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Abstract—We propose an evolutionary algorithm to au-
tonomously improve the performances of a robotics skill. The
algorithm extends a previously proposed graphical evolutionary
skills building approach to allow a robot to autonomously
collect use cases where a skill fails and use them to improve
the skill. Here we define a computational graph as a generic
model to hierarchically represent skills and to modify them. The
computational graph makes use of embedded neural networks to
create generic skills. We tested our proposed algorithm on a real
robot implementing a “move to reach” action. Four experiments
show the evolution of the computational graph as it is adapted
to solve increasingly complex problems.

I. INTRODUCTION

A robot is usually equipped with skills that allows it to solve
tasks it is designed for. Although efforts are made to ensure a
robot is capable of applying a skill to different environments,
no guarantee can be given that a skill will yield positive results
in any situation. Autonomously learning and improving skills
is therefore a thriving area of research in robotics.

Improving a skill means modifying it so that the robot
can solve the same problem more efficiently, or it can solve
instances of the same problem it could not solve before. For
example a vacuum cleaner robot could improve its cleaning
skill so that it will be more efficient in houses with many
staircases, or a laundry folding robot can learn to fold more
and more types of clothes. Once a robot managed to improve
a skill, the newly acquired knowledge can be re-used by other
robots to solve a similar task.

Autonomous skills improving faces several challenges.
Among them, in this work we address the following questions:
• What is a generic representation of skill?
• How can a skill be improved in one area without impair-

ing its performances in another?
To answer the first question we define in section IV-A a

computational graph as a generic representation of a sequence
of actions carried out by a skill. A computational graph is a
graph where nodes represent actions, or routines externally
provided by researchers and programmers. In addition to
these routines a node can represent a neural network whose
output influences the other nodes and whose parameters are
created during the graph creation phase. Edges between nodes
represent transitions between actions.

Skills improvement is performed by the evolutionary al-
gorithm we recently proposed in [1]. Here we extended the

previous work to allow computational graphs to improve the
performances of the associated skills. Constraints are applied
so that any newly created skill is at least as capable as the
previous one. We describe the main steps involved in skills
improvement in section III.

A computational graph represents a generic computational
unit. Actions are described in terms of what is their effect
on the robot’s perception of the world. For example, moving
a robot will change the perceived position of objects in the
environment or grasping an item will ensure that the item is
in the robot’s gripper. By abstracting away implementation
details of the particular actions a computational graph can
be directly or with little modification applied to a variety of
robots, provided that they share the same capabilities.

To test our proposed approach we conducted several ex-
periments on a real robot to improve a “move to pre-grasp
position” skill. These experiments are described in section VI.
A mobile robot is required to grasp an unreachable object.
To this aim it has to move the base so that it will be able to
reach the object while navigating around obstacles. We started
with a simple hand-coded routine that allows the robot only to
grasp objects positioned in front of it. We then showed in three
more experiments how this skill is autonomously improved so
that the robot can reach objects in harder-to-reach locations.

We conclude this paper with a discussion of the results in
section VII and we draw the conclusions in section VIII.

II. RELATED WORK

This paper is an extension of the work in [1], where a novel
evolutionary algorithm was proposed that allowed the creation
and parameterization of new skills by re-using existing soft-
ware. We extended this work with a novel approach to skills
improving.

Splitting the execution of a program into sub-routines is
common practice in complex systems, including robotics.
One of the best known earlier example has been Brook’s
subsumption architecture [2], where simple reactive modules
called behaviours are executed in parallel to generate an
emergent robot’s behaviour. This idea has been lately extended
to include reasoning and planning in the hierarchical architec-
tures proposed by [3]. A different approach is proposed in [4],
where an high-fidelity simulator is used to plan in advance the



robot’s actions. In section V we show that, in order to improve
a skill, a simple transition model is sufficient.

An approach similar to ours has been proposed in [5]. Here
a reinforcement learning scheme is used to build and improve
skills as the agent interacts with the environment. However no
steps are taken to avoid newly acquired knowledge to impair
an old skill. We believe this is a crucial feature required by a
self-improving robot, as we illustrate in the next section.

In [6] the authors proposed an active logic based architecture
that allows a robot to reason about its own failures and
to deduce the necessary steps to avoid repeating the same
mistake. Although this work is very promising, it is still in
its early stage and it requires a proper experimental basis to
validate the proposed approach. An extension is in [7], where
a reinforcement learning agent learns to adapt to changes in
the environment.

Although we co-evolve the computational graph topology
with the embedded neural networks, our approach to neuro-
evolution is simple compared to the mainstream literature (see
for example [8] for a review). The neural networks embedded
in our graph are simple computational units that allow an
evolved skill to adapt to novel stimuli. Therefore we did not
find necessary to employ advanced neuro-evolution techniques
like [9], [10], [11]. We are however investigating how graphs
evolution can benefit from these approaches.

A common problem in robotics is where to move the
robot base so that a manipulator can reach an object. Even
if we ignore the potential obstacles around the robot, the non-
linearity of the robot actuators and manipulators render this
problem very challenging [12], [13]. We used this problem as a
testbed for our proposed approach, as described in section VI.

III. OVERVIEW OF THE PROPOSED APPROACH

Skill improving is performed by continuously testing a
starting skill in an environment, collecting use cases where
this skill succeeds and where it fails, and using these use cases
to generate a new skill capable of dealing with scenarios it
couldn’t solve before. This is summarised in algorithm 1.

In this work we will use generic percepts pt ∈ <n. A
percept is a possibly elaborated sensorial input the robot
receives at time t. We consider, without loss of generality,
a percept to be a n sized real numbers vector. Examples
of percepts are the distance between the robot and nearby
obstacles, the robot odometric position and orientation, or
virtual percepts like the position of objects of interest in the
world. We describe the percepts we will use in this work in
section VI.

The robot starts with a skill S0, a classifier C and a
transition model Γ. A robot’s skill maps a robot’s percept
pt ∈ <n to a motor action ut ∈ U for t ∈ {1..T}, and its goal
is to solve a given problem. A skill therefore is a sequence
of motor actions that unfolds over T time steps, and it can
terminate with either “success” or “failure”. The classifier
C : <n → {0..1} produces, given a robot’s perceptual input pt,
the probability C(pt) that the skill will terminate with success.
The transition model Γ : <n×U → <n predicts what the next

percept will be given the current percept and a motor action.
Together S0, C and Γ describe the outcomes of a skill and
how close is the robot to solve a given task. Our proposed
algorithm will make extensive use of these models to build
new and better skills.

A skill S1 uses two previously generated sets WS0 and MS0

of scenarios where the skill successfully solved a task and
where it did not. Each element pi ∈ W ∪M is a snapshot
of the robot’s perceptions before performing the skill. Given
the model described above an element pt ∈ WS0

is such that
C(pt) > 0.5, while an element pt ∈ MS0 will have C(pt) ≤
0.5. We can therefore express the goal of improving the skill
S0 as generating a new skill S1 such that the constraints in
eq. 1 are satisfied.

{ ∀p ∈WS0
S1 succeeds. (1a)

∃p ∈MS0
S1 succeeds. (1b)

Eq. 1a states that for every situation (initial percept) where
S0 succeeds, S1 has to succeed too. This avoids forgetting
previously acquired knowledge. Eq 1b states that the new skill
has to solve at least one instance of the problem where S0

previously failed.
Once a new improved skill S1 is created the same process

is used to create a better skill S2, and any subsequent other.
This creates a monotonically increasing sets series WSn ⊂
WSn−1 ⊂ . . . ⊂WS0 of percepts.

Algorithm 1 The skills improvement loop. See text for details.
Require: Initial skill S0, transition model Γ, classifier C.

1: i← 0
2: Test the skill Si and collect the sets WSi

and MSi
.

3: loop
4: Generate a new skill Si+1 using the evolutionary algo-

rithm in Algorithm 2.
5: if the constraints in eq 1 are met then
6: i← i+ 1
7: Goto line 2
8: end if
9: end loop

Skill improvement is performed by using the evolutionary
algorithm described in section IV. We describe the classifier
C and the transition model Γ in section V.

IV. EVOLVING COMPUTATIONAL GRAPHS

A. Computational Graph

A skill is composed by a sequence of actions linked to form
a directed graph with parallel edges (see Figure 1). Every
action can be either an externally provided software routine
or a previously generated skill. The latter case represents
a hierarchical composition of skills. Given the composable
nature of skills, in this section we will refer to a node in the
graph with the term “action”, meaning either an hand-coded
program or a previously acquired skill. Every action ai has a
set of outcomes outj [ai] that represent the result of applying
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Fig. 1. An example computational graph, represented as a directed graph
with parallel edges. Every node is associated to an action. The red squared
node is the starting node. To the right of every edge is its label, i.e. an outcome
of an action.

that action. Typical outcomes are “success” or “failure”. An
outcome outj [ai] = ak means that, after executing ai, if
the outcome is outj [ai] then the computation switches to the
next action ak. In the graph this is represented as a directed
edge between nodes ai and aj , labeled with outj [ai]. All the
outgoing edges of a node must be connected to another node.
The only exception is for outcomes that trigger the end of the
computation, either because the problem has been solved or
because the skill failed.

Every action ai has a set Υ = {α(i) ∈ Rni} of ni real-
valued parameters that influence the behaviour of the action.
These parameters will be co-evolved with the graph structure,
as described in section IV-B. The semantic of an action’s
parameters is specific to the action: they could represent fine-
tuning values or weights in a neural network, as we will see
in section VI. One node in the graph will be the starting node.
Nodes can exchange data by either channeling messages over
the graph’s edges or storing values in a common memory
shared by all the nodes.

The structure described above represents a computational
graph (CG) and it is a generic way to represent skills in terms
of sub-routines, their outcomes and the parameters that govern
them. The computation starts from the starting node, which
is executed and its outcome is registered. According to this
outcome and the connections in the graph the computation
moves to the next action (which could be the same node if the
edge is looping). The computation continues until a terminal
transition is produced or a maximum number of transitions is
reached.

A node in the CG can represent a neural network. A typical
use of the neural network would be to generate a motor output
given the current percept. Another use would be branching
the computation in the graph so that different actions can be
applied given the state of the robot. Neural networks play
a key role in our model in that they guarantee a general
applicability of an evolved skill. We will provide examples
of neural computation in section VI.

B. Evolutionary Algorithm

As this work leverages on our previous work described
in [1], here we will only sketch the graphical evolutionary

Algorithm 2 The evolutionary algorithm
1: Initialize a population of N individual skills Si

2: while The conditions in eq 1 are not met do
3: Execute the current individual CG using algorithm 3
4: Extract the current percept pt from the simulator
5: Fitness of an individual is C(pt)
6: for i = 1→ N

2 do
7: Select two individuals g1 and g2 from the population

using Tournament Selection [14]
8: Generate two children c1 and c2 using crossover [1]
9: Mutate both c1 and c2 [1]

10: Mutate the parameters according to eq. 2.
11: end for
12: Maintain the best individual of the previous generation

(elitism).
13: end while

algorithm thereby proposed, leaving the details to the more
in-depth description provided in [1].

The evolutionary algorithm we used follows the general
standard structure described for example in [14] and sum-
marised in algorithm 2. An evolutionary cycle consists in
evaluating each individual in the population according to a
fitness function and applying the mutation and crossover op-
erators. The implementation made use of the library PyEvolve
described in [15]. We improved the approach described in [1]
by using evolutionary strategies [16] to control the algorithm’s
parameters, rendering our approach virtually parameters-free.
In particular all the parameters ςi of the evolutionary algorithm
are modified during the mutation phase according to the rule:

ςt+1 ← ςt exp(N (′, τ)) (2)

where N (′, τ) is a Normal distribution with variance τ . In our
experiments we used a drifting value τ = 0.05). Finally when
skill improvement is performed, half of the initial population
will be seeded with the last CG genome, so that a new
improved skill can be built starting from the previous one.

The genetic operators affect at the same time both the
topology of the CG and the parameters of each action. The
topology changes by adding or removing nodes in the graph,
changing the head of an edge or changing the starting node.
Every mutation has to insure that every node in the CG is
reachable by the starting node and every action’s outcome
has a corresponding edge in the graph. Mutation also affects
each action’s parameters vector by adding a zero-mean nor-
mally distributed Gaussian random number to each parameter.
Crossover is performed by swapping subgraphs of two differ-
ent CGs. These subgraphs are obtained by selecting nodes that
are more likely to be strongly correlated. This allows for sub-
solutions to be developed and maintained by subgraphs and to
be preserved over generations if they contribute positively to
the fitness function.

The semantic of a node’s parameters in a CG is action’s
dependent. The evolutionary algorithm treats them as a list of
real numbers with respect to mutation operators (no crossover



is applied at the parameters level). Examples of parameters are
the robot’s velocity, the direction of a movement or branching
factor in a decision tree. The generality of the parameters
allow us to co-evolve neural networks with the CG topology,
where the network’s weights are represented by an action’s
parameters. Therefore by mutating an action’s parameters we
achieve co-evolution of the CG topology and neural networks
embedded into the graph.

The fitness function we used in all our experiments in shown
in eq. 3.

f(Si) =

{
0 if ∃p ∈WSi

: Si(p) fails
C(pt) otherwise (3)

The fitness of a skill Si is 0 if at least one previously successful
case cannot be solved, while it is equal to the probability of
success, given the current percept, otherwise. Using probabili-
ties instead of binary values allows the evolutionary algorithm
to search in a smooth space instead of dealing with non
continuous search spaces.

V. SIMULATING THE CG

Evolutionary algorithms require hundreds if not thousands
of iterations to converge to a solution. This might be pro-
hibitively time consuming when performed on a real robotic
platform. To avoid this problem evolutionary robotics is usu-
ally developed in simulation, then the result is applied to the
real robot [17], [18], [19], [20]. This creates gaps between
a solution found in simulation and its applicability to a real
robot. Although these gaps can be reduced by using a very
accurate simulator, this increases the computational cost of
evolutionary algorithms, to the point that using a simulator
becomes as impractical as using a real robot.

Our proposed solution is to abstract away the implementa-
tion details of the actions the robot uses to create a skill, and
focus only on their effect on the robot’s percepts. As described
in section III, we are using a transition model Γ that predicts
what the next perception will be given the current status and
the robot’s control signal. When the robot executes an action in
the CG, the transition model will produce a new input percept
to be used by the subsequent transition. The execution of a CG
therefore represents a path in the perceptions space. Similarly
the classifier C predicts the probability that the execution of
skill will bring a robot from a given percept to a final one
where the skill has succeeded. Evolving a computational graph
is therefore a search in the percepts space. Algorithm 3
describes how a CG is used by the simulator.

Given the above considerations, the accuracy of the tran-
sition model does not play a key role in the success of the
evolutionary algorithm. Let us consider for example that the
robot starts with an initial percept p0, executes an action ai
and the transition model provides an erroneous1 next percept
p1. The next computation in the CG does not depend on
the previous transition: it is equivalent to a fresh start from
a new initial percept p′0 ≡ p1. We see this as the main

1By erroneous we mean a transition that is very different from what would
have happened in the real world had the robot executed the same action.

Algorithm 3 Simulating the steps executed by a CG.
Require: A computational graph CG, the transition model Γ

and the classifier C.
1: Current state is CG’s starting state s0
2: Current percept is p0
3: t← 0
4: while The computation of the CG does not end do
5: Generate an action ut from the current state st
6: Generate next percept: pt+1 ← Γ(pt, ut)
7: Generate the action’s outcome
8: Transition to next state st+1

9: if CG is successful then
10: exit loop
11: end if
12: if Maximum number of transitions is reached then
13: ex it loop
14: end if
15: t← t+ 1
16: end while

advantage of our proposed approach over related approaches
like reinforcement learning [21] or planning, that require
a faithful transition model to find the correct sequence of
steps to reach a goal state from the starting one. Problems
might however arise if the transition model does not generate
percepts that would happen in the real world, as the skill will
never learn to deal with these situations. This means that the
better the transition model, the more performant the improved
skill will be. Even if the transition model were inaccurate, as
long as the skill follows the requirements in eq. 1, it will be
considered as an improvement.

In our application we represented the transition model Γ as
a Support Vector Machine [22] (SVM). This model is known
to yield very accurate results in non-linear regression while
being fast both during training and during prediction. We used
SVMs to model the classifier C as well, as it is trivial to
obtain a probabilistic interpretation of the SVM output. In our
implementation we made use of the libsvm library [23] (see
the same reference for details on how to obtain a probabilistic
interpretation of the classifier’s output). Both the classifier and
the transition model have been trained in advance using cross-
correlation over data collected during several distinct training
sessions.

VI. EXPERIMENTS

We applied our proposed algorithm to a “move-to-pre-grasp-
position” skill. The robot starts with a simple hand-coded
algorithm and it will have to autonomously improve it so
that it will be able to reach objects in a variety of positions.
We assume that the dominant scene in front of the robot is
composed by a flat table with an object on top. The object is
not initially reachable by the robot. The next sections illustrate
four iterations of our skills improvement algorithm.

During our experiments we used a mobile manipulator PR2



Fig. 2. The mobile manipulator platform PR2. The robot has two 7DOF
arms and an holonomic base. The pan-tilt head unit is equipped with two
stereo cameras, one high resolution camera and one texture projector (the red
light). A tilting laser and a fixed laser on the base are used for navigation and
motion planning.

robot manufactured by Willow Garage2. It is two-armed with
an omni-directional driving system. Each arm has 7 degrees
of freedom. The torso has an additional degree of freedom
as it can move vertically. The PR2 has a variety of sensors,
among them a tilting laser mounted in the upper body, two
stereo cameras (with narrow and wide field of view) and a
laser scanner mounted on the base which is used for mapping
and navigation. Several skills that we relied on were developed
by the ROS3 community, and they include:
• Detecting and grasping unknown objects using 3D infor-

mation [24].
• Planning and executing a collision-free trajectory with the

7DOF arms [25].
• Navigation using an omni-directional base [26].
Our evolutionary algorithm made use of the following hand-

coded actions:
• MoveBase: moves the robot base to a new x, y, θ posi-

tion. The new position is specified in respect of the robot’s
frame of reference and it is received as a message from
a previous node. Movements are therefore specified as
displacements and are independent of an external frame
of reference. This action’s outcome are either “failure” if
an obstacle lies along the robot’s path, or “success”.

• Detect: detects the table and the object over it. The table
is a four elements vector xmin, xmax, ymin, ymax that
represent its boundaries, while the object has a x, y, z
coordinates vector (as the object is right on top of the
table, its z component corresponds to the table’s one).
All the coordinates are expressed in the robot’s frame of
reference. The table and the object vectors are composed
to create an 7−dimensional percept pt that is used as
input to all the actions. As we assumed that the table is a
dominant feature in the robot’s environment, this action
will always have a single “success” outcome.

• Grasp: Attempts to grasp the object using the approach
proposed in [24]. This action’s outcomes are either
“success” if the robot can grasp the object, or failure”

2http://www.willowgarage.com
3http://www.ros.org

Fig. 3. A schematic representation of the first experiment. The robot is placed
on one side of the table and the object is placed along the closest edge. Only
objects located inside the dashed ellipsis can be grasped by the initial skill
S0.

otherwise. If the action is successful the computation of
the CG terminates with success.

• ContinousNN: This is standard feed-forward neural net-
work with sigmoid activation function for the hidden
layer and linear activation for the output layer. The
network has 7 inputs (its input is the world-table percept
described above), 3 hidden layers and 3 output layers that
correspond to the x, y, θ planar movement of the robot.
The network’s output is sent as a message to whatever
action is activated after it. The network’s weights are
determined by the action’s parameters. This action has
a single “success” outcome. This node is primary used
to adapt the other nodes to the sensorial inputs the robot
receive. For example a neural network will be used to
decide where to move the robot in respect of the table
and the object’s locations.

• BranchingNN: This is a feed-forward neural network
with sigmoid activation function for both the hidden layer
and the output layer. The network has 7 inputs, 3 hidden
layers and 2 outputs. The network is interpreted as a
binary classifier and it has two outcomes: “out1” and
“out2”. The role of this network is to allow different
paths in the CG to be followed depending on the current
percept. The network’s weights are determined by the
action’s parameters and it has a single “success” outcome.

In addition to the above actions we provided a classifier C
that outputs the probability that an object is graspable given
the current percept and a transition model Γ that predicts what
the next percept will be given the current one and the x, y, θ
motion displacement. Both the classifier and the transition
model have been trained in advance using data collected on
the real robot.

The goal of our proposed evolutionary algorithm is to
combine the above actions so that the computation of the
CG terminates with success. Failure happens when the CG
steps for more than 20 transitions (iterations at line 4 in
Algorithm 3). The code for all the simulations and for the
generic evolutionary algorithm is available online4.

A. Evolving S0

In our experimental setup we provided the robot with a
simple “out-of-the-factory” algorithm to reach and grasp an
object. As the robot detects an object over a table, it will

4http://github.com/lorenzoriano/Graph-Evolve



Detect_6

ContinuousNN_18

success

ContinuousNN_5

success

MoveBase_13

success

failure

Grasp_23

success

failure

Fig. 4. The CG evolved as skill S0. The red node is the starting node.
Numbers are appended at the end of each node to distinguish between copies
of the same action (e.g. ContinousNN 5 and ContinousNN 18).

Fig. 5. A schematic representation of the second experiment. The robot is
placed on one side of the table while the objects are placed along the left
table’s edge (from the robot’s point of view). The ellipsis indicates the set
MS0

.

drive in a straight line towards the edge of the table while
centering its base position with the object. As soon as the robot
is close to the table’s edge it stops and it attempts to grasp
the object. This algorithm can successfully move the robot to
grasp objects lying on the table’s edge which is closest to the
robot, as depicted in Fig. 3, but it fails if the object is located
along any other edge.

We used this initial algorithm to collect a WS0
set of

percepts for we want the (not yet evolved) skill S0 to ter-
minate with success. The WS0 set contained 5 different initial
percepts (object-table locations). For this experiment we used
an empty set MS0

. We then used WS0
to create the new CG

implementing the skill S0 shown in Fig 4. This skill perfectly
mimics the hand-coded algorithm by managing to grasp the
object whenever it was placed along the closest to the robot
table edge. Not surprisingly S0 fails if the object is located
along any other edge.

B. Evolving S1

We tested the newly created skill S0 with the object placed
on the left edge of the table (from the robot’s point of view, see
Fig. 5), collecting a set of failure cases MS0

. We then applied
our proposed algorithm to create a new skill S1 given the two
use cases sets WS0 and MS0 . The resulting CG representing
skill S1 is shown in Fig 6.
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Fig. 6. The CG evolved as skill S1. The red node is the starting node.

Fig. 7. A schematic representation of the third experiment. The robot is
placed on one side of the table while the objects are placed along the right
table’s edge (from the robot’s point of view). The ellipsis indicates the set
MS1
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Fig. 8. The CG evolved as skill S2. The red node is the starting node.

The two previously evolved neural networks Conti-
nousNN 5 and ContinousNN 18 have been replaced by a new
one, but the CG structure remained unaltered. The new neural
network’s behaviour is such that if the object is located close
to the edge of the table the robot goes directly towards it,
otherwise it performs a series of steps around the left edge
of the table while attempting the grasp. The neural network
therefore act as a finite state automaton whose input is the
current percept.

We tested S1 with 5 evenly spaced locations along the left
edge of the table, obtaining a 100% success rate.

C. Evolving S2

The next improvement enabled the robot to reach objects
located on the right side of the table (Fig. 7). We constructed
a new set WS1 = WS0 ∪MS0 while MS1 was composed of
percepts corresponding to the object being located on the right
side of the table. The resulting new skill S2 is in Fig. 8.

The evolutionary algorithm maintained the old solution
found for S1, as it can be observed in the left part of Fig. 8,
while it evolved a completely new solution to deal with objects
on the right side of the robot. We hypothesize that the new
solution has been independently evolved only to be merged
at a later stage via our proposed cross-correlation algorithm.
Here the algorithm made use of the branching node as a way
to choose which sub-behaviour to activate. This experiment
shows how a previous skill is expanded into a new, better
performing one.

We tested the new skill by placing 5 objects on the right
side of the table. This time the robot systematically failed to
reach an object when placed in the top-right corner of the
table. This is due to the Branching 42 node that produced the
outcome “out2”, therefore attempting to reach the object by
going to the left side of the table. This percept was therefore
kept for further skill improvement in the next experiment.



Fig. 9. A schematic representation of the fourth experiment. The robot is
placed on one side of the table while the objects are placed along the opposite
edge. The ellipsis indicates the set MS2
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Fig. 10. The CG evolved to as skill S3. The red node is the starting node.

D. Evolving S3

In the final experiment we allowed the robot to reach objects
placed on the far edge of the table (Fig 9). To this aim we
constructed a new positive set WS2

= WS1
∪ MS1

while
MS2 was composed by percepts with the object on the far
edge of the table and the single failure case from the previous
experiment. The resulting CG is shown in Fig. 10.

Although the new skill is far more complex than the others,
some patterns can be recognized. The original skill S0 is still
present while the previously evolved S1 has been modified
to accommodate a new branching node Branching 97. This
node’s output “out1” leads to a new neural network Conti-
nousNN 72 that attempts to move the robot to the opposite of
the table. This network is helped by the previously generated
ContinousNN 51 that moves the robot along the right edge of
the table. Here again we see how our proposed algorithm is
re-using a previously evolved skill to generate a new a better
performing one.

We tested the new skill by placing the object in 5 equally
spaced locations on the far edge of the table. The robot
managed to reach the object 3 out of 5 times. In addition
to these the robot managed to reach the object in the top-right
corner it could not reach before.

As a final test we placed the object in 40 random locations
around the perimeter of the table. The skill S4 obtained a
score of 34 successes, with a success rate of 85%. Most of
the failures were due to the branching nodes driving the robot
to the wrong side of the table, and the CG not having a path
to the appropriate area that deals with objects in that location.

VII. DISCUSSION

In the four experiments above we showed how our proposed
algorithm builds a solution of increasing complexity by re-
using components it had evolved before. The first two skills S0

and S1 showed the simple CG structures highlighted in Fig. 4
and Fig. 6. The difference between the two figures points to an
emergent feature of our proposed approach: in section IV-A we
introduced a constraint on the maximum number of transitions
that can happen in a CG. This limitation had been introduced
to avoid infinite loops. The same limitation forces the evolu-
tionary algorithm to create compact solutions, otherwise the
CG will terminate before the task has been solved. The CG
S0 had two redundant neural network nodes (Continuous 5
and Continuous 18) of which only one’s output was being
used by MoveBase 13. This redundancy did not lower the
CG fitness as the robot could reach the object well before the
20 transitions allowed. The same was not possible for S1 as
the same neural network was responsible for either moving
the robot towards the close edge of the table or maneuvering
it around the left edge. Therefore the evolutionary algorithm
has been forced to create the more compact structure showed
in Fig. 6.

Reaching objects on the right edge of the table required
a branching node in the graph, as shown in Fig. 8. In this
and in the following experiment the evolutionary algorithm
adopted a conservatory strategy, i.e. it kept the parts of the
CG corresponding to old skills non-mutated while it created
new branches to deal with the new percepts. This behaviour is
enforced by the constraints in eq. 1 and by the fitness function
in eq. 3. However it leads to over-complicated CGs and sub-
optimal solutions, as shown in Fig. 10. From the results
obtained in the last experiment we can see that the scalability
of our proposed approach with the problem complexity needs
improvement, and it is the subject of ongoing research.

While both the M and W sets changed with the experi-
ments, the classifier and the transition model did not. This
choice is justified by the need of having an unsupervised
self-improving system. The above experiments can be easily
carried out autonomously by the robot in a “act, collect,
improve” cycle. However changing both C and Γ requires an
in incremental and life-long learning system which guarantees
that no previous knowledge is destroyed by subsequent learn-
ing. To the best of our knowledge this is still the subject of
ongoing research.

Keeping C fixed forces the evolutionary algorithm to move
from its current state (in the perceptual space) to an area which
is “covered” by C. As the classifier had been created alongside
S0, the algorithm tried to reach a point in the input space where
S0 would succeed. In the context of our experiments, this
means that the robot had to manoeuvre around the table so that
the object would be along the closest table’s edge (the initial
condition for S0 to succeed) in order to be reachable. This is
highlighted by the edge between Grasp 60 and Branching 42
in Fig. 10. This edge links the right side of the graph,
responsible for moving the robot around the table, to the



left side of the graph, responsible for the final approach and
created during the first experiment in section VI-A.

A potential issue with our proposed approach is that the
evolutionary operators are applied to the whole graph, inde-
pendently from the particular area that needs improvement.
For example the top-left area of the Fig 10 corresponds to
the skill S0 which reliably solved the problem of reaching a
close object. Mutating this area would likely lower the fitness
of the CG, thus wasting evolutionary steps to search in areas
with low fitness. This problem becomes more evident as the
size of the graph increases, slowing down the evolutionary
process and hindering the scalability of our approach to
complex problems. We believe this is what reduced the skills
performances from 100% success rate in the first experiments
to 85% in the subsequent ones. This also caused non-optimal
graph structures to be evolved, as careful engineering might
have produced a more compact CG.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel approach to au-
tonomously skills improving in robotics. This paper is an
extension of our previous work on skills building presented in
[1]. We conducted several experiments that show how a simple
initial skill S0 undergoes several improvements to become a
better performing skill S3. As a testbed we used the “move
to a pre-grasp position” problem. The last skill we developed
showed to be capable of reaching objects placed arbitrarily
along the table’s edges. The computational graphs that have
been created during the experiments show the evolution of
the robot’s skill as it has to solve problems of increasingly
complexity.

As we highlighted in the previous section this approach,
although successful in autonomously improving a skill, does
not scale well with the task’s complexity. We are currently
investigating potential solutions to this problem, including
“freezing” areas of the graph so that the search will not
be wasted in low-fitness areas and the whole algorithm will
converge more quickly to a solution.

The neural networks we used in the experiments have
fixed topology. This does not limit the overall computational
power of the computational graph, as different instances of
neural network nodes can be used for different purposes. We
are however still investigating if our graphical evolutionary
algorithm will benefit from using adaptable neural network
topologies.
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