition. 

6 Parameter Tuning and Analyses on Random 3 -SAT for SAT competition 

In this section, we report results of a large-scale experiment on random 3-SAT instances from SAT competitions in 

2016, 2017, and 2018. Based on the concept of the initial probability distribution, we propose a new method that easy 

and hard an instance class (for a particular SLS SAT procedure, anyway) are predictable in advance. 

6.1 Brief about Parameter Tuning and Analyses on 3-SAT Instances 

Phase transition27 is an important feature of SAT instances. For most algorithms, the formula generated closer to the 

phase-transition ratio are harder to solve. The hard and easy distribution was achieved by large-scale experiments in 

satisfiability testing based on completed DP. In the current years, random SAT instances are solved mainly by SLS 

solvers, while complete solvers have no advantage for solving random instances at and near the phase transition. This 

motivates our work toward predicting the hardness of random 3-SAT instances by large-scale experiments in 

satisfiability testing based on SLS solvers. 

SLS solvers are good choices for two reasons. Firstly, they are effective and popular methods in random SAT 

problems. Secondly, almost all empirical work on random SAT instances has used one or another refinement of these 

methods, which facilitates comparison. Besides, our experiment is not based on the clause-to-variable ratio of random 

SAT instances as a criterion for predicting instances, but the initial probability distribution of random SAT instances as 

a criterion for predicting instances.  

6.2 Benchmarks and Experiment Preliminaries 

In this section, we only consider different initial probability distributions of 3-SAT instances and focus on analyzing an 

instance class that is easy or hard in SAT competitions. All benchmarks are standard based on all random 3-SAT 

instances from SAT competitions in 2016, 2017, and 2018. Although 3-SAT instances of different sizes have different 

variables, we mainly take the initial probability distribution as the criterion. Specifically, we adopt the following six 

benchmarks: 

1) 3-SAT r=4.3:  random 3-SAT instances, from SAT Competition in 2017 (400 ≤ n ≤ 540, 80 instances, 10 for each 
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size). 

2) 3-SAT r=5.5: random 3-SAT instances, from SAT Competition in 2017 (400 ≤ n ≤ 540, 80 instances, 10 for each 

size). 

3) 3-SAT 5.205 ≤ r≤ 5.206:  random 3-SAT instances, from SAT Competition in 2017 (400 ≤ n ≤ 540, 80 instances, 

10 for each size). 

4) 3-SAT r=4.267: random 3-SAT instances, from SAT Competitions in 2016, 2017 (5000 ≤ n ≤ 12800, 80 instances, 

10 for each size) and 2018 (n =6000, 10 instances). 

5) 3-SAT 3.86 ≤ r ≤ 4.24: random 3-SAT instances, from SAT Competitions in 2016, 2017 and 2018 (n=106, 60 

instances, 3 for each size). 

6) 3-SAT 4.40<r<4.42: random 3-SAT instances, from SAT Competition in 2016 (350 ≤ n ≤ 600, 60 instances, 10 for 

each size). 

The size of random 3-SAT instances with 𝑟 ≥ 4.3 from the random track of SAT Competition 2018 is too small for 

experimental comparison. To make the gap of all variable sizes as small as possible, these instances are not included in 

our experiments. 

The parameters of the initial probability distribution are also pad and nad. In order to make the results comparable, 

let pad = 1.8 and nad =0.56 (Here the parameters can be set casually except that they cannot be set to zero at the same 

time, but the parameters of all the instances must be set the same). The computing environments for these experiments 

are the same as those used for experiments in the Section 5. The initial probability distributions of different instances 

classes are reported in Table 7. If there is no instance class in the random track of SAT competition, the corresponding 

initial probability distribution is marked with “-”. 

Table 7: The initial probability distribution on random 3-SAT instances of different ratios from SAT competitions in 2016, 2017 and 2018. 

ratio r=5.5 5.205≤r≤5.206 4.40<r<4.42 r=4.3 r=4.267 3.86≤r≤4.24 

2016 - - 0.336 - 0.328 0.34 

2017 0.351 0.299 - 0.377 0.328 0.34 

2018 0.354 0.294 - 0.378 0.328 0.34 

Over all 0.353 0.296 0.336 0.377 0.328 0.34 

6.3 Experimental Results 

In this section, we present the relationship between the initial probability distributions and hard and easy distributions 

(average success rate) of solving random 3-SAT instances from the random track of SAT Competitions in 2016, 2017, 

and 2018 by yalsat, Score2SAT, CSCCSat, WalkSATlm, and Probsat. Each solver performs 20 runs on each instance. 

The cutoff time is set to 5000 seconds.  

 
Fig. 13: The distributions between Average success rate of solved instances and the initial probability distributions on the random 3-SATinstances from SAT 

Competitions in 2016, 2017, 2018. Each solver is executed 20 runs on each instance with a cutoff time of 5000 seconds 
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The results are presented in Fig 13. The variation intervals of all variables are almost the same under different initial 

probability distributions except that the initial probability distributions are 0.34 and 0.328 (according to Section 6.2). 

Fig 13 gives a rough description of the hard and easy distribution based on the initial probability distributions on 

random 3-SAT instances from the random track of SAT competitions. 

It can be seen from Fig. 13 that the trend of curves under different solvers is almost identical. Although the variables 

of four classes of satisfiable instances with an initial probability distribution of about 0.298, 0.328, 0.336 and 0.351 are 

much smaller than the variables of satisfiable instances with an initial probability distribution of about 0.34, the success 

rate of four classes of instances is far less than the class of instances with an initial probability distribution of 0.34. 

Although the variables of the class of satisfiable instances with an initial probability distribution of 0.328 are larger 

than the variables of the class of instance with an initial probability distribution of about 0.298, the success rate of the 

class of satisfiable instance is larger than the variables of the class of instance with an initial probability distribution of 

about 0.298 for SLS solvers. Because the variables of the class of satisfiable instances with an initial probability 

distribution of 0.377 are much smaller than 106, we cannot summarize that the success rate of the class of instances is 

better than that of the class of instances with the initial probability distribution of 0.34. The variables of three classes of 

satisfiable instances with an initial probability distribution of 0.299, 0.351, and 0.377 have the same variables. We 

conjecture that (1) since the class of satisfiable instances with an initial probability distribution of 0.377 is 

under-constrained for SLS solvers, an assignment is easy to be found, (2) the class of satisfiable instances with a small 

initial probability distribution of 0.299 are over-constrained for SLS solvers, and thus an assignment is hard to be found 

in the search. It is possible that our results on hard and easy areas can generalize to all SAT procedures, but this remains 

to be seen. 

7 Conclusions and Further work 

In this paper, we proposed six improved SLS solvers by determining the initial assignments of variables in a controlled 

way on solving uniform random k-SAT instances. The resulting six SLS algorithms named Score2SAT_E, CSCCSat_E, 

WalkSATlm_E, DCCASat_E, Probsat_E, and Sparrow_E are evaluated through benchmarks in terms of their 

capabilities and efficiency when treating uniform random k-SAT instance with medium and huge variables, e.g., 

benchmarks from the random track of SAT Competitions in 2016, 2017 and 2018 respectively. Experimental results 

showed that these improved SLS solvers outperform their original versions. 

The method of determining the initial assignments of variables in a controlled way is based on two concepts: the 

allocation strategy and initial probability distribution. We derived the allocation strategy, which is a greedy mode to 

improve random initial assignment from random 3-SAT to uniform random k-SAT. The allocation strategy is used to 

generate a greedy initial assignment instead of a random initial assignment on solving k-SAT instances. The idea of this 

strategy is utilized to guide the trend of optimal truth assignment in advance and to accelerate the finding of the optimal 

solution. Then we proposed the initial probability distribution, which is devoting to tune the parameters of the 

allocation strategy. The allocation strategy and initial probability distribution were used to develop Score2SAT_E, 

CSCCSat_E, WalkSATlm_E, DCCASat_E, Probsat_E, and Sparrow_E algorithms.  

Experiments on uniform random k-SAT instances at and near phase-transition threshold from the random track of 

SAT competitions in 2016, 2017, and 2018 show that Score2SAT_E, CSCCSat_E, and WalkSATlm_E significantly 

improve Score2SAT, CSCCSat, and WalkSATlm respectively and outperform state-of-the-art SLS algorithms, and 

Probsat_E and Sparrow_E significantly have a great improvement for Probsat and Sparrow on uniform random k-SAT 

instances respectively, which show the generality and robustness of the proposed method in determining initial 

assignment effectively to significantly improve the performance of some state-of-the-art solvers for uniform random 

k-SAT instances.  

Moreover, according to extensive random instances generated, we analysis the variation of the average number of 

unsatisfied clauses between WalkSATlm_E and WalkSATlm with the same steps and compared WalkSATlm_E with 

state-of-the-art SLS algorithms. Experiments on random k-SAT instances show that WalkSATlm_E significantly 

improves WalkSATlm and outperforms state-of-the-art SLS algorithms on random 3-SAT instances, 5-SAT instances 

near the phase transition, and 7-SAT instances at the phase transition. 
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Further, the initial probability distribution of each class of instances and the success rate of solvers are taken as the 

objects of analysis.  According to the extensive experiments based on the state-of-the-art SLS solvers on random 

3-SAT instances of the random track of SAT competitions in 2016, 2017, and 2018, we obtain a new hard and easy 

distribution as initial probability distribution changes. 

As for future work, we plan to apply our method to other SLS algorithms, especially those focused on random walk 

ones. Furthermore, the notions in this work are simple that they can be easily applied to other problems, such as 

constrained satisfaction and graph search problems.  
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