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Abstract 

Activity recognition is an intrinsic component of many pervasive computing and ambient intelligent solutions. This has 

been facilitated by an explosion of technological developments in the area of wireless sensor network, wearable and mobile 

computing. Yet, delivering robust activity recognition, which could be deployed at scale in a real world environment, still 

remains an active research challenge. Much of the existing literature to date has focused on applying machine learning 

techniques to pre-segmented data collected in controlled laboratory environments. Whilst this approach can provide valuable 

ground truth information from which to build recognition models, these techniques often do not function well when 

implemented in near real time applications. This paper presents the application of a multivariate online change detection 

algorithm to dynamically detect the starting position of windows for the purposes of activity recognition.   

 
Highlights 

 
 Propose a novel data segmentation method based on multivariate online change detection algorithm to dynamic 

identify a window’s starting position. 

 Collect accelerometer dataset from a group of participants in a real home scenario. 

 Enhance the activity recognition performance by feature selection method and class distribution rebalance. 

 Achieve high classification performance of static activities, dynamic activities and transitional activities. 
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1. Introduction 

1.1. Background 

In the past few decades, there has been a rapid rise of interest in the area of evaluating the routine of elderly 

members of society with a view to promoting independent living. Activity recognition, particularly the 

recognition of Activities of Daily Living (ADLs) and ambulatory activities, is an important component in smart 

home applications for elderly healthcare. One goal of activity recognition is to offer context awareness that 

allows smart home applications to better understand the user’s demands and adapt to the circumstances of the 

user. In [1] Lockhart et. al present a review of application areas for mobile activity recognition (AR). One 

identified area is fitness tracking where activity recognition algorithms provide opportunity to continuously 

measure the start/end times and duration of a wide-range of activities. For example, the ActiTracker smartphone 

based activity system for improving health and well-being [2] identifies activities from the set {`Standing', 

`Traversing Stairs', `Jogging', `Walking', `Sitting', `Lying Down'}. This potential for a high-level of granularity 

empowers a user to track their day-to-day routine and facilitates algorithms that prompt the user if prolonged 

sessions of sedentary behaviour are detected. Activity recognition has also been utilised for health monitoring 

applications such as Parkinson's disease [3] whereby a patient's activity can be tracked longitudinally and 

examined by a health care professional. Similarly, longitudinal tracking of fine-grained activity facilitates 

automated actigraphs that can be displayed and interpreted by the end user. For example, in [4] Tryon et. al 

found that children with Attention Deficit Hyperactivity Disorder (ADHD) reduced their activity levels when 

using positive reinforcement from actigraphs displayed on a wrist worn device. A further use case for activity 

recognition is within applications that solicit engagement from an end user when a certain condition is satisfied, 

for example reminders [5] or momentary assessment and experience sampling applications [6]. 

In terms of diverse technologies for activity detection, accelerometers have received the high attention due 

to their superiority of long term and accurate activity monitoring. Due to their small size and relatively low cost, 

accelerometers can be embedded into wrist bands, watches, bracelets and belts to monitor the user’s activities 

and wirelessly send data to mobile computing devices. Most of the research have investigated the use of either 

a single accelerometer placed on a specific part of body or multiple accelerometers placed on different parts of 

body [7] [8]. They can measure the value of acceleration along a sensitive axis and are particularly effective in 

monitoring activities related to body motion. Data from accelerometers usually comes as a continuous data flow 

of raw data. This is because accelerometers provide instant measurements of the monitored phenomenon, either 
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when requested or at periodic intervals. To facilitate activity recognition tasks, the continuous data flow needs 

to be divided into smaller segments for further processing.  

One of the main challenges related to accelerometer data segmentation is to achieve a proper division of this 

raw and continuous data flow into a set of individual segments most suitable for the activity recognition [9] 

[10]. Each segment is treated as an instance of a specific activity. Segmenting a continuous data flow is a 

difficult task. On one hand, the user performs consecutive activities probably interleaved with each other rather 

than separated clearly by pauses. On the other hand, the exact boundaries of an activity are difficult to define. 

Existing literature has highlighted the sliding-window based segmentation approach for dividing the 

accelerometer data flow. However, one challenge with this approach is identifying the optimal window size. 

Since the different types of activities have diverse duration, additionally, transitional activities are usually 

discarded in most works due to their generally low incidence and very short durations [11]. 

The overall objective of change detection is to identify locations within an input data stream that exhibit 

sudden changes in metrics such as mean or variance thus representing a change point in time series data [12] 

Depending on the intrinsic characteristics, change detection algorithms can be either classified as online or 

offline. The aim of online change detection algorithms is to complete processing a set of data points before the 

next set arrives, with the number of new data points in successive sets influenced by the target application and 

available computational resources. In the offline case, data is firstly collected and then analysed to detect change 

points with less emphasis on computational resource requirements. Online change detection algorithms are 

sequential, fast and minimise false alarms; on the other hand, offline change detection algorithms seek to 

identify all possible change points in order to attain higher levels of sensitivity (true positives) and specificity 

(true negatives) [13]. 

1.2. Related work 

The proper selection and parameterization of segmentation techniques has great potential impact on the 

success of feature extraction and inference algorithms, directly resulting in the accuracy of activity monitoring 

and recognition. The sliding window segmentation approach is one of the most widely used segmentation 

techniques for activity monitoring [9]. By using this approach, the continuous sensor data flow obtained by 

accelerometers are divided into windows with either static or dynamic sizes. In the former case, the fixed 

window size can be based on equal time intervals. Two segmentation algorithms are of particular interest in 

current literature: Fixed-size Non-overlapping Sliding Window (FNSW) and Fixed-size Overlapping Sliding 
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Window (FOSW) [14] [15]. FNSW is a simple segmentation approach without any data overlap, thus the 

amount of windows can be exactly calculated. However since this algorithm works with a fixed window size, 

the data associated with a particular event such as a fall could be split in different windows, resulting in 

important loss of information. FOSW includes data overlap between adjacent windows, and the different 

overlapping percentages can be referred to as window shifts. [16] set up an experiment to compare the 

classification accuracy of FOSW with different window overlap values (0%, 25%, 50%, 75% and 90%) applied 

to acceleration data for recognizing ambulatory activities. Their work determined that the optimal segmentation 

approach was FOSW with 90% of window overlap and 12 s of window size, reaching a classification accuracy 

of 98.38%. Dynamic sliding window approach enables varying window sizes based on different sensor features 

(such as sensor state change or location change of consecutive sensor data) and/or on typical activity duration. 

Noor et al. [9] proposed a dynamic sliding window method to segment the data obtained by a single 

accelerometer for monitoring static, dynamic and transitional activities. The window size could be dynamically 

adjusted by using signal information to determine the most effective segmentation. Krishnan et al. [10] proposed 

and evaluated a combination of static and dynamic sliding window sizes. They improved the sliding window 

approach with three modifications, which oriented to calculate the size of the window to be used at each moment 

depending on the sensor data, the environment and the monitored activity, to capture the relationship between 

sensor events within a window and between multiple windows.  

One challenge in sliding window segmentation approach is to optimize the window size by considering both 

short and long duration activities. In current literature, a wide range of window sizes are adopted depending on 

the different monitored activities (shown as Table 1).  Fida et al. [10] presented the impact of window size on 

the recognition of both short duration, such as sitting, standing and transitions between activities, and long 

duration activities, such as walking. They found that 1.5 s window size represented the best trade-off in 

recognition among activities. Banos et al. [17] evaluated the effect of different window sizes on 33 different 

fitness exercises recognition with a non-overlapping sliding windowing approach. These window sizes ranged 

from 0.25 s to 7 s in steps of 0.25 s. As a result they proved that short windows normally resulted in better 

recognition performance, and the interval 1 s to 2 s exhibits the best trade-off between recognition speed and 

accuracy from a global perspective. In general the sliding window-based approach is appropriate for data 

streams that are continuously obtained by sensors over a relatively long period of time. Furthermore, it has the 

advantages in terms of less computation complexity in comparison to other methods. Nevertheless, the selection 

of the optimal value for the time interval is a critical issue. Too small an interval may split one activity into two 
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adjacent windows, especially for a long duration activity such as cooking, resulting in a lack of sufficient 

information to arrive to an accurate classification. On the other hand, a too wide interval may gather two or 

more activities into the same segment and add extra noise for further data processing. Thus, the novelty of this 

paper lies in dynamically detecting changes in a user’s activity and subsequently utilizing these transitions in 

activity as window starting positions. For activities with durations greater than the window length this approach 

helps to ensure that each window only contains sensor values for a single activity.  

Table 1. A range of different window sizes used in current literature. 

Reference Sensors Monitored activities Window 

 size 

Classification 

accuracy 

Kwapisz et al. [18]  1 accelerometer Walking, jogging, ascending stairs, descending 

stairs, sitting and standing 

10s 91.7% 

Siirtola et al. [19] 1 accelerometer walking, running, cycling, driving a car, sitting 

and standing 

7s 95.8% 

Jiang et al. [20] 4 accelerometers Standing, sitting, lying, walking, jogging, 

cycling, walking, running, rowing, weight 

lifting 

6s 95.1% 

Chernbumroong et 

al. [21]  

1 accelerometer, 

temperature sensor, 

altimeter 

Feeding, brushing teeth, dressing, walking, 

walking upstairs, walking downstairs, sleeping, 

washing dishes, ironing, sweeping, watching 

TV 

3.88s 90.2% 

Ortiz et al. [11] 1 accelerometer Standing, sitting, lying, walking, walking 

downstairs and walking upstairs, stand-to-sit, 

sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie, 

and lie-to-stand 

2.56s 92.2% 

Gao et al. [22] 1 accelerometer Lying, sitting, standing, walking, lying-

standing, standing-lying, sitting-standing, and 

standing-sitting. 

1s 92.8% 

 

Given our target application of activity recognition on a wearable device we focus on online change detection 

algorithms throughout the remainder of this paper. In the literature there are a number of algorithms for online 

change detection in sensor data. One such example is the Cumulative Sum Control Chart (CUSUM) which 

utilises the mean of a process for detecting small shifts. In [23] Zhang et al. presented a framework for detecting 

changes in cardiovascular events using CUSUM. The core methods used in the framework were an online AR 

method, a biometric extraction method and a process control method used by the physiological monitoring 

module. A criticism of CUSUM was, however, that it does not robustly detect sudden shifts in data that are not 

from the same distribution [24] and therefore may be unsuitable for change detection based on accelerometer 

data. The univariate change detection algorithm proposed by Jain and Wang (2014) [25] was used to detect 

changes in independent random sequences. The algorithm consisted of two stages: in the first phase the most 

likely change point within a processing window was identified. In the second stage the hypothesis that the most 
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likely change point was significant was proved or disproved. The main advantage of the algorithm is that it does 

not require knowledge of the underlying distribution, has a small memory footprint and a relatively low 

computational cost. In [26] and [27] we presented the Multivariate Online Change detection Algorithm 

(MOCA) that has been developed to detect transitions in a multivariate input data stream. MOCA does not 

require knowledge of the underlying component distributions, can operate on multivariate data streams and can 

execute at approximately 28Hz on a smartphone.  

2. Data Collection 

Three categories of activities are taken into consideration in this study: static activities, such as standing and 

sleeping, dynamic activities, such as walking and running, and transitional activities, such as stand-to-sit and 

sit-to-stand. Transitional activities commonly occur within a limited duration, that are characterized by start 

and end times with the duration varying between individuals [28]. Subsequently, static activities and dynamic 

activities can be executed continuously, whilst transitional activities can be executed repeatedly to obtain 

sufficient samples.  

Ten healthy adults (3 females and 7 males) were recruited to participate in this study from the Ulster 

University. The participants were asked to perform the 12 activities according to the experimental protocol in a 

controlled laboratory environment. A tri-axial accelerometer was attached to each participant’s left wrist by 

using a custom wrist-belt. Previous research has shown sensors on the wrist provided reasonably good rates of 

precision and recall for some fine grain activities [29]. Furthermore, the wrist provides a comfortable location 

at which to wear the device and is a common location for smartwatches and activity monitors. The Shimmer 

wireless sensor platform (Shimmer 3, Realtime Techniques, Dublin, Ireland) was used to record the calibrated 

accelerometer data due to its sufficiently small and lightweight form factor (53mm*32mm*25mm in size and 

22g in weight). This ensures that it can be comfortably worn by the participant and is well suited for long-term 

wearable activity monitoring applications. Prior to use, the device was calibrated according to the manufacturer 

guidelines. 

Within this work we considered 12 common activities: standing, sleeping, watching TV, walking, running, 

sweeping, stand-to-sit, sit-to-stand, stand-to-walk, walk-to-stand, lie-to-sit and sit-to-lie. Table 2 shows the 

classification and description of the twelve activities into three types. The experimental protocol consisted of 

asking participants to perform a guided sequence of these activities by using voice instruction. Participants were 

told the activity to perform but not specifically how to perform it, thus this experimental protocol allowed for 
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natural participant variability in how activities are performed. For stationary activities, each participant was 

asked to perform standing still, sleeping on the sofa and watching TV. Participants could choose a comfortable 

posture with small movements such as changing lying posture during sleeping and changing sitting posture 

during watching TV allowed. For dynamic activities, each participant was asked to perform walking on 

treadmill with preferred speed, running on treadmill with preferred speed and sweeping with the vacuum cleaner 

in the home area. All activities were performed for 5 minutes each. For transitional activities, each participant 

was asked to perform the three pairs of activities (stand-to-walk-to-stand, stand-to-sit-to-stand and sit-to-lie-to-

sit), each pair is performed for 45s, then repeated 15 times. The protocol took approximately 1 hour for each 

participant to complete. 

Table 2. The taxonomy and description of monitored activities. 

Type Activities Description 

 

Stationary 

Activities 

Standing Standing still for 5 minutes 

Sleeping Sleeping on the sofa for 5 minutes, small movements such as changing the lying posture , 

are allowed 

Watching TV Watching TV while sitting on the sofa in whatever posture the participant feels comfortable for 5 

minutes, changing sitting posture is allowed 

 

Dynamic 

Activities 

Walking Walking on treadmill with the set speed for 5 minutes 

Running Running on the treadmill for 5 minutes 

Sweeping Sweeping with the vacuum cleaner in the home area for 5 minutes 

 

 

Transitional 

Activities 

Stand-to-sit Standing still for 15s and then sitting on the sofa, repeat for 15 times 

Sit-to-stand Sitting on the sofa for 10s and then standing up, repeat for 15 times 

Stand-to-walk Performing the “stand-to-walk-to-stand”, standing still for 15s then start to walk, keep walking for 

15s, then standing still for 15s,  repeat for 15 times Walk-to-stand 

Lie-to-sit Lying on the sofa for 15s and then sitting on the sofa, repeat for 15 times 

Sit-to-lie Sitting on the sofa for 15s and then lying down, repeat for 15 times 

 

Calibrated acceleration data was collected with a sampling rate of 102.4 Hz. Consistent sampling allowed 

time domain and frequency domain signal analysis. Previous studies have demonstrated that human movements 

can be captured and modeled by signals below 18 Hz [30]. Thus a sampling rate of 102.4 Hz was considered to 

be more than sufficient for capturing transitional activities as well as activities of daily living. The sensed data 

were stored in memory card embedded into the Shimmer wireless sensor platform, the activity data of each 

participant were then exported in a separate spreadsheet file to a notebook computer, were saved for offline 

analysis. The collected data were in the format of {timestamp, acceleration-X, acceleration-Y, acceleration-Z}. 

As a result, over ten hours of raw dataset, which contained 4,020,288 instances, were acquired. 
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The collected data was annotated during the activities execution by using the voice instruction and labelling 

the start and end time of an observed activity manually. Given the short duration of the transitional activities 

and the potential for a delay in the participant performing the activity following the verbal command, the 

following labeling procedure was undertaken for transitional activities. The duration of transitional activities 

has been proven in the time interval from 1.45 seconds to 3.49 seconds [31]. Taking the different reaction time 

of participants into consideration, 4s was used to label the transitional activities in order to cover the whole 

transitional phase. Consequently, 2160 seconds of stable state data was labeled with twelve activities in the raw 

data. These labeled data can be used to calculate training or testing feature vectors later. 

3. Change Point Detection 

In the context of this work the aim of change detection is to identify transitions in a user’s activity thus 

determining the starting position of windows to be utilized in window-based activity classification. In this 

Section we provide an overview of MOCA and how the detected changes are used within the overall activity 

recognition framework. MOCA autonomously detects changes in an input data stream such as accelerometry 

data as follows: consider a data stream of length 𝑞 consisting of data points 𝒙1, 𝒙2, … , 𝒙𝑞. Each data point 𝒙 is 

a 𝑏 element vector where 𝑏 is the number of sensor observations for each variable. The data stream may contain 

points from multiple distributions, for example 𝒙1, 𝒙2, … , 𝒙𝑘−1may have distribution 𝐷1whilst 𝒙𝑘, 𝒙𝑘+1, … , 𝒙𝑞  

may have distribution 𝐷2. It is therefore the overall aim of the algorithm to identify the position in the data 

stream of change points 𝑘 (1 ≤ 𝑘 ≤ 𝑞) 

MOCA follows an hypothesis-and-verification principle: in the hypothesis step a point is detected within the 

window under consideration which maximises the test statistic. In the second stage the hypothesis that a detected 

change point is significant is verified. 

 

3.1 Hypothesis Generation 

 

In the hypothesis generation stage we pass an analysis window of length 𝑛 over the data stream assuming 

that there is a maximum of one change point per window. The movement of the window over the data stream 

may be either distinct in which case the start of a new window (other than the first) is at position 𝑚 + 𝑐𝑛 + 1 

where 𝑚 is the padding size and 𝑐 is the number of previous windows. Alternatively, a sliding window version 

of the algorithm may be executed with the start position incremented by a predetermined number of data points. 

For ease of notation we denote the data points within a window as 𝒙1, 𝒙2, … , 𝒙𝑛  regardless of their actual 
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position within the data stream. Following Jain and Wang [25] we pad either side of the window with 𝑚 data 

points such that the analysis window contains data points 𝒙1−𝑚, … , 𝒙𝑛+𝑚 therefore containing a total of 𝑛 + 2𝑚 

data points. This padding ensures sufficient data to compute summary statistics at the window extremities and 

is particularly crucial when executing a distinct window version of the algorithm; however, results in a 

minimum latency of 𝑚 data points. 

Within each window we slide an index variable, 𝑙, 1 < 𝑙 ≤ 𝑛 subsequently computing summary statistics 

of the component distributions separated at 𝑙 . Specifically, we compute the means, 𝐟1(l) and 𝐟2(l), which 

contain the mean of observations, in addition to variance-covariance matrices, 𝑺1(𝑙) and 𝑺2(𝑙), which contain 

the variance of observations in the diagonals and their covariance in the off-diagonals. To ensure that the change 

detection algorithm can operate in online scenarios we compute 𝐟1(l), 𝐟2(l) and 𝑺1(𝑙), 𝑺2(𝑙) recursively. Thus 

as index 𝑙 increments to position 𝑙 + 1 the summary statistics are calculated as follows: 

 

𝐟1(l + 1) =
𝑚+𝑙−1

𝑚+𝑙
𝐟1(l) +

𝑓(𝒙𝑙+1)

𝑚+𝑙
,         (1) 

 

𝐟2(l + 1) =
𝑛+𝑚−𝑙+1

𝑛+𝑚−𝑙
𝐟2(l) −

𝑓(𝑥𝑙+1)

𝑛+𝑚−𝑙
,        (2) 

 

𝑺1(l + 1) =
𝑚+𝑙−1

𝑚+𝑙
𝑺1(l) +

1

𝑚+𝑙−1
Χ [𝒙𝑙+1 − 𝐟1(l + 1)]

′
[𝒙𝑙+1 − 𝐟1(l + 1)],    (3) 

 

𝑺2(l + 1) =
𝑛+𝑚−𝑙+1

𝑛+𝑚−𝑙
𝑺2(l) −

1

𝑛+𝑚−𝑙
Χ [𝒙𝑙+1 − 𝐟2(l + 1)]

′
[𝒙𝑙+1 − 𝐟2(l + 1)].   (4) 

 

where 𝑓(𝒙𝑙+1) is the value of the datastream at position 𝑙 + 1. Having calculated summary statistics before and 

after 𝑙 we proceed to compute the 𝐹 statistic at position 𝑙, 𝐹𝑙 as follows [32]: 

 

𝐹1 =
𝑛1+𝑛2−𝑏−1

𝑏(𝑛1+ 𝑛2−2)
𝑇2,          (5) 

 

where 𝑛1 = 𝑚 + 𝑙 − 1, 𝑛2 = 𝑛 + 𝑚 − 𝑙 + 1, 𝑏 is the number of variables and 𝑇2 is the Hotelling T-squared 

statistic calculated as [32], 

 

𝑇2 = (𝐟1̅ − 𝐟2̅)
′

{𝑺𝑝 (
1

𝑛1
+

1

𝑛𝟐
)}

−1

(𝐟1̅ − 𝐟2̅),       (6) 

 

where 𝑺𝑝is the pooled variance-covariance matrix, 
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𝑺𝑝 =
(𝑛1−1)𝑺1+(𝑛2−1)𝑺𝟐

𝑛1+ 𝑛2−2
.         (7) 

Under the null hypothesis (i.e. equal distributions) and assuming Gaussian distributions this has a 𝐹 distribution 

[32]. We choose the point 𝑙 which maximises 𝐹𝑙 as the most likely change point within a window and proceed 

to the hypothesis verification phase. 

 

3.2 Hypothesis Verification 

 

A hypothesis verification stage is executed to prove or disprove the null hypothesis that a significant change 

did not occur at point l. Firstly, we compute the probability of finding a F value lower than that calculated in 

Equation 5 resulting in d. The F Cumulative Distribution Function is utilized for this phase with b and n1 +

n2 − b degrees of freedom. The test’s p-value is then computed as, 

 

𝑝 = 1 − 𝑑.          (8) 

 

As multiple statistical tests are being simultaneously performed within the window it is necessary to adjust our 

confidence value, 𝛼 to reflect the confidence for the entire window and not a single, isolated value. We therefore 

use a Bonferroni correction [33] to compute an adjusted threshold 𝑡 as: 

 

𝑡 =
𝛼

𝑛
,           (9) 

 

with the null hypothesis rejected (i.e. a significant change did occur at 𝑙) if 𝑝 < 𝑡. 

4. Activity recognition methods 

As shown in Figure 1, the activity recognition framework is a sequence of data processing and machine 

learning techniques. Firstly, the collected raw accelerometer data are preprocessed to filter out the unwanted 

noise and separate the body acceleration from gravity acceleration. The processed data are then segmented into 

windows by following a two-step data segmentation approach, each window in the dataset is extracted as an 

input of 77 features by the feature extraction process. Based on this, the feature selection method is used to 

select the optimal feature subset by choosing relevant features and removing redundant features. The resampling 
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technique is applied to rebalance the class distribution in the dataset. Afterward, the extracted features with the 

corresponding ground truth activity labels are used as input to train and test the classifier model. 

 
Fig. 1. The conceptual scheme of the activity recognition framework. 

4.1. Data preprocessing 

Generally, the acceleration data collected in real-world scenarios contain noise. This noise may be introduced 

by either external vibration not produced by the body itself, or by movement of the sensor against the body due 

to loose coupling. Since essentially all measured body motions are contained within frequency components 

below 20 Hz [34], a third-order low-pass Butterworth filter with cutoff frequency at 20 Hz was used to remove 

the high-frequency noise and smooth the graphs. After that, the acceleration data were filtered by a third-order 

median filter to remove abnormal noise spikes and solve signal delayed problem caused by the low-pass 

Butterworth filter [11]. 

Additionally, the acceleration data collected from the accelerometer were decomposed into body acceleration 

(BA) component, which caused by the body movement that can be used to distinguish motion activities from 

the static activities, and gravity acceleration (GA) component, which caused by the gravity that can be used to 

estimate the posture orientation of a participant when performing the activities. In order to separate the BA 

component and GA component from the filtered signal, a third-order high-pass Butterworth filter with cutoff 

frequency at 0.3 Hz was applied to extract the BA component from the filtered signal. Afterward, the GA 

component was obtained as the difference between the filtered signal and the BA component. 
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4.2. Data Segmentation  

As shown in Fig. 2, we adopted a two-step approach for accelerometer data segmentation. The objective of 

the proposed approach is to map a set of accelerometer data samples with a corresponding activity label to the 

most accurate extent. In step 1, as specified in Section 3, let 𝒙1, 𝒙2, … , 𝒙𝑞 represented the data samples in the 

accelerometer dataset collected from smart home. MOCA identified significant changes in the input data stream. 

The results of MOCA were a set of change point indices, 𝐶1, 𝐶2, … , 𝐶𝑛 𝑛 ≤ 𝑞 . Formally, the data samples 

𝒙1, 𝒙2, … , 𝒙𝑞  were divided into segments of 𝑆1, 𝑆2, … , 𝑆𝑛 , n < a ,where according to the indexes of change 

points, and the 𝑆𝑖  segment contained the data samples [𝒙𝑐𝑖
, … , 𝒙𝑐𝑖+1−1]. 

 

Fig. 2. Illustration of the proposed segmentation method based on change point detection. 

 

In order to reduce the information loss, in step 2, the 𝑆𝑖 segment was divided into windows of 256 samples 

with a 50% overlap between two consecutive windows, which represented by w1, w2, …, wN. Therefore, each 

classification task made about the activity was performed for the duration of 2.5 seconds windows. Once the 

window wi in the segment Si was defined, the next step was to compute and transform this window into a feature 

vector. 

4.3. Feature extraction and selection 

A feature vector consists of both time-domain features as well as frequency-domain features was calculated 

on each windowed data. The extracted features were obtained by processing the acceleration values of X-, Y-, 

and Z-axis of both BA component and GA component. The signal magnitude vector (SMV), which defined as 

√𝑥2 + 𝑦2 + 𝑧2 was also used to extract features. Since the SMV provides a measure of the degree of body 

movement intensity, which can be calculated by using the tri-axial acceleration values [35].  
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Commonly used time-domain statistical features, such as mean, root mean squared, standard deviation and 

correlation coefficient were also used in this work [36]. Additionally, the signal magnitude area (SMA) and tilt 

angle were included in our study [37]. The SMA computes the energy expenditure in activities by using the 

sum of area encompassed by the magnitude of three-axis acceleration, therefore it can be used to distinguish a 

rest state and dynamic activity. The tilt angle provides the information on the determination of the participant 

orientation, which is useful for transitional activities classification. The extracted frequency-domain features 

included spectral energy, spectral entropy, skewness, kurtosis, largest frequency component and signal 

weighted average. The list of 77 features used in our study was summarized in Table 3. 

Table 3. Features extracted from time and frequency domain.  

Features 

domain 

Features Data values Total number 

of features 

 

 
 

 

 
Time- domain 

features 

Mean 

 

BA-X, BA-Y, BA-Z, GA-X, GA-Y, GA-

Z, BASMV,GASMV 

 

Root mean squared (RMS)  

Standard deviation (STD) 40 

Median absolute deviation (MAD)  

Range  

Signal magnitude area (SMA) BA, GA, BASMV, GASMV 4 

Correlation coefficient  BA-XY, BA-YZ, BA-XZ, GA-XY, GA-
YZ, GA-XZ, 

6 

Tilt angle (TA) BA-X, BA-Y, BA-Z 3 

 
 

Frequency-

domain 
features 

Spectral energy 

 

BA-X, BA-Y, BA-Z, BASMV 

 

Spectral entropy  
Skewness  

Kurtosis 24 

Largest frequency component   

Frequency signal weighted average  

 

Within the data, there existed situations when more than one activity label fell into the same segmented 

window. When dealing with multiple activities or less than 256 samples within a window, this window was 

discarded. As a result, a feature vector xi was tagged with the 77 features and the corresponding activity label 

yi. Then a set of feature vectors xi and the corresponding activity labels yi were fed into a classifier as the training 

data and testing data. 

Features extracted from calibrated sensor data may contain redundant and irrelevant information, which can 

negatively affect classification performance. In order to identify a subset of the most discriminative features 

that can increase the classification performance, as well as remove the redundant features that contribute no 
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additional information to the classifier, it is essential to apply an effective feature selection method. There are 

two main categories of feature selection methods: filter methods and wrapper methods [38]. In this study, three 

filter feature selection methods were considered: Information Gain (InfoGain), Correlation-based Feature 

selection (CFS) with Best First search (BFS) algorithm and RelifF. We chose these three statistical filter 

methods because the filter methods for feature selection rely on general data characteristics rather than the 

learning algorithms, while the wrapper methods require predetermined classifiers and their performance quite 

depend on the classifiers [39].  

4.4. Class distribution re-balance 

Due to the relatively short durations of transitional activities compared to static activities and dynamic 

activities, there are much less instances of transitional activities than of the other classes. Due to the imbalance, 

there is the potential of having a bias towards the majority class. Leading to higher misclassification rate for the 

minority class instances. This impacts upon the overall accuracy of the classification.  In order to deal with the 

problem of class distribution imbalance in the dataset, the resampling technique was integrated in this study to 

rebalance the class distribution. Previous works have reported that, randomly over-sampling methods would 

result in over-fitting problem and under-sampling methods would lead to the loss of useful information [40]. 

Inspired by the work demonstrated in [41] [42], which suggested the SMOTE technique that generates synthetic 

instances along the windows adding any of the k minority class to their nearest neighbors, and combination of 

over-sampling technique on the minority class and under-sampling technique on the majority class, we utilised 

three different resampling techniques on the dataset: SMOTE boosting method, which the percentage of data to 

create for six transitional activities classes with less number of instances was set to 200%, and the combination 

of over-sampling and under-sampling techniques with a 2:1 ratio and 3:1 ratio of the majority class samples to 

minority class samples. These parameters have shown as optimum within previous works for rebalancing 

datasets  [41] [42]. The performance of each activity class obtained from three techniques were then compared 

to determine the optimal balanced class distribution. 

5. Results and Discussion 

In this section, we present and discuss the results obtained from segmentation approaches, feature selection 

methods, resampling techniques and learning algorithms applied on the dataset. To precisely assess the 
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performance evaluation and model comparison, several performance measurements, such as accuracy, true 

positive rate, false positive rate and F-measure, are used. 

5.1. Performance improvement using proposed segmentation method 

In order to indicate the classification performance improvement of the proposed segmentation method, the 

experiment was designed in two phases. In the first phase, the preprocessed dataset was segmented by using 

three different segmentation methods: the common used non-overlapping segmentation method and 50% 

overlapping segmentation method as well as our proposed segmentation method based on change point 

detection. Both non-overlapping segmentation method and 50% overlapping segmentation method adopted 2.56 

s as the window size. Then 77 features mentioned before were extracted from each window. As a result, three 

different inputs, which consisted of 77 features and activity labels were obtained. In the second phase, in order 

to choose the most efficient classifier for the classification, we investigated and compared various classification 

algorithms: random forest (RF), k-nearest neighbor (KNN), decision tree (J48), artificial neural network (MLP), 

naïve bayes (NB) and support vector machine (SVM).  For each input, 10 runs of 10-fold cross validation were 

executed. For each iteration of cross validation, nine folds served as training datasets and the remaining fold 

served as the test dataset. 

Table 4. Performance evaluation for the proposed segmentation approach based on change point detection. 

 J48 RF KNN MLP NB SVM 

Non-overlapping segmentation   90.05 93.56 ˙ 93.40 ˙      92.97 ˙  69.38 ○ 19.55 ○ 

50% overlapping segmentation 92.40 94.71 ˙ 93.73 ˙ 91.31 69.81 ○ 32.72 ○ 

Change detection-based segmentation 93.11 95.53 ˙  94.12    93.74   79.15 ○ 60.94 ○ 

˙ statistically significantly better, ○ statistically significantly worse, level of significance 0.05 

 

The average accuracy of six different algorithms on three inputs from the experimentation were tabulated in 

Table 4. Here the performance of J48 was used as the baseline for comparison. The table showed how often 

each algorithm (column) performed statistically significantly better (denoted by a •) or worse (denoted by a ○) 

than the baseline for the respective input (row) according to a paired two-sided t-test. From Table 4, it can be 

seen that the classification results of NB and SVM were not good, even statistically worse than the baseline. RF 

showed statistically significantly better than the baseline, contributing the highest accuracy of 95.53% on the 

input obtained by using change detection-based segmentation, which was even higher than the highest accuracy 

obtained from [10]. This probably because RF combined multiple decision tree with various discriminative 
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rules, which can handle the multi-class data characteristics. Compared to RF, KNN, MLP and J48 contributed 

slightly lower classification accuracy of 94.12%, 93.74% and 93.11%, respectively. Therefore, it was decided 

to use only RF in this study. 

 

Fig. 3. The sensitivity of each activity class of three segmentation methods. 

 

     In terms of each input, the average accuracy of non-overlapping segmentation method, 50% overlapping 

segmentation method and change detection-based segmentation method by applying RF algorithm were 

93.56%, 94.71% and 95.53%, respectively. Figure 3 showed the sensitivity of each activity class obtained by 

applying RF algorithm on three inputs. Both non-overlapping segmentation method and 50% overlapping 

segmentation method generally performed well in classifying static activities and dynamic activities but 

performed less well in classifying transitional activities. This may be due to the duration of transitional activities 

being typically short, each window obtained by using non-overlapping segmentation method and 50% 

overlapping segmentation method may contain more than one activities rather than a single transitional activity, 

which resulted in misclassification of the transitional activities.  

The results indicated that change detection-based segmentation method contributed better performance in 

terms of either overall classification accuracy or the specific classification accuracy of transitional activities. 

This is because change detection-based segmentation method reorganized windows better and more effectively. 

However, compared to static activities and dynamic activities, change detection-based segmentation method 

still performed relatively bad in classifying transitional activities. Thus, in the next steps, we adopted the feature 

selection methods and resampling techniques to enhance the performance on transitional activities 

classification. 
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5.2. Feature Selection enhancing the performance 

The optimal feature subset selected by the feature selection method should contain most relevant and 

discriminative features, and the number of features should be as small as possible to reduce the complexity of 

learning process. In order to select the most appropriate feature selection method, the effectiveness of the 10-

fold cross validation performance by running 10 iterations of the three filter methods was compared in two 

groups. The performance of using all features was served as the baseline for comparison. Five feature subsets 

were used: FS1 using InfoGain with 60 selected features, FS2 using ReliefF with 70 selected features, FS3 

using CFS and BFS algorithm with 21 selected features, FS4 using InfoGain with 21 selected features, FS5 

using ReliefF with 21 selected features. Each group consisted of three feature subsets: FS1, FS2 and FS3 

belonged to group 1. FS3, FS4 and FS4 belonged to group 2. It should be noted that all features are ranked by 

InfoGain method and ReliefF method based on different criteria, while the feature subset was picked directly 

by CFS and BFS algorithm. The average 10-fold cross validation performance of five feature subsets was shown 

in Table 5. The RF was used here as machine learning classifier for classification. 

Table 5. Comparison of the performance obtained by three feature selection methods. 

 No. of features Accuracy F_measure ROC area 

All features 77 95.53 0.98 1.00 

FS1: InfoGain 60 95.37  0.98 1.00  

FS2: ReliefF 70 95.57  0.98  1.00  
FS3: CFS+BFS 21     95.62˙ 0.98 1.00 

FS4: InfoGain 21    93.22 ○    0.96 ○    0.99 ○ 

FS5: ReliefF 21  95.24  0.98 1.00 

˙ statistically significantly better, ○ statistically significantly worse, level of significance 0.05 

 

   In group 1, The CFS and BFS algorithm directly selected a feature subset (FS3) that contained 21 features 

and provided the highest accuracy of 95.62% among three feature subsets. Compared to the performance of 

using all features, the classifier produced higher accuracy and showed statistically significantly better with only 

21 features. This is due to the fact that some features are irrelevant and redundant, a high correlation with other 

features would affect the performance. The feature selection methods selected only informative and relevant 

features that contributed to improve the classification performance. 

To determine the optimal feature subset, the performance of three feature subsets with the same number of 

features by three feature selection methods were compared (group 2). With the number of used features 

decreased, the top 21 ranked features by InfoGain only produced an accuracy of 93.22% and statistically 

significantly worse than the baseline. Similarly, the accuracy with top 21 ranked features by ReliefF decreased. 
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Among the five different feature subsets, the CFS and BFS algorithm yielded the highest accuracy and best 

performance. Therefore, the CFS and BFS algorithm was used as the feature selection method to reduce the 

feature vector dimensions as well as improve the classifier performance. The 21 picked features by the CFS and 

BFS algorithm were given in Table 6.  

Table 6. The 21 features selected by CFS and BFS algorithm. 

Feature Domain Feature 
Number 

Selected Feature name 
(Axis applied to) 

 

 
 

 

 
 

 

Time Domain 

1 STD- (BA-X) 

2 MAD (BA-X) 

3 Correlation (BA-XY) 

4 Tilt (BA-X) 

5 Tilt (BA-Y) 

6 Tilt (BA-Z) 

7 Mean (GA-Y) 

8 Mean (GA-Z) 

9 RMS (GA-X) 

10 RMS (GA-Y) 

11 Correlation (GA-XZ) 

12 SMA (GA) 

13 Mean (BA-SMV 

14 MAD (BA-SMV) 

15 STD (GA-SMV) 

 

 

 
Frequency Domain 

16 Kurtosis -BA-X 

17 Kurtosis -BA-Y 

18 Kurtosis -BA-Z 

19 Largest frequency component-BA-X 

20 Largest frequency component-BA-Y 

21 Frequency signal weighted average- 
BASMV 

 

5.3. Class distribution re-balance enhancing the performance 

We evaluated the classification performance of RF classifier on the selected features by using three different 

resampling techniques: SMOTE, combination with 2:1 ratio and combination with 3:1 ratio. The classification 

performance of imbalanced dataset was used as the baseline. Besides the overall classification accuracy, we 

additionally used true positive rate (TPR), false positive rate (FPR), F-measure and ROC area as the 

performance measurements to capture classification performance for both majority and minority classes. As 

shown in Table 7, among the performance obtained from three resampling techniques, SMOTE yielded the 

highest accuracy of 95.76% and standard deviation of 0.53, slightly higher than the baseline. The performance 

of the combination with 2:1 ratio and the combination with 3:1 ratio both showed the statistically significantly 
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worse than the baseline in terms of accuracy, TPR and F-measure. Since the SMOTE technique did not show 

the statistically significantly better than the baseline in terms of overall evaluation performance, the sensitivity 

of each activity class was analyzed later to determine if the SMOTE technique can enhance the performance. 

Table 7. The classification performance by using three resampling techniques. 

 Imbalanced 
dataset  

SMOTE  Combination 
with 2:1 ratio  

Combination 
with 3:1 ratio  

Accuracy  95.62  95.76    90.84 ○     90.92 ○ 

TPR 0.98 0.98    0.94 ○    0.94 ○ 

FPR 0.00 0.00 0.00 0.00 
F-measure 0.98 0.98    0.95 ○    0.95 ○ 

ROC area 1.00 1.00 1.00 1.00 

                       ˙ statistically significantly better, ○ statistically significantly worse, level of significance 0.05 

 

Figure 4 depicted the sensitivity of three resampling techniques on each activity class. Compared to 

performance without using the resampling technique, all three resampling techniques increased the sensitivity 

of transitional activity classes that were balanced with the static activity classes and dynamic activity classes. 

Among them, the sensitivity of static activities and dynamic activities decreased by using combination with 2:1 

ratio and combination with 3:1 ratio. However, SOMTE contributed more or less the same sensitivity of static 

activities and dynamic activities and on the other hand, increased the sensitivity of six transitional activities. 

Particularly the sensitivity of sit-to-lie and lie-to-sit activities were increased significantly by using SMOTE. 

Fig. 4. Comparison of sensitivity of twelve activities by applying three resampling techniques. 

5.4. Discussion on the proposed model 

In order to indicate the improvement of our proposed model, we compare the performance of three models 

(M1, M2 and M3) by considering the sensitivity of each activity class. M1 was obtained by applying non-

overlapping segmentation method on the collected raw dataset with all features, M2 was obtained by applying 
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50% overlapping segmentation method on the collected raw dataset with all features and M3 was obtained by 

applying the proposed change detection-based segmentation method on the balanced dataset with selected 

features. The classification performance of these three models were given in Table 8. 

Table 8. Comparison of sensitivity of each activity class obtained from three models. 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 Average 

M1 0.983 0.985 0.978 0.926 0.995 0.975 0.600 0.637 0.054 0.226 0.578 0.596 0.936 

M2 0.985 0.990 0.986 0.947 0.994 0.975 0.642 0.689 0.086 0.279 0.654 0.692 0.945 

M3 0.982 0.968 0.984 0.957 0.986 0.956 0.871 0.908 0.214 0.488 0.995 0.992 0.957 

         A1= Standing, A2= Sleeping, A3= Watching TV, A4= Walking, A5= Running, A6= Sweeping, A7= Stand-to-sit, A8= Sit-to-stand,  

         A9= Stand-to-walk, A10= Walk-to-stand, A11=Lie-to-sit, A12= Sit-to-lie. 

 

From Table 8, it is can be seen that M3 achieved the average sensitivity of 0.957, higher than the average 

sensitivity of M1 (93.6%) and M2 (94.5%). In terms of each activity class, M3 achieved high performance on 

static activities classification and dynamic activities classification, activities such as standing, watching TV and 

running also were classified correctly very well. Moreover, compared to M1 and M2, the proposed model also 

achieved significant improvement on transitional activities classification. It is worth to notice that the proposed 

model performed extremely well in classifying sit-to-lie and lie-to-sit activities, achieving the sensitivity as high 

as 0.995 and 0.992, respectively. Even though M3 improved the sensitivity of sit-to-walk and walk-to-stand 

activities compared to M1 and M2, while considering other transitional activities, the proposed model did not 

perform very well in sit-to-walk and walk-to-stand activities classification, only achieved the sensitivity of 

0.214 and 0.488, respectively. 

Table 9. The confusion matrix obtained by using RF on the balanced dataset with selected features. 

Classified as A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

A1 1833 0 10 3 0 16 0 0 0 5 0 0 

A2 0 1950 34 16 1 11 0 0 0 0 1 2 

A3 1 10 2064 8 0 5 3 0 0 1 2 4 
A4 1 4 27 2175 0 54 3 5 0 2 1 1 

A5 1 7 7 12 2252 6 0 0 0 0 0 0 

A6 11 0 5 46 1 1533 0 2 2 2 2 0 
A7 2 0 2 0 0 6 81 1 0 1 0 0 

A8 0 0 2 1 0 7 0 139 0 2 2 0 

A9 4 0 2 88 0 8 0 1 31 10 0 1 
A10 25 0 12 25 0 12 1 4 3 81 1 2 

A11 0 1 0 0 0 0 0 0 0 0 206 0 

A12 0 0 0 0 1 0 0 0 0 0 1 241 

        A1= Standing, A2= Sleeping, A3= Watching TV, A4= Walking, A5= Running, A6= Sweeping, A7= Stand-to-sit,  

        A8= Sit-to-stand, A9= Stand-to-walk, A10= Walk-to-stand, A11=Lie-to-sit, A12= Sit-to-lie. 
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Table 9 showed the confusion matrix of each activity class of the proposed model, which obtained by using 

RF on the balanced dataset with selected features. The confusion matrix illustrated that the stand-to-walk class 

was mostly often classified as walking class (88 instances), the walk-to-stand class was confused with standing 

class (25 instances) or walking class (25 instances). This is because these activities shared quite similar 

movements and the transition duration was quite short. Walking class was also frequently misclassified as 

sweeping class (54 instances) by the model. The combination of multimodal sensor data from additional sensors 

such as gyroscope or magnetometer data could be useful in further discriminating between these very similar 

activities. 

6. Conclusion 

In this paper we have presented an approach to windowing that utilises an autonomous, multivariate online 

change detection algorithm to dynamically identify a window’s starting position such that it contains 

homogeneous activity types. The data segmentation based on change detection algorithm is for the purposes of 

activity recognition from body worn sensors. In addition, with the discriminative features and balanced class 

distribution, the transitional activities can be classified correctly well, which are often ignored in current 

research. This is particularly important for the application of activity recognition in real time. 

Results are presented within the context of an activity recognition framework that demonstrate statistically 

significant performance gains when using this approach in comparison to non-overlapping segmentation 

method and 50% overlapping segmentation method as commonly used in the literature. There will be three 

main facts of future work: firstly, we will evaluate our approach against alternative activity recognition 

frameworks and apply this change detection-based segmentation on more available datasets; secondly, we will 

evaluate the algorithm in a real-time real-world deployment potentially using smartphones. It is envisaged that 

with further refinement and evaluation the algorithm presented in this paper will prove to be an invaluable 

component of applications requiring robust, real-time activity recognition. Thirdly, we will consider multimodal 

sensor streams to better differentiate between similar activities. 
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