
A Metadata Driven Approach to Performing

Complex Heterogeneous Database Schema

Migrations

Robert M. Marks1 and Roy Sterritt
2

1 IBM United Kingdom Limited
Belfast, Northern Ireland

rmarks@uk.ibm.com
2 School of Computing and Mathematics

Faculty of Engineering
University of Ulster

Northern Ireland
r.sterritt@ulster.ac.uk

Abstract. Enterprise software is evolving at a faster rate than ever
before with customer's expecting upgrades to occur regularly. These
upgrades not only have complex consequences for legacy software but
the database upgrade also. This paper discusses the challenges
associated with relational database schema migrations which commonly
occur with major upgrade releases of enterprise software. The most
prevalent method of performing a schema migration is to execute SQL
script files before or after the software upgrade. This approach
performs poorly with large or complex database migrations and also
requires separate script files for each supported database vendor. A
tool was developed for a complex database upgrade of an enterprise
product which uses XML in a metadata driven approach. The key
advantages include the ability to abstract complexity, provide multi-
database vendor support and make the database migration more
manageable between software releases. This marks an evolutionary
step towards autonomic self-migrations.

Keywords: autonomic, database, upgrades, migrations, metadata

1. Introduction

Enterprise software is evolving at a faster rate than ever before with
customer's expecting upgrades to occur regularly. As the software evolution
becomes more complex, so too can the database upgrade. This complexity
can compromise the software design as developers become reluctant to
perform large or complex schema changes between software versions [1].

To highlight this complexity consider a motivating real world scenario: A tool
was created to upgrade the enterprise software IBM® Tivoli® Netcool®
Configuration Manager (ITNCM) [13] from version 6.2 to 6.3. Up until version

6.2 database changes had been essentially straightforward and consisted of
an SQL script file appropriately named “upgrade.sql”. This was bundled with
the software upgrade and contained all the SQL statements that were
necessary to update the new database schema.

However, the 6.3 release had substantial database schema and data
changes. An issue that was identified with the 6.2 schema was its primary
keys were of type VARCHAR and these all had to be changed to be of type
NUMBER. Changing each database VARCHAR field to be of type NUMBER
was non-trivial task as any foreign key links had to be updated.

The total amount of SQL queries needed to update the ITNCM 6.2 schema
was approximately four thousand. To produce these changes manually would
have taken too long, and with a tight deadline to meet, a different approach to
implement the database migration was required.

In this paper the current research in this field is examined, issues with the
current industry approach are discussed along with the typical changes
required in a database upgrade. A meta-data approach to performing
database migrations is then examined and how it can assist the goal of
abstracting the schema migration. The remainder of the paper details the
“Cutover Tool”, which was created for this work, and which uses a meta-data
approach to perform a complex real-world multi-vendor database schema
upgrade.

2. Current Research

Several approaches exist for migrating a software system such as Forward
Migration Method and the Reverse Migration Method [2]. The Forward
Migration Method migrates the database before the software whereas the
Reverse Migration Method migrates the software application first and the
database migration last. Meier [3] categorizes database migration strategies
into three main areas. These are data and code conversion, language
transformation and data propagation. This work concentrates on the data
conversion and data propagation and is not concerned with language
transformation.

The migration of a database can happen at various different levels. These
database levels include its contextual schema, internal schemas and external
schemas [4]. The database migration could be basic e.g. converting schemas
and data restructuring. It can also be more complex such as the horizontal
and vertical splitting of table data or computing column data from old data [5].
A customer database can be migrated in a phased manner by creating a new
database instance, installing the latest schema and then transporting the data
from the old instance to the new. If there are insufficient resources to have
two simultaneous databases then the migration can be performed on a single
live database.

Maatuk et al classify DB migration into two main techniques: Source-to-
Target (ST) and Source-To-Conceptual-To-Target (SCT) [26]. The ST
approach translates source to an equivalent target, generally without an ICR

(Intermediate Conceptual Representation) for enrichment, utilizing flat,
clustering or nesting techniques. SCT essentially has two stages; reverse
engineering where a conceptual scheme is derived from the existing DB (e.g.
ERM) then forward engineering that conceptual schema into the target [26].
The SCT approach is presented as being especially necessary if the source
DBMS e.g. relational, is structurally different from the target, e.g. Object
Oriented. In terms of deriving the ICR; Andersson extracts a conceptual
schema by investigating equi-join statements [27]. The approach uses a join
condition and the distinct keyword for attribute elimination during key
identification, Alhajj developed algorithms for identifying candidate keys to
locate FKs in an RDB using data analysis [28]. Chiang et. al. presented a
method for extracting an Extended ERM (EERM) from an RDB [29] through
derivation and evolution of key-based inclusion dependencies [26].

Currently one of the most common methods is to bundle the upgrade
software with one or more script files which contain the SQL statements
necessary to update the database schema and data [5, 6].

This basic method gets more cumbersome and unmanageable when the
differences in the database schema become more complex and / or the
volume of SQL statements are in the thousands [7]. This complexity becomes
more compounded if there are variations in the database schemas for
different customers e.g. custom software functionality.
Various database migration tools exist such as the open source Migrate4j [8]
which performs schema changes using Java code and SwisSQL [9] which has
the ability to convert SQL queries between database vendors.

Bernstein [10] remarks major productivity gains can be achieved by utilising
model management when manipulating schemas. Yan et al. [11] notes
however that tools which manage complex queries for data transformation are
still in a primitive state. Curino et al. [12] presents a tool which claims to
provide “graceful schema evolution” through the use of Schema Modification
Operators (SMO's).

The following table illustrates how the cutover tool compares with other
migration tools which support multiple database vendors.

Table 1. Illustration how the Cutover tool (reported in this paper) compares
with other database schema migration tools on features.

Operations Migrate4J [8] SwisSQL [9] Cutover Tool

Multi-Vendor DB Support Yes Yes Yes

Basic Schema Changes Yes Yes Yes

Manipulate data in place No No Yes

Column type changes Yes Yes Yes

Update of foreign keys No No Yes

Large object manipulation No Yes Yes

Table Merging and Splitting No Yes Yes

Execute scripts No Yes Yes

Dynamically run Java code No No Yes

Ideally advanced automation of the process is the way forward to cope with
the complexity. Autonomic Computing, inspired by the sub-conscious
biological self-management, has over the last decade presented the vision to
remove the human from the loop to create a self-managing computer-based
system [20]. Self-updates, self-migration, self-cut-overs, all should be a part
of this initiative.

When the Autonomic vision was first presented, it was done so as a 20-30
year research agenda requiring a revolution. Yet at the opposite end of the
scale, as it was an industrial initiative, it also attempted to present an
evolutionary path for industry to immediately start to consider steps to create
self-management in their legacy and systems under-development.

The Autonomic Capability Maturity Model [21] (Fig. 1) was published to
acknowledge that autonomicity cannot happen overnight (indeed Strong-
Autonomicity may require “Autonomic-Complete” and dependent on the
achievement of AI-Complete, as such the Human-out-of-the-total-loop may be
more a motivating inspiration than an actual goal). The ACMM motivates the
progression from manual, to managed, to predictive, through adaptive and
finally achievement of autonomicity. The database upgrades currently fall
between levels 1 to 2. The aim of the work reported here is to progress to
level 3.

Fig. 1. Autonomic Capability Maturity Model [21]

One of the successes of Autonomic Computing (AC) has been DBMS’ due to
the implicit management environment nature of RDBMS’, together with the
self-tuning direction of DBMS research, has aligned with the objectives of AC.
Within the SMDB (Self-Managing Database) community itself they have
naturally focused on self-optimizing and self-tuning for instance: statistical
approaches for ranking database tuning parameters [22], Probabilistic
adaptive load balancing for parallel queries [23], but also have looked towards
other self-* properties such as self-healing [24].

For DBs and Enterprise Software in general to become fully autonomic, the
upgrades must also become self-managing.

3. Issues with Current Approach

The databases that support current enterprise applications have hundreds and
even thousands of tables. Maier [14] has observed through empirical analysis
that enterprise data models have an average of 536 entity types.

As mentioned in the introduction the most common approach in
implementing a database upgrade is to write one or more SQL scripts. This
performs well for a diminutive number of simple database schema changes. If
however, the schema changes become more complex the migration also
becomes error prone and labour intensive.

If multiple database vendors are supported then separate (but conceptually
similar) SQL scripts will need to be maintained. It becomes easy for changes
to make its way into one script but not another. Another point worth making is
that as these scripts become larger they also become more difficult to
comprehend as the various changes become lost in a “sea” of SQL.

We have defined a taxonomy of the kinds of change typically required to
perform a DB migration. In total we identified eleven kinds of change, which
we have subdivided into two categories, "simple" and "complex".
In total there are six "simple" kinds of schema changes. These are as follows:

1. Add table - add a new database table.
2. Delete table - delete an existing database table.
3. Rename table - rename an existing database table.
4. Add column - add a database column.
5. Delete column - delete a database column.
6. Rename column - rename a database column.

These "simple" changes can generally be achieved using a single SQL
statement. There are a further five "complex" kinds of change: -

1. Manipulate data in place - Updating the existing database content.
2. Column type changes - data type migration e.g. changing column type

from textual to numeric.
3. Update of foreign keys - If a primary key changes then all its foreign

keys may require updates.
4. Large object manipulation - e.g. changing a BLOB to a CLOB and vice

versa.
5. Table Merging and Splitting - e.g. one table becomes two or vice

versa.

These complex schema changes include anything which may not be
performed using a single SQL statement and which may require knowledge of
the database schema, such as a list of the foreign key constraints.

In addition to these functional requirements there are several non-functional
requirements that affect the migration design. These are as follows: -

1. Multiple "migrate from" versions - each software version may have a

different schema which could result in an exponential amount of
different upgrade scenarios.

2. Different database vendors - different migrations are required for each
database vendor such as IBM-DB2®, Oracle®, MySQL etc.

3. Continuous integration – the migration must be encoded as text so
using source control multiple developers can work on and merge their
schema changes.

For large database upgrades a declarative metadata based approach proved
to be a better solution. The user would define the migration in terms of the six
simple and five complex kinds of changes defined above. A tool would then
read this metadata and generate the SQL necessary to perform the upgrade.

This approach improves on a simple SQL script as the migration can be
expressed in a much more compact form and enables different variations to
be easily created. The chances of errors being introduced are reduced as the
user is less likely to make a minor SQL error such as an omitted statement.
No database specific information is required which means for each upgrade,
only a single migration file is required regardless of how many database
vendors are supported.

4. A Metadata Approach

A metadata approach would consist of adding a new layer of information
which describes the database migration. This layer can be encoded in a
variety of ways such as XML [15], JSON [16] and YAML [17] or even plain
ASCII text. XML was chosen for this work as it several advantages over
ASCII which include the ability to create user definable structures, hierarchical
data, schema validation and extensive library support for most programming
languages.

The database XML metadata needs to be read by a piece of software which
translates the various lines of XML into SQL statements as illustrated in Fig 2.

Fig. 2. Standard vs Meta-Data Approach.

For example, the following SQL drops the column ID in the EMPLOYEE table:
-

ALTER TABLE EMPLOYEE DROP COLUMN ID;

This could be encoded in XML as follows: -

<table name=”EMPLOYEE”>

 <column action=”drop” name=”id”/>

</table>

The reader may ask why this extra layer of information is required. In the
“drop column” example outlined it certainly looks like it is needlessly adding
complexity to generate what is a simple SQL statement.

This approach does however bring powerful advantages with more complex
tasks, such as changing the type of a foreign key column from a VARCHAR to
an NUMBER.

For example, the following six SQL statements change the EMPLOYEEID
column of the SALARY table from a VARCHAR to a NUMBER. This column
is also a foreign key which points to the ID column in the EMPLOYEE table.
This is achieved by creating a temporary column named
TEMP_EMPLOYEEID.

ALTER TABLE SALARY ADD TEMP_EMPLOYEEID

VARCHAR2(100);

UPDATE SALARY SET TEMP_EMPLOYEEID = EMPLOYEEID;

UPDATE SALARY SET EMPLOYEEID = NULL;

ALTER TABLE SALARY MODIFY (EMPLOYEEID NUMBER(19));

UPDATE SALARY S1 SET EMPLOYEEID = (SELECT ID FROM

EMPLOYEE WHERE TEMP_ID = T1.TEMP_EMPLOYEEID) WHERE

EMPLOYEEID IS NULL;

ALTER TABLE SALARY DROP COLUMN TEMP_EMPLOYEEID;

These six SQL statements could be replaced with the following XML: -

<table name=”SALARY”>

 <column action="alter"

 name="EMPLOYEEID"

 type="NUMBER"

 foreign_key="EMPLOYEE.ID"

 />

</table>

In the above example, the XML is more concise and intuitive for the user.
Also, using this metadata approach context is introduced through the naming
and values of the XML elements and attributes.

4.1. Cross Database Support

SQL statements which change a database schema such as ALTER TABLE
can vary between different database vendors. The following exemplifies the
differences between Oracle, IBM-DB2 and MySQL when altering a column
type: -

Oracle

ALTER TABLE EMPLOYEE MODIFY (CREATEDBY NUMBER(19));

IBM-DB2

ALTER TABLE EMPLOYEE ALTER COLUMN CREATEDBY SET DATA

TYPE BIGINT;

MySQL

ALTER TABLE EMPLOYEE MODIFY CREATEDBY BIGINT;

Now the power of using a metadata approach becomes apparent. If you take
the scenario of two customers who have the same version of your software,
but one customer is on IBM-DB2 and the other is using Oracle and they both
require a major schema update.

Using a metadata approach we can have the same XML file which gets
translated into the relevant SQL statements for each database vendor. This
eliminates the need to have separate SQL script files (each possibly
containing several thousand statements) for each database, which must be
keep perfectly in sync each time a change occurs on the database schema.

5. The Cutover Tool

A meta-data based database migration tool was developed entirely in Java®
and uses the JDOM library [18] for its XML parsing / creation. Its main
characteristics include using an XML script to describe the database
transformation declaratively. This script is partially generated and can be
improved and extended manually. The Cutover Tool then reads the
completed script and converts it into SQL statements, which are in turn
executed against a target database. Fig 3 illustrates its architecture which is
split roughly into three stages: -

Fig. 3. Architecture of “Cutover Tool”

1. Cutover Generation - A smaller tool called the “Cutover Schema

Generation” which takes two database connections (the current and
target database) and produces a basic cutover XML file specific to the
database upgrade.

2. Manual Updates - The cutover XML file is manually edited to ensure
the generated schema is correct and also to add more complex
operations which cannot be generated (e.g. regeneration of primary
keys).

3. Database Upgrade - Another tool called the “Cutover Tool” takes the
edited cutover XML as input and executes it against a customer
database as part of the software update.

Each step is now explained in greater detail: -

5.1. Stage 1 - “Cutover Generation”

The first stage involves executing the “Cutover Schema Generator”. This tool
creates the basic cutover XML file which contains “simple” schema changes
as outlined in section 2. It can also partially infer some of the “complex”
changes. However, stage 2 is a manual declaration of these.

The generator takes two database connections as its input and compares
their tables, column names and column types and writes these differences as
“action” elements into a XML file.

The order of the database connections is important i.e. database “A” should
have the same schema that a customer is currently on, whereas database “B”
should be the target database which will work with the target software
upgrade. The “action” elements then describe what is necessary to alter the
schema of database A to become the schema of database B.

Fig 4 illustrates two basic potential mock databases schemas where
“Database A” is the current database schema and “Database B” is the
database schema we want to upgrade to.

Fig. 4. Two mock database schemas, A and B. The schema differences between
database A and B are denoted on the right hand side.

In this example, there are six differences between these two very basic
database schemas: -

1. EMPLOYEE.ID – column alteration
2. EMPLOYEE.AGE – column addition
3. SALARY.SALARY_TYPE to SALARY.TYPE – column rename
4. SALARY.DESCRIPTION – column delete
5. SALARY.EMPLOYEEID – column alter
6. LEGACY – table drop

The cutover schema generation tool would examine the two databases and by
comparing schema data from their respective table's and column's it creates
the following cutover XML file:

<?xml version=”1.0”?>

<cutover>

 <actions>

 <table name=”EMPLOYEE”>

 <column action=”alter”

 name=”ID”

 type=”NUMBER” />

 <column action=”add”

 name=”AGE”

 type=”NUMBER” />

 </table>

 <table name=”SALARY”>

 <column action=”drop”

 name=”SALARY_TYPE” />

 <column action=”add”

 name=”TYPE”

 type=”VARCHAR(50)”/>

 <column action=”drop”

 name=”DESCRIPTION” />

 <column action=”alter”

 name=”EMPLOYEEID”

 type=”NUMBER” />

 </table>

 <table name=”legacy” action=”drop” />

 </actions>

</cutover>

The generated XML consists of the main <cutover> element, which contains
an <actions> element which contains three <table> elements. Each <table>
element then contains several <column> elements with its “action” attribute
expressing the type of schema change.

If the generated XML is examined it becomes apparent the column rename
was not created successfully. It assumed the SALARY_TYPE column was to
be dropped and the TYPE column was new. This may well be what was
required. To guarantee correctness, this stage requires human intervention to
ensure the schema changes are correctly specified. The drop and add
<salary> elements can be removed and replaced with a new “rename”
<salary> action which is correct in this scenario. This ensures the data in the
SALARY_TYPE column is retained and its column name is all that is modified.

 <table name=”SALARY”>

 <column action=”rename”

 name=”SALARY_TYPE”

 to=”TYPE”/>

 ...

 </table>

When the cutover generation tool was run against the two ITNCM databases it
created about 80% of the XML elements required in the upgrade. This
equated to 610 “column” elements inside 138 “table” elements which greatly
reduced the work load. This figure of 80% is migration dependant and will
vary loosely on the ratio of simple to complex updates in each specific
database upgrade.

5.2. Stage 2 - “Manual Updates”

The second stage of the cutover involves editing the generated XML file and
resolving any discrepancies e.g. column renames instead of column drop and
adds.

The other manual updates and additions include the more complex upgrade
types detailed in section 2. The implementation of each of these complex
types is now discussed in more detail.

1) Manipulate Data in Place

This complex type is concerned with updating the values of the existing data.
This is achieved by adding a “value” attribute to the <column> element. The
value can be one of three kinds as follows: -

a) Arbitrary number e.g. setting column level to 5.

<column name=”level” value=”5”/>

b) Another column e.g. setting id to employeeid

<column name=”id” value=”employeeid”/>

c) SQL Statement – where more power is required

<column name=”id” value=”SELECT ID FROM EMPLOYEE”/>

 Where more complex data manipulation is required <sql> and

<script> elements can be used.

2) Column Type Changes

In the previous versions of ITNCM the primary key of all the database tables
were of type VARCHAR. In version 6.3 it was decided to change these to be
of type NUMBER. Having a primary key of type NUMBER give us several
advantages including improved database performance, more efficient storage
and the ability to utilise the cross database automatic key generation
capabilities of Open JPA (Java based data binding technology) [19].

Some tables in the previous system consisted of special rows where the
primary key contained a constant textual value e.g. “Searches”, “Content”. In
the new version, special numbers had to be picked which mapped to these
constant text strings and the install time SQL content scripts / application code
had to be updated accordingly. These special numbers started at -100 e.g.

 “Searches” becomes “-100”
 “Content” becomes “-101”

The rational behind the keys starting at -100 was to avoid code which relies on
0 or -1, which the application used at times to denote null, empty or not
selected. The decision to update the existing primary keys to minus numbers
enabled the values of new primary keys (post cutover) to start incrementally
from 1, and therefore not conflict with existing number based data.

To achieve column mapping, the cutover XML file was updated to include
the following <columnmaps> element which is inserted before the <actions>
elements. To apply a map to a table column a new optional “mapid” attribute
has been added to the “column” element. The following example defines a
column map called “users” which is applied to the ID column of the USERS
table: -

<cutover>

 <columnmaps>

 <columnmap name="users">

 <map key="admin" value="-101"/>

 </columnmap>

 </columnmaps>

 <actions>

 <table name="USERS">

 <column action="alter"

 name="ID"

 type="NUMBER”

 mapid="users"/>

 </table>

 </actions>

</cutover>

Dynamic mapping is also achievable by utilising special “sqlkey” and “sqlvalue”
elements inside the <map> element e.g.

 <columnmaps>

 <columnmap name="test_map">

 <!-- SQL key defined -->

 <map sqlkey="SELECT NAME FROM TEST1

 WHERE ID = 0"

 value="-101"/>

 <!-- SQL value defined -->

 <map key=”test”

 sqlvalue=”SELECT VALUE FROM TEST2

 WHERE ID = 1”/>

 <!-- Both SQL key and SQL value -->

 <map sqlkey="SELECT NAME FROM TEST3

 WHERE ID = 2" />

 sqlvalue=”SELECT VALUE FROM TEST3

 WHERE ID = 2” />

 </columnmap>

 </columnmaps>

Defining this data in XML format ensures the mapping can be implemented in
various ways depending on the database / environment or even to improve the
performance of the upgrade without having to change the underlying XML.

For this work NUMBER to VARCHAR mapping was used but the
<columnmap> can manage various mapping scenarios such as VARCHAR to
NUMBER, VARCHAR to TIMESTAMP etc.

If a primary key column type is altered from a VARCHAR to a NUMBER we
may need some way of regenerating its numbers. If the primary key column
has constant values, then these should get mapped first as outlined in the
previous section. Sometimes a VARCHAR column may contain numbers
which are unique, in this situation the regeneration of the field may not need to
be required. Regeneration of a column can be specified with the
“regenerate_key” attribute e.g.

<column action="alter"

 name="ID"

 type="NUMBER”

 regenerate_key=”true”/>

At cutover execution, the column will change from a VARCHAR to a NUMBER
and its values will be regenerated for all existing rows of data (see Fig 5).

Fig. 5. This example illustrates a database column type change from VARCHAR to
INTEGER and value regeneration.

3) Update of Foreign Keys

If a primary key column has its values regenerated (see previous section) and
one or more foreign key columns point to the primary key then a mechanism
must exist to accommodate this. A column can be specified as a foreign key
using the “foreign_key” attribute.

For example, the following XML shows the primary key ID of the
EMPLOYEE table being converted to type number and its numeric values
being regenerated. It then illustrates the foreign key EMPLOYEEID of the

SALARY table should be converted to type NUMBER and that it is also a
foreign key pointing to the ID column.

<table name="EMPLOYEE">

 <column action="alter"

 name="ID"

 type="NUMBER"

 regenerate_key="true"/>

</table>

<table name="SALARY">

 <column action="alter"

 name="EMPLOYEEID"

 type="NUMBER"

 foreign_key="EMPLOYEE.ID"/>

</table>

The cutover tool will then examine these XML statements and convert them
into SQL. It will also ensure that the numeric values of the foreign keys and
primary keys are correctly aligned.

4) Large Object Manipulation

A common method of storing large amounts of data in a database involves the
use of column types BLOB (Binary Large OBject) and CLOB (Character Large
OBject). BLOB's are used to store binary data such as data from an image file
or other proprietary data formats. CLOB's are generally used to store large
amounts of text. As a database schema evolves between software versions,
some fields which were of type BLOB may be converted to CLOB's. This can
be a challenging process and there are various ways to achieve this. One
method is to write a SQL function which takes a BLOB object and returns a
CLOB object.

These implementations vary between database vendors but this detail is
abstracted away from the XML file. For example, to change a column called
“DOC” from its existing type BLOB to CLOB it is very simple:

<column action="alter"

 name="DOC"

 type="CLOB"/>

This functionality is once again left to the Cutover Tool so that individual
database vendors have a different method of converting the BLOB to CLOB.

5) Table Merging and Splitting

The final complex type is table merging and vertical / horizontal slicing.
Table merging involves taking two tables and combining some or all of their

columns and rows of the secondary table into a primary table and then
deleting the secondary table if required. Here is the cutover XML which
merges the MANAGER table into the EMPLOYEE table (without delete).

<table name="EMPLOYEE"

 merge="MANAGER"

 delete=”no” />

Table slicing is the opposite of merging and involves creating a new table from
the contents of an old table. Table splitting can be horizontal, which takes
rows from a primary table into a new secondary table. Table splitting can also
be vertical which moves one or more table columns into a new table.

<table name="MANAGER"

 split="EMPLOYEE"

 value="SELECT * FROM EMPLOYEE

 WHERE TYPE = 'manager'"

 delete=”yes” />

ORACLE

CREATE TABLE MANAGER AS SELECT * FROM EMPLOYEE WHERE

TYPE = 'manager';

DELETE FROM EMPLOYEE WHERE TYPE = 'manager';

IBM-DB2

CREATE TABLE MANAGER LIKE EMPLOYEE;

INSERT INTO MANAGER SELECT * FROM EMPLOYEE WHERE TYPE =

'manager';

DELETE FROM EMPLOYEE WHERE TYPE = 'manager';

As the example show, Oracle can achieve the split in two SQL statements,
whereas IBM-DB2 does it in three. This illustrates another example of how
the cutover metadata abstracts the detail away by representing the split using
a single line of XML.

6) Remaining Issues

An important requirement was that the cutover process should be fully data
driven. This ensured a central point of execution for the migration. Other
tasks which were required included the ability of the XML file to call SQL
scripts. This functionality is useful for loading data into tables and was
implemented using the <script> element.

<script name="sql/insertproperties.sql"/>

In the previous example, the cutover tool would read this element and run all
the SQL statements that exist in the “insertproperties.sql” script file.

Another requirement was the facility to declare SQL statements inside the
cutover file XML. This was attended by using the <sql> element. e.g.

<sql>UPDATE EMPLOYYEES SET ID = 0</sql>

The <sql> elements can be inserted at the <table> level or at <column> level
depending on its scope within the upgrade.

A final requirement included creating a method of executing compiled Java
code from the cutover XML file. This was necessary as some database
upgrade tasks were not possible using pure SQL. This could include running
complex tasks such as multi-part regular expressions, tree based functions
etc. An attribute called functions was then added to the main <cutover>
element which pointed to a Java class which is loaded at run time using java
reflection. e.g.

<cutover

 functions="com.ibm.cutover.CutoverFunctions">

Individual methods of this class could then be run using the functions element
as follows: -

<function method="updateUserPreferences"/>

At execution the XML would be read and the method executed in a data driven
fashion.

5.3. Stage 3 - “Database Upgrade”

Once a user had finished manually editing the cutover XML file the next and
final stage was to run the Cutover tool as part of the database upgrade.

The Cutover tool was implemented in Java and uses the JDOM library for
parsing the cutover XML file. Execution takes the following two parameters:

1. Cutover file - location of the cutover XML file.
2. Database connection - location of the database to run the migration

against.

After a successful connection to the customer database is established the
XML file is parsed in a sequential manner. Fig 6 illustrates a full cutover
execution on one table.

Fig. 6. This diagram illustrates a full execution of the Cutover Tool against an
imaginary database containing a single table, USERS.

The conversion of XML meta-data to vendor specific database SQL can be
compared to the analogy to source code being compiled into vendor specific
(e.g. PC, Linux, Mac, etc) classes. Each database vendor has its own syntax
but the XML will remain the same. To support a new database the XML to
SQL section of the cutover tool can be updated.

We will now discuss in more detail the main items of XML to SQL
generation. For example, in the <mappings> element, we create and populate
a temporary table called MAPPINGS from the metadata e.g.

XML

<columnmaps>

 <columnmap name="licence">

 <map key="licence" value="-101"/>

 </columnmap>

 <columnmap name="users">

 <map key="admin" value="-101"/>

 <map key="install" value="-102"/>

 </columnmap>

</columnmaps>

SQL

CREATE TABLE MAPPINGS (NAME VARCHAR2(255),

 KEY VARCHAR2(512),

 VALUE NUMBER(19));

INSERT INTO MAPPINGS (NAME, KEY, VALUE)

 VALUES('licence', 'licence', '-101');

INSERT INTO MAPPINGS (NAME, KEY, VALUE)

 VALUES('users', 'admin', '-101');

INSERT INTO MAPPINGS (NAME, KEY, VALUE)

 VALUES('users', 'install', '-102');

We could have simply loaded this information into the Cutover Tool application
memory but using a temporary database table provides the ability to map
database rows using a single SQL as follows.

UPDATE USERS SET ID = (

 SELECT VALUE FROM MAPPINGS

 WHERE KEY = USERS.TEMP_ID AND NAME = 'users'

)

WHERE TEMP_ID IN (

 SELECT KEY FROM MAPPINGS

 WHERE NAME = 'users'

);

The following XML and SQL illustrate primary key regeneration: -

XML

<column action="alter"

 name="ID"

 type="NUMBER"

 mapid="users"

 regenerate_key="true"/>

SQL

SELECT MIN(ID) FROM USERS; -- e.g. returns -102

UPDATE USERS SET ID = -102 - ROWNUM WHERE ID IS

NULL;

The basic strategy was to pick an arbitrary number e.g. -100 to use as an
initial value and then subtract the ROWNUM pseudo-column in Oracle (or
ROW_NUMBER in IBM-DB2) to reset each row. However, if mapping is also
performed on the database column (as it is in this example) then mapping
occurs before key regeneration. This could result in one or more rows having
values and the lowest value of that column must be queried. This value is
then used in turn to avoid number conflicts.

Other point to highlight is at the start of each <table> element we remove
the primary key constraint of the table and re-insert it again after all table
alternations have been performed. Temporary columns are also used
extensively for the purposes of mapping and populating foreign keys.

A point to make here is that there may exist a more efficient or effective
method of implementing the cutover XML to SQL generation. This is perfectly
fine and is to be encouraged. The architecture allows for this as different
implementations can be created for each new supported database vendor.

Once the database migration was thoroughly tested it was then shipped

with the enterprise software upgrade and made available to existing
customers.

6. Future Work

The current solution illustrates a successful proof of concept of using meta-
data approach to represent a database vendor independent database
migration. The tools were implemented as a typical client application for both
the cutover generation and migration execution.

To produce the meta-data migration XML using the “Cutover Generator” we
assume that the user has two database instances. The first database must be
the “current” database used by the old software version and the second must
be the “target” database that the software upgrade will work against. This
model forces the creation of the database migration to occur after the software

upgrade has been implemented. However, software engineers generally
prefer to develop and test the software / upgrade at the same time and in an
incremental and iterative manner.

Work has already begun in moving towards the area of database migrations
using an Autonomic Computing paradigm. The basic premise is to create a
monitoring agent designed as a client-server / peer-to-peer application which
continuously runs in the background for the duration of a software release.
The main job of the tool will be to look for changes in the development
database and to append these differences into a meta-data file. This
incremental cutover file can be constantly validated against a test database
using the existing cutover Tool, essentially creating self-migration and self-
upgrades functionality into the system. If problems occur user/s can be
informed and actions taken appropriately.

To be fully or strong-autonomic, the tool will require to be self-monitoring,
self-adjusting and even self-healing which will need considerable research and
development in the future.

7. Conclusion

This work presents the problem area of complex database upgrades of
enterprise software. Currently the most popular way of executing a database
upgrade is to run one or more SQL scripts. This paper examines the various
issues associated with this approach. When a database upgrade is complex
i.e. requires thousands of SQL statements, different migrate versions and / or
support multiple database vendors, then the current SQL script based process
can result in an exponential amount of different database migration scenarios.
This raises the likelihood of user errors creeping in or scripts becoming out of
sync

A taxonomy of the typical changes a migration is comprised of was then
defined. This consisted of six “simple” and five “complex” migration tasks.
The use of XML meta-data was examined and how it can allow users to
express a given migration in a more abstract, simple and concise manner.
Using a metadata approach, only a single XML file was required instead of
multiple SQL scripts for each database vendor. A cutover tool was created for
this work which translates the XML file into the correct SQL statements.

The advantages of this approach also included the ability to run a tool to
auto generate most of the “simple” tasks and also some of the more
“complex” tasks. This proved to be very useful as it saved substantial effort
and increased confidence in the database migration process.

The cutover tool was then bundled into production code and successfully
executed against existing large customer databases as part of their software
upgrade.

8. Acknowledgement

IBM, Tivoli, Netcool and DB2 are trademarks of International Business
Machines Corporation, registered in many jurisdictions worldwide.

Oracle, Java, and all Java-based trademarks and logos are trademarks or
registered trademarks of Oracle and/or its affiliates.

This paper expands upon a conference publication [25].

References

1. K.-D. Schewe and B. Thalheim, “Component-driven engineering of database
applications,” In APCCM’06, volume CRPIT 49, pages 105-114, 2006.

2. M. Brodie, and M. Stonebraker, "Migrating Legacy Systems: Gateways, Interfaces
and the Incremental Approach," Morgan Kaufmann Publishers, 1995.

3. A. Meier, “Providing Migration Tools: A Practitioner’s View,” Proceedings of the
21st VLDS Conference, Switzerland, 635-641, 1995.

4. G. H. Sockut and R. P. Goldberg, “Database Reorganization - Principles and
Practice”, ACM Computing Surveys, 11(4):371-395, 1979.

5. D. Draheim, M. Horn and I. Schulz, “The Schema Evolution and Data Migration
Framework of the Environmental Mass Database IMIS,” SSDBM 2004: 341-344,
2004.

6. M. Elamparithi “Database Migration Tool (DMT) - Accomplishments & Future
Directions,” Proceedings of the International Conference on Communication and
Computational Intelligence, Kongu Engineering College, Perundurai, Erode,
T.N.,India.27 - 29 December,2010.pp.481-485, 2010

7. G. Wikramanayake, W. Gray, N. Fiddian, “Evolving and Migrating Relational
Legacy Databases,” 14th Conference of South East Asia Regional Computer
Confederation on Sharing IT Achievements for Regional Growth 533-561
Computer Society of Sri Lanka for SEARCC CSSL Sep 5-8, ISBN 955-9155-03-2,
1995.

8. Migrate4j, [Online], http://migrate4j.sourceforge.net, [accessed 7 Nov 2011].
9. SwisSQL Data Migration [Online], http://www.swissql.com, [accessed 7 Nov

2011].
10. P. A. Bernstein, "Applying model management to classical meta data problems."

in CIDR, 2003, pp. 209-220, 2003.
11. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin, “Data-Driven Understanding and

Refinement of Schema Mappings”, ACM SIGMOD Conference, Santa Barbara,
CA, May 2001.

12. Carlo Curino, Hyun Jin Moon, MyungWon Ham, Carlo Zaniolo: The PRISM
Workwench: Database Schema Evolution without Tears. ICDE 2009: 1523-1526,
2009.

13. IBM Tivoli Netcool Configuration Manager® (ITNCM), [Online],
http://www.ibm.com/software/tivoli/products/netcool-configuration-manager/,
[accessed 7 Nov 2011].

14. R. Maier, “Benefits and quality of data modeling - results of an empirical analysis”,
LNCS 1157, Springer, Berlin, Cottbus, Germany, Oct. 7-10,1996, pp. 245-260.

15. Extensible Markup Language (XML), [Online], http://www.w3.org/XML, [accessed
7 Nov 2011].

16. JSON, [Online], http://www.json.org, [accessed 7 Nov 2011].

17. YAM, [Online], http://yaml.org, [accessed 7 Nov 2011].
18. JDOM, [Online], http://www.jdom.org, [accessed 7 Nov 2011].
19. OpenJPA, [Online], http://openjpa.apache.org, [accessed 7 Nov].
20. P. Horn’s “Autonomic Computing: IBM’s Perspective on the State of Information

Technology”, http://www.research.ibm.com/autonomic/, Oct 2001
21. S. Lightstone, J. Hellerstein, W. Tetzlaff, P. Janson, E. Lassettre, C. Norton, B.

Rajaraman, L. Spainhower "Towards Benchmarking Autonomic Computing
Maturity",. IEEE Workshop on Autonomic Computing Principles and Architectures
(AUCOPA' 2003), Banff AB Canada, Aug. 2003.

22. Biplob K. Debnath, David J. Lilja, Mohamed F. Mokbel, "SARD: A statistical
approach for ranking database tuning parameters," Data Engineering Workshops,
22nd International Conference on, pp. 11-18, 2008 IEEE 24th International
Conference on Data Engineering Workshop, 2008

23. Daniel M. Yellin, Jorge Buenabad-Chavez, Norman W. Paton, "Probabilistic
adaptive load balancing for parallel queries," Data Engineering Workshops, 22nd
International Conference on, pp. 19-26, 2008 IEEE 24th International Conference
on Data Engineering Workshop, 2008

24. Rimma V. Nehme, "Database, heal thyself," Data Engineering Workshops, 22nd
International Conference on, pp. 4-10, 2008 IEEE 24th International Conference
on Data Engineering Workshop, 2008

25. Robert M. Marks, "A Metadata Driven Approach to Performing Multi-vendor
Database Schema Upgrades," Engineering of Computer-Based Systems, IEEE
International Conference on the, pp. 108-116, 2012 IEEE 19th International
Conference and Workshops on Engineering of Computer-Based Systems, 2012
doi: 10.1109/ECBS.2012.6

26. Abdelsalam Maatuk, Akhtar Ali, and Nick Rossiter. Relational Database
Migration: A Perspective. In Proceedings of the 19th international conference on
Database and Expert Systems Applications (DEXA '08), Sourav S. Bhowmick,
Josef Kung, and Roland Wagner (Eds.). Springer-Verlag, Berlin, Heidelberg, 676-
683. DOI: 10.1007/978-3-540-85654-2_58, 2008.

27. Andersson, M.: Extracting an Entity Relationship Schema from a Relational Data-
base through Reverse Engineering. In: 13th Int. Conf. on the ER Approach,
pp.403–419, 1994.

28. Alhajj, R.: Extracting the Extended Entity-Relationship Model from a Legacy
Relationals Database. Info. Syst. 28, 597–618, 2003.

29. Chiang, R.H., Barron, T.M., Storey, V.C.: Reverse Engineering of Relational Data-
bases: Extraction of an EER Model from a Relational Database. Data Knowl.
Eng. 12, 107–142, 1994.

