2010/133691 A2 1000000 0O 0 R0 0 0 0 0

©

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
25 November 2010 (25.11.2010)

O T OO
(10) International Publication Number

WO 2010/133691 A2

(51)

21

(22)

25
(26)
(30)

1)

(72)
(75)

74

International Patent Classification:
G10L 19/02 (2006.01)

International Application Number:
PCT/EP2010/057014

International Filing Date:
20 May 2010 (20.05.2010)

Filing Language: English
Publication Language: English
Priority Data:

0908879.0 22 May 2009 (22.05.2009) GB
Applicant (for all designated States except US): UNI-

VERSITY OF ULSTER [GB/GB]; Cromore Road,
County Londonderry, Coleraine BT52 1SA (GB).

Inventors; and

Inventors/Applicants (for US only): DOHERTY,
Jonathan, Paul [GB/GB]; 148 Pelham Road, Derry BT47
6FT (GB). CURRAN, Kevin [IE/GB]; 16 Millbrook,
Eglinton, Derry BT47 3QL (GB). MCKEVITT, Paul
[TE/GB]; c¢/o School of Computing and Intelligent Sys-
tems, University of Ulster, Londonderry BT48 7JL (GB).

Agent: BROPHY, David; 27 Clyde Road, Dublin D4
(IE).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: A SYSTEM AND METHOD FOR STREAMING MUSIC REPAIR AND ERROR CONCEALMENT

Streaming
Media Server

Similarity File
Song Y

Database

-Audio Stream
16

10

Similarity
Database

Feature ||
Extractor [=5)

Results:

Feature
Extraction

Similarity
Measurement

Fig. 1

Wireless Device Audio Output

(57) Abstract: A method is provided for analysing the self-similarity of an audio file. The method involves obtaining the audio
spectrum envelope data of an audio file to be analysed; performing a clustering operation on the spectrum envelope data to pro-
duce a clustered set of data; for a first portion of the clustered data, performing a string matching operation on at least one other
portion of the clustered data; and based on the results of the string matching operation, determining the at least one other portion
of the clustered data most similar to said first portion of the clustered data. There is also provided a method of repairing an audio
stream received over a network using similarity data to replace damaged or missing portions of data with similar "good" portions
of data.



10

15

20

25

30

WO 2010/133691 PCT/EP2010/057014

A System and Method for Streaming Music Repair and Error Concealment

Field of the Invention
This invention relates to a system and method for error concealment and repair in streaming

music.

Background of the Invention

Streaming media across the Internet is still a relatively unreliable and poor quality medium.
Services such as audio-on-demand drastically increase the load on the networks, and
therefore new, robust and highly efficient coding algorithms are necessary. One overlooked
method to date, which can work alongside existing audio compression schemes, is to take
account of the semantics and natural repetition of music in the category of Western Tonal
Format. Similarity detection within polyphonic audio has presented problematic challenges
within the field of Music Information Retrieval (MIR). One approach to deal with bursty
errors is to use self-similarity to replace missing segments. Many existing systems exist
based on packet loss and replacement on a network level but none attempt repairs of large

dropouts of 5 seconds and over.

Streaming media across the Internet is still an unreliable and poor quality medium. Current
technologies for streaming media have gone as far as they can in regards to compression
(both lossy and lossless) and buffering songs streamed from a web based server to clients. It
is anticipated that in future we will witness the next revolution through telecommunications
technology. In the past two decades the communications sector was one of the few

constantly growing sectors in industry and a wide variety of new services were created.

Digital and powerful communication networks are being discussed, planned or under
construction. Services such as audio-on-demand drastically increase the load on the
networks. The spread of the newly created compression standards such as MPEG—4 reflect
the current demand for data compression. As these new services become available the
demand of audio services through mobiles has increased. The technology for these services
is available but suitable standards are yet to be defined. This is due to the nature of mobile
radio channels, which are more limited in terms of bandwidth and bit error rates as for
example the public telephone network. Therefore new, robust and highly efficient coding

algorithms will be necessary.



10

15

20

25

30

WO 2010/133691 PCT/EP2010/057014

Audio, due to its timely nature requires guarantees that are very different in nature with
regards to delivery of data from TCP traffic for ordinary HTTP requests. In addition, audio
applications increase the set of requirements in terms of throughput, end-to-end delay, delay

jitter and synchronization.

Applications such as Microsoft’s Media Player and Real Audio have yet to overcome the
problems attributed to using a network that is built upon a technology that does not rely on
the order the information is sent, but more so the speed at which it travels. Despite a
seemingly unlimited bandwidth, a Quality of Service protocol in place and high rates of
compression, temporal aliasing still occurs giving the client a poor/unreliable connection

where audio playback is patchy when unsynchronised packets arrive.

Streaming media across networks has been a focus for much research in the area of
lossy/lossless file compression and network communication techniques. However, the rapid
uptake of wireless communication has led to more recent problems being identified. Traffic
on a wireless network can be categorised in the same way as cabled networks. File transfers
cannot tolerate packet loss but can take an undefined length of time. "Real-time’ traffic can
accept packet loss (within limitations) but must arrive at its destination within a given time
frame. Forward error correction (FEC), which usually involves redundancy built into the
packets, and automatic repeat request (ARQ) (Perkins et al., 1998) are two main techniques
currently implemented to overcome the problems encountered. However bandwidth
restrictions limit FEC solutions and the ‘real-time’ constraints limit the effectiveness of
ARQ.

The increase in bandwidths across networks should help to alleviate the congestion problem.
However, the development of audio compression including the more popular formats such
as Microsoft’s Windows Media Audio WMA and the MPEG group’s mp3 compression
schemes have peaked and yet end users want higher and higher quality through the use of
lossless compression formats on more unstable network topologies. When receiving
streaming media over a low bandwidth wireless connection, users can experience not only
packet losses but also extended service interruptions. These dropouts can last for as long as
15 to 20 seconds. During this time no packets are received and, if not addressed, these

dropped packets cause unacceptable interruptions in the audio stream. A long dropout of this



10

15

20

25

30

WO 2010/133691 PCT/EP2010/057014

3

kind may be overcome by ensuring that the buffer at the client is large enough. However,
when using fixed bit rate technologies such as Windows Media Player or Real Audio a

simple packet resend request is the only method of audio stream repair implemented.

The papers “Introducing Song Form Intelligence into Streaming Audio” (Kevin Curran,
Journal of Computer Science 1 (2): 164-168, 2005) and “Song Form Intelligence for
Streaming Music across Wireless Bursty Networks” (Jonathan Doherty, Kevin Curran, Paul
Mc Kevitt; Proceedings of the 16th Irish Conference on Artificial Intelligence and Cognitive
Science (AICS ’05); September 2005) propose a server-client based framework for
automatic detection and replacement of large packet loss on wireless networks when
receiving time-dependent streamed audio. The system provides a self-similarity
identification and audio replacement system which swaps audio presented to the listener
between a live stream and previous sections of the same audio stored locally when dropouts
occur. However, a system has not been developed to feasibly implement this approach for

real-life conditions.

It is an object of the invention to provide an efficient and effective implementation of a

system and method for error concealment and repair in streaming music.

Summary of the Invention
Accordingly, there is provided a method of analysing the self-similarity of an audio file, the
method comprising the steps of:

obtaining the audio spectrum envelope data of an audio file to be analysed,

performing a clustering operation on the spectrum envelope data to produce a
clustered set of data;

for a first portion of the clustered data, performing a string matching operation on at
least one other portion of the clustered data; and

based on the results of the string matching operation, determining the at least one

other portion of the clustered data most similar to said first portion of the clustered data.

This method allows for the efficient computation of music self-similarity, which can be used

to implement a streaming music repair system.



10

15

20

25

30

WO 2010/133691 PCT/EP2010/057014
4

Preferably, said string matching operation is carried out on the portions of said clustered

data preceding said first portion.

When music is being streamed, the repair and replacement operations will typically utilise

those portions of the audio stream that have been already received.

Preferably, said step of obtaining the audio spectrum envelope comprises:
obtaining an audio file to be analysed; and

extracting the audio spectrum envelope data of said audio file.

Preferably, said method further comprises the step of creating a self-similarity record for
said audio file, the self-similarity record containing details of the most similar portion of the

clustered data for each portion of said audio file.

Alternatively, said method comprises the step of appending said audio file with a tag, the tag
including details of the most similar portion of the clustered data for each portion of said

audio file.

The similarity can be recorded in metadata associated with the audio file, e.g. XML tags of
an MPEG-7 file, or can simply be stored as a separate file which is transmitted along with a
streamed audio file.

Preferably, the method further comprises the step of transmitting the audio file and
substantially simultancously transmitting the self-similarity record across a network to a user
for playback.

Preferably, the clustering operation is a K-means clustering operation.

Preferably, the cluster number is chosen from the range 30-70. Preferably, the cluster

number is chosen from the range 45-55. More preferably, the cluster number is 50.

Preferably, the cluster starting points are equally spaced across the data.



10

15

20

25

30

WO 2010/133691 PCT/EP2010/057014
5

Preferably, the audio spectrum envelope is chosen to have a hop size of between 1 ms — 20

ms. More preferably, the audio spectrum envelope is chosen to have a 10 ms hop size.

Preferably, the number of frequency bands of the audio spectrum envelope is chosen to be
between 6-10. Most preferably, the audio spectrum envelope is chosen to have 8 frequency
bands.

Preferably, the clustering operation uses the Euclidian distance metric.

Preferably, for the string matching operation, the distance between compared strings is

measured in an ordinal scale.

Preferably, the distance between compared strings is measured using the hamming distance.

There is further provided a method of repairing an audio stream transmitted over a network
based on self-similarity, the method comprising the steps of:

receiving an audio stream over a network;

receiving similarity data detailing the at least one other portion of the audio stream
most similar to a given portion of said audio stream;

when a network error occurs for a portion of the audio stream, replacing said portion
of said audio stream with that portion of the audio stream most similar to said portion, based

on said similarity data.

The method is particularly useful where the network is a “bursty” network, i.c. the data

tends to arrive in bursts rather than at a smooth and constant rate

There is also provided a computer-readable storage medium having recorded thereon
instructions which, when executed on a computer, are operable to implement the steps of

one or both of the methods outlined above.

Detailed Description of the Invention
An embodiment of the invention will now be described, by way of example only, with

reference to the accompanying drawings, in which:



10

15

20

25

30

WO 2010/133691 PCT/EP2010/057014

6

Fig. 1 is a general overview of the system of the invention;

Fig. 2 is a flow diagram of the system of the invention for identifying similarity in an
audio file;

Fig. 3 shows a portion of a sample MPEG-7 XML output of the Audio Spectrum
Envelope (ASE) of a music file;

Fig. 4 shows the overlapping of sampling frames for a sample waveform;

Fig. 5 shows a sample output for K-means clustering performed on the ASE data of a
sample audio file;

Fig. 6 shows a sample K—means cluster representation of a song for varied time
frame windows;

Fig. 7 shows an example of a backward string matching search;

Fig. 8 illustrates a graphical representation of a media handler application with
multiple pipelines;

Fig. 9 illustrates the process flow used to determine switching between pipelines;

Fig. 10 illustrates the time delay effect when swapping sources;

Fig. 11 shows a graphic representation of the time delay effect when swapping audio
sources;

Fig. 12 shows a K-means clustering comparison, when starting points are varied;

Fig. 13 shows a further K-means clustering comparison, when different cluster sizes
are selected;

Fig. 14 shows a series of plots illustrating a string matching comparison for different
string lengths;

Fig. 15 shows the results of a sample 5 second query on only preceding sections;

Fig. 16 shows the results of a five second query from only 30 seconds of audio;

Fig. 17 shows a comparison between the performance of one and five second query
strings;

Fig. 18 shows a five second segment of the ASE representation of two ’similar’ 5
second segments of the song ‘Orinoco Flow’ by the artist Enya;

Fig. 19 shows the plot of a two channel wave audio file of the entire song ‘Orinoco
Flow’;

Fig. 20 is the cluster representation of the plot of Fig. 19; and

Fig. 21 is a plot of the match ratio for the 5 second segments shown in Fig. 18.



10

15

20

25

30

WO 2010/133691 PCT/EP2010/057014
7

The invention provides an intelligent music repair system that repairs dropouts in broadcast
audio streams on bursty networks. Unlike other forward error correction approaches that
attempt to ’repair’ errors at the packet level the present system uses self—similarity to mask
large bursty errors in an audio stream from the listener. The system of the invention utilises
the MPEG-7 content descriptions as a base representation of the audio, clusters these into
similar groups, and compares large groupings for similarity. It is this similarity identification
process that is used on the client side that is used to replace dropouts in the audio stream

being received.

The general architecture of the system of the invention can be seen in Fig. 1, illustrating a
client/server approach to audio repair. Fig. 1 illustrates the pattern identification components
on the server and the music stream repair components on the client as applied to the design
stage of application development. On the left of the diagram is a generic representation of
the feature extraction process prior to the audio being streamed. The feature extractor 10
analyzes the audio from the audio database 12 prior to streaming and creates a results file

14, which is then stored locally on the server 16 ready for the song to be streamed. The
streaming media server 16 then streams the relevant similarity file alongside the audio to the
client 18 across the network 20. On the client side the client 18 receives the broadcast and
monitors the network bandwidth for delays of the time-dependent packets. When the level of
the internal buffer of the audio stream becomes critically low, the similarity file (stored as
similarity results 19) is used to determine the best previously received portion of the song to
use as a replacement until the network can recover. This is retrieved from a temporary buffer

22 stored on the client machine 18 specifically for this purpose.

In a typical Music Information Retrieval (MIR) system the similarity assessment is
performed in three stages:

1. Data reduction

2. Feature extraction

3. Similarity comparisons

One of the aspects of feature extraction is to maintain as high a level of reduction as possible
without the loss of pertinent data. The invention makes use of the MPEG-7 features in the

audio spectrum envelope (ASE) representation.



10

15

20

25

30

WO 2010/133691 PCT/EP2010/057014
8

The audio spectrum envelope (ASE) of the MPEG-7 standard is a log-frequency power
spectrum that can be used to generate a reduced spectrum of the original audio. This is done
by summing the energy of the power spectrum within a series of frequency bands. Bands are
equally distributed between two frequency edges: loEdge and hiEdge (default values of 62.5
Hz and 16 KHz correspond to the lower/upper limit of hearing — shown in equation 2 below,
also Fig. 3). The spectral resolution r of the frequency bands within these limits can be
specified based on eight possible values, ranging 1/16 of an octave to 8 octaves as shown in

the following equation 1.

r =2 octaves (-4 <j < +3) (D
(Kim et al., 2005)

<AudioDescriptor hiEdge = ”16000.0” loEdge = ’62.5” octaveResolution="1/8"
xsi : type = ”AudioSpectrumEnvelopeType™™>

@

Each ASE vector is extracted every 10 milliseconds from a 30 millisecond frame (window)

and thereby gives a compact representation of the spectrogram of the audio.

An overview of the feature extraction components can be seen in Fig. 2, which is a
representation of the actions carried out by the feature extraction and similarity
measurement components indicated by 11 in Fig. 1. A song is chosen from the database 12,
and the appropriate Audio Spectrum Envelope (ASE) for the song is extracted 13 (the ASE
shows the audio spectrum on a logarithmic frequency scale). A clustering operation
(preferably K-means clustering) is then performed on the extracted data 15. The clustering
operation helps to identify similar samples at a granular level. A string matching operation is
then performed 17 to identify similarities between large sections of audio. The resultant
“best effort” match between similar sections of audio is then stored in the similarity database

14.

A detailed discussion of each of these steps is now provided.

Songs stored in the song database 12 are analysed and the content description generated

from the audio is stored in XML format as shown in Fig. 3. The actual file for a typical



10

15

20

25

30

WO 2010/133691 PCT/EP2010/057014
9

audio file illustrated is over 487KB (499,354 bytes) in size and contains over 3700x10
samples for a 37 second long piece of music stored as a wave file. However, the resultant
data is now only 6% of its original size. This represents a considerable reduction in the
volume of information to be classified but still retains sufficient information for similarity

analysis.

The settings used for extraction can be seen in the XML field <AudioDescriptor> in Fig. 3.
This stipulates a low and high edge threshold set to “16kHz” and “62.5Hz” respectively.
These settings are as discussed above, and have been shown to be the upper and lower
bounds of the human auditory system (Pan ct al., 1995). Sounds above and below these
levels are of little value and present no additional information that can be utilised when
extracting the frequencies. Experiments with values above and below these produced results
with no gain and even worse output as the resultant data was clouded with noise that did not
belong to the audio being analysed. It should be noted that the Joanneum Research facility
(MPEG-7, 2008) recommend these settings to be used as the default values.

Within the low and high frequencies a resolution of 1 is set for the parameter
octaveResolution. This gives a full octave resolution of overlapping frequency bands, which
are logarithmically spaced from the low to high frequency threshold settings. (In music, an
octave is the interval between one musical pitch and another with half or double its
frequency. The octave “relationship is a natural phenomenon which has been referred to as
the ’basic miracle of music’,” the use of which is “common in most musical systems”
(Cooper, 1973).) The output of the logarithmic frequency range is the weighted sum of the
power spectrum in each logarithmic sub-band. The spectrum according to a logarithmic
frequency scale consists of one coefficient representing power between 0 Hz and “low
edge”, a series of coefficients representing power in logarithmically spaced bands between
“low edge” and “high edge”, and a coefficient representing power above “high edge”

resulting in 10 samples for each hop of the audio.

The ASE features have been derived using a hopsize of 10ms and a frame size of 30ms. This
allows an overlapping of the audio signal samples to give a more even representation of the
audio as it changes from frame to frame. An example of the overlapping sampling frames of
a waveform can be seen in Fig. 4. In general, more overlap will give more analysis points

and therefore smoother results across time, but the computational expense is proportionately



10

15

20

25

30

WO 2010/133691 PCT/EP2010/057014
10

greater. The system of the invention generates the ASE descriptions in offline mode and is

run once for each audio file stored.

Audio files used in the sample analysis are in “.wav” format, to ensure that audio is of the

best possible quality, but it will be understood that other encoding formats may be used.

The invention uses K—means clustering as a method of identifying similarities within
different sections of the audio. The choice of starting point of the clusters has a direct result
on the outcome of the clustering. The following example shows a matrix of 10 vectors with

three k clusters.

Fig. 12 shows a K-means clustering comparison: The starting point in (a) is different from

(c), and results in (a) having different cluster choice than (d).

With reference to the accompanying Fig. 12, the plots shown are a series of vectors
randomly positioned along the x/y axis. In Fig. 12(a) the starting point for the clusters were
positioned randomly, but more biased to the left. This is in contrast to the starting point of
the clusters in Fig. 12(c), where the starting point has been changed to be biased to the right
of the of the clusters. The change in cluster grouping can be seen in Fig. 12(d), as the data

points are now associated with different clusters.

There is no optimum initial cluster positioning but some researchers have given serious
consideration to this problem with varying outcomes (Chinrungrueng and Sequin, 1995;
Bradley and Fayyad, 1998; Zha et al., 2002). A common rule of thumb, where the initial

cluster centroids are initialized evenly across the data, is the most often proposed solution.

In K-means clustering, using an empirical number of clusters provides sufficient grouping
based on iterative testing of the audio spectrum envelope data. The ASE data files contain a
varying number of vectors depending on the length of the audio, but as each vector contains
a finite value in that each sample contains a variable quantity that can be resolved into
components, an optimal value of 50 clusters is used, of which a sample output is shown in
Fig. 5. This selection allows for a reasonable computational process with the minimum
amount of processing power possible whilst maintaining maximum variety. Experiments

above this value produced little or no gain, and with processing time increasing



10

15

20

25

30

WO 2010/133691 PCT/EP2010/057014
11

exponentially with each increase in cluster number was considered computationally too

expensive.

The K—means output results in an array of numbers of 1 — x where x is the number of
samples in the ASE representation ranging from 1 to 50. A file lasting 30 seconds will result
in 3000 clustered samples, and a file lasting 2 minutes 45 seconds will produce 16500
clustered samples. At this stage of the similarity computation process the cognitive
representation of music can be construed from the output. Where the human mind
automatically detects rhythm and repeating patterns, the clustered output notation can be
considered as similar in that cach sample has been compared to all other ASE samples and
grouped accordingly. Where Jackendoff (1987) presents a hierarchical tree as a
representation/notation, a K—means representation conveys the same representative meaning

but on a more detailed linear scale. This grouping can be seen in Fig. 6, as follows.

The samples in Fig. 6(a) represent one second of audio with each value representing the
10ms hop of the ASE extraction. From this figure the level of detail shows the variations in
detail between 1 and 50. The K-means plot in Fig. 6(b) shows an expanded time frame
window of 20 seconds, and it becomes more difficult to identify individual clusters, but
what is easier to see is how differing sections of the audio are being represented. The final
plot of the K—means output shown in Fig. 6(c) contains the entire K—means cluster
groupings for a full length audio song. To the human eye it is hard to see similarities
between sections at this level of detail but what can be clearly seen is the *bridge’ section in

the middle that is ’dissimilar’ to any other sections of the audio.

Having an audio file classified and clustered into groups are the preliminary steps to
determining similarity between large sections of the file. Where the ASE is a minimalist data
representation/description and the K—means grouping is a cluster representation of similar
samples at a granular level, the system of the invention makes use of traditional string
matching approach to identify large sections of the audio. The k—means clustering identifies
and groups 10ms vectors of audio but this needs to be expanded to a larger window in order
to facilitate network dropouts. For example, bursty errors on networks can last for as long as
15 to 20 seconds (Yin et al., 2006; Nafaa ct al., 2008), which would mean that if the current
system tried to use one identified cluster at a time to repair the gap then it would need to

perform the following steps up to two thousand times:



10

15

20

25

30

WO 2010/133691 PCT/EP2010/057014
12

¢ Determine the time-point of failure
e Analyse the current cluster

e Replace the current section with suitable previous section

This is not a feasible option in regards to computational and processing costs. In addition,
this jitter would become a major contributing factor in the resultant audio output to the
listener. Using string matching, large sections of the K—means cluster output can be
’compared’ for overall similarity and the "best effort’ match is stored for reference. This file
is then used on the client side for reference at a later time on the client machine when

dropouts occur.

Various methods of measuring the differences/distance between two fixed length strings are
again dependent on the nature of the data. Although in general clusters are ordered
numerically, there is no actual value other than as an identifier, and clusters are presented in
a nominal scale. For example, considering a sequence of numbers 1, 2, 3, it can be said that
3 is higher than 2 and 1, while 2 is higher than 1. The cluster could be as casily identified by
characters or symbols, provided consistency is used in an ordinal scale (i.e. changing the

scale can adversely affect the cluster outcome).

By comparing clusters using a hamming scale, any metric value is ignored and only the
number of differences between the two are calculated. However, if a ranking system is
applied then ordinal variables can be transformed into quantitative variables through
normalization. To determine distance between two objects represented by ordinal variables,
it is necessary to transform the ordinal scale into a ratio scale. This allows the distance to be
calculated by treating the ordinal value as quantitative variables and using Euclidean
distance, city block distance, Chebyshev distance, Minkowski distance or the coefficient
correlation as distance metrics. Without rank the most effective measure is the hamming

distance.

To reduce unnecessary computation, the system of the invention only compares the clusters
in previous sections for similarities, as shown in Fig. 7, which illustrates a backward string
matching search. This is based on the principle that when attempting a repair, the system of

the invention can only use portions of the audio already received, and any sections beyond



WO 2010/133691 PCT/EP2010/057014

13

this have not yet been received by the client and therefore cannot be used. This reduces
analysis comparisons considerably in early sections of the audio, but as the time-point

progresses the number of comparisons increase exponentially.

5 A sample output from the example given below in Table 1 shows three different values. The

left column is the starting point of the frame to search for, the middle column is the *best
match’ time-point of all the previous sections and the last column is the matching result -
how close the best match is represented in a scale between zero and one, the closer to zero

the better the match. The layout of the data was initially to be in a similar XML format as

10 the MPEG-7 data but this was considered to be unnecessary as there is no change of the data

layout throughout the entire content of the file. Adding XML tags would be simply to
include metadata for song and artist identification which is already stored in the filename.
Adding XML tags would also include unnecessary complexity when parsing the file

increasing processing needs of the media application.

15
Current Time Point | Matching Time Point | Match Result
7.413 e+03 5.44 ¢+02 7.1199 e-01
7.414 ¢+03 5.45 ¢+02 7.1199 e-01
7.415 e+03 5.46 ¢+02 7.1199 e-01
7.416 e+03 5.47 e+02 7.1199 e-01
7.417 e+03 5.48 e+02 7.1199 e-01
7.418 e+03 5.49 ¢+02 7.0999 ¢-01
7.419 e+03 5.50 e+02 7.0799 ¢-01
7.420 e+03 5.51 et02 7.0799 e-01
7.421 e+03 5.52 e+02 7.0799 e-01
7.422 e+03 5.53 e+02 7.0799 e-01
7.423 e+03 5.54 ¢+02 7.0799 e-01
7.424 ¢+03 5.55et02 7.0999 e-01
7.425 e+03 5.56 et02 7.1199 e-01

20 for preparing files for broadcast, e.g. Ogg Vorbis. As with other compression techniques,

Table 1: String matching output

It will be understood that any audio file format may be used as the audio compression tool




10

15

20

25

30

WO 2010/133691 PCT/EP2010/057014

14

there is no error correction within the stream and packet loss will result in a loss of signal.
Using a proprictary media player when fragmented packets are dropped a resend request is
called using the Real-Time Control Protocol. The present system however differentiates
between fragmented packets and network traffic congestion. As with any media player, the
system of the invention makes use of the resend request for corrupt individual packets where
one or two packets have time to be resent and will not affect the overall audio output.
However, when large dropouts of 5, 10 or 15 seconds occur, this will be unrecoverable and
the audio output is affected. It is at this point that the present system uses the previously-

received portions in an attempt at masking this error from the listener.

When repairing dropouts in a live audio stream, priority lies in the system’s ability to
maintain continuity of the output audio alongside a scamless switch between real-time
streams being received and buffered portions of the audio, whilst monitoring network

bandwidth levels and acting accordingly.

On the client side, there are three requirements to enable a media application to provide for

client side audio repair when dropouts occur:

1. Monitor network: The media application is operable to be aware of traffic flow to
the network buffer, in the event that if a dropout occurs a timely *swap’ can be
achieved before the internal network buffer fails.

2. Store locally all previously received portions of the audio: A local *buffer’ is used
to fill the missing section of audio until the network recovers.

3. Play locally stored audio: As well as being able to play network audio the media

player is operable to play audio stored locally on the client machine.

To this end, three pipelines have been created to perform all of the functions listed above
simultaneously. Pipelines are a top-level bin — essentially a container object that can be set
to a paused or playing state. The state of any elements contained within the pipeline will
assume the stopped/ready/paused/playing state of the pipeline when the pipeline state is set.
Once a pipeline is set to playing, it will run in a separate thread until it is manually stopped

or the end of the data stream is reached.



10

15

20

25

30

WO 2010/133691 PCT/EP2010/057014
15
Fig. 8 illustrates a graphical representation of a sample media handler of the invention with
multiple pipelines. The figure shows the bin containing the pipelines necessary for the media
application to fulfill the requirements specified above. The media pipeline 30 is the main
container/bin with three separate pipelines contained within this. Each of the inner pipelines
performs one of the necessary functions to maintain continuity of the audio being relayed to

the listener even when dropouts occur.

o The ir pipeline 32 contains the necessary functions to receive an Internet radio
broadcast in an ogg vorbis format. Using the gnome3 virtual file source pad as a
receiver the stream is thus decoded and passed along until it is handled by the
alsasink audio output.

e The file pipeline 34 is created to handle the swap to the file stored locally on the
client machine in the event the network fails. It is the media players’ ability to
perform this function that *masks’ a network failure from the listener. When a
dropout occurs the ir pipeline is paused and playback is started from the locally
stored file.

o Whilst the Internet radio broadcast is being played the record pipeline 36 receives
the same broadcast and stores it locally on the machine as a local buffer for future
playback. Only one song is ever stored at any one time, cach time a new song is
played, an ’end-of-stream’ message is sent to the client application and the last song

received i over-written by the new song.

Usually an Internet audio stream is shown as merely the length of time that it is connected to
the station, not the length of individual songs. The present system differs in that it resets the
GstClock() on each new song. This provides a simple “current time—point” that allows the
media player to know exactly where in the current song it is, and thereby provides a

timestamp as a point of reference when network failure occurs.

As previously described, when the ’state’ of a pipeline is changed any source/sink pads
contained within the pipeline is changed. Upon initial startup of the media application the
media pipeline 30 is sct to playing by default. This sets the containing pipelines to playing
where possible. However, the file pipeline 34 remains in the ready state as a file to play has
not been specified. This allows the other two pipelines to run concurrently. The following

sample program code shows the creation of the ir_pipeline 32 and setting the state:



10

15

20

25

30

WO 2010/133691 PCT/EP2010/057014
16

/* IR Play elements */
GstElement *ip pipeline, *ir source, *ir _queue, *ir parser, *ir decoder, *ir conv,

*ir sink ;

gboolean setup_ir_play()

{
unref ir pipeline () ;
ir_queue = gst_element factory make ( ’queue” , NULL) ;
ir_source = gst_element factory make ( “gnomevfssrc ” , NULL) ;
ir_icydemuxer = gst_element factory make ( "icydemux” , NULL) ;
ir_parser = gst element factory make ( "oggdemux” , NULL) ;
ir_decoder = gst_element factory make ( ”” vorbisdec ”, NULL) ;

ir_conv = gst element factory make ( ” audioconvert ”, NULL) ;

/* put all elements in main bin */
gst bin_add many ( GST BIN (ir_pipeline ), ir_source, ir_queue, ir_parser,
ir_decoder , ir conv, ir sink , NULL) ;

The above code shows, in order, a pipeline created, each element within the pipeline being
created and their state set to NULL and the newly created pipeline being added to the main

media pipeline bin.

Built into the media application is a message bus that constantly handles internal messages
between pipelines and handlers. This message system allows ’alerts’ to be raised when
unexpected events occur, including ’end—of-stream’ and ’low internal buffer levels’. A
watch method is created to monitor the internal buffer from the audio stream and when a
pre-set critical level is reached an underrun message is sent to alert the application of
imminent network failure. It should be noted that a network failure is not that a network is

completely disconnected from the client machine, but is a network connection that is of such



10

15

20

25

30

WO 2010/133691 PCT/EP2010/057014
17

poor signal quality with a low throughput that traffic flow is reduced to an unacceptable

level. Fig. 9 shows the process of controlling which pipeline is active at any one time.

When the ir_pipeline 32 is playing (step 100) the file pipeline 34 is in a ready state. If a

network error occurs (102), this may lead the pipeline buffer to underrun, or be in danger of
underrunning. When a ’critical buffer level” warning is received (104) the media application
must swap the audio input from the network to the locally stored file (106) that contains the

audio from the start of the audio to the point that the network dropout occurred.

A network failure message calls a procedure that notes the current time—point of the stream
and uses this to parse the similarity file (or similarity results 19) already received on the
client machine 18 when the current song was started. This file 19 is the output results of the
similarity identification previously performed on the server 16. From this, the previously
identified *best match’ section of the audio is used as a starting point of the local file on the

client machine 18.

The file pipeline 34 is now given focus over the ir_pipeline 32 with their states being
changed to playing and paused respectively (108). After a predetermined length of time the
buffer level of the ir_pipeline 32 is checked to determine if network traffic has returned to
normal (110), if so, then audio output is swapped back to the ir pipeline 32 (112), and the
ir_pipeline buffer cleared (114). Otherwise file playback continues for the same fixed length
of time and repeated as necessary. In the event that playback of the locally stored file
reaches the end of the time—point from when the network failed it is assumed that network
traffic levels will not recover and the application ends audio output and closes the pipelines,

waiting for re-initialisation from the user.

Within the framework of the system is the GstClock() function, which is used to maintain
synchronisation within the pipelines during playback. The media application uses a global
clock to monitor and synchronise the pads in each pipeline. The clock time is measured in
nanoseconds, and counts time in a forward direction. The GstClock exists because it ensures
the playback of media at a specific rate, and this rate is not necessarily the same as the
system clock rate. For example, a soundcard may playback at 44.1 kHz, but that does not
mean that after exactly 1 second according to the system clock, the soundcard has played

back 44.100 samples. This is only true by approximation. Therefore, pipelines with an audio



10

15

20

25

30

WO 2010/133691 PCT/EP2010/057014
18

output use the audiosink as a clock provider. This ensures that one second of audio will be

played back at the same rate as the soundcard plays back 1 second of audio.

Whenever some part of the pipeline requires the current clock time, it will be requested from
the clock through a call to gst clock get time(). The pipeline that contains all others is used
to contain the global clock that all elements in the pipeline use as a base time, which is the
clock time at the point where media time is starting from zero. Using the GstClock()
method, pipelines within the media application can calculate the stream time and
synchronise the internal pipelines accordingly. This provides an accurate measure of the
current playback time in the currently active pipeline. Using its own internal clock also
allows the media application to synchronise swapping between the audio stream and the file
stored locally. When a network error occurs the current time-point of the internal clock is
used as a reference point when accessing the *best-match’ data file as shown in the

following code segment:
guint64 len =0 , pos=0, newpos=0;
GstFormat fmt = GST_FORMAT _TIME;

gst_element_query position ( ir_sink , &fmt , &pos ) ;

/* convert nanoseconds to centiseconds */

timepos = ( timepos/GST MSECOND) /10 ;

f=fopen ( datafile , "1 ) ;

if (!If)

{
//Unable to open file!
return 1 ;

}

int linepos =1 ;
//Lines are in 10 millisecond hops
while (! found )
{
fgets (s,98,1);

if ( linepos == timepos )



10

15

20

25

30

WO 2010/133691 PCT/EP2010/057014

19
{
printf ( "%s \n”, 8 ) ;
strTime =s ;
found=TRUE;
}

linepos ++;

}

newTime = atof ( strTime ) ;

This C code above is not optimized in that the *similarity’ file must be scanned from the
beginning of the file line by line until the current line number count matches the
corresponding current time-point. This led to initial tests incurring a jitter effect when

swapping from one source to the other. This can be described with reference to Fig. 10.

When an error occurs (point 70), whilst reading the similarity file to find the best possible
time to seek to, the radio stream continues playing. This means that when swapping to the
previous section (72) on the local audio file, the first half-second or so of audio is not
synchronised with the current time-point (74) of the audio stream. This would result in a

jitter effect (illustrated in section 76), which may be noticeable to a listener.

A partial fix for this involves reading the entire contents of the *similarity’ file into a
dynamically created array at the beginning of the audio song being streamed using the

following:

while ( fgets (5,98, f)!=NULL)
{
strTime =s ;
newTime = atof ( strTime ) ;
fData [ linepos ] =newTime ;

| inepos++

















































































