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Abstract  

Scope:  Unlike other classes of polyphenols, there is a lack of knowledge regarding brown 

seaweed phlorotannins and their bioactivity. We investigated the impact of in vitro 

gastrointestinal digestion and colonic fermentation on the bioactivity of a seaweed 

phlorotannin extract from Ascophyllum nodosum and its high molecular weight (HMW) and 

low molecular weight (LMW) fractions.  

Methods and Results: The highest phlorotannin and total polyphenol (TP) concentration 

was observed in the HMW fraction. Antioxidant capacity broadly followed phlorotannin and 

TP levels, with HMW having the highest activity. Both gastrointestinal digestion (GID) and 

colonic fermentation (CF) significantly affected phlorotannin and TP levels, and antioxidant 

capacity of the extract and fractions. Despite this, in HT-29 cells, all GID extracts 

significantly inhibit cell growth, whereas CF extracts effectively counteracted H2O2 induced 

DNA damage.  

Conclusion:  Although phlorotannins, TP levels and antioxidant power of the extracts 

were strongly reduced after in vitro digestion and fermentation, their anti-genotoxic activity 

and cell growth inhibitory effect in colon HT-29 cells was maintained and enhanced. HMW 

was the most effective fraction, indicating that the high molecular weight phlorotannins 

potentially exert a stronger beneficial effect in the colon. 
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Introduction 

Seaweeds have been traditionally consumed for centuries in coastal regions of Asian 

countries [1], and more recently European countries including Ireland have shown a 

renewed interest in seaweeds that were once a traditional part of the diet [2-5]. The 

gastronomic use of seaweeds has expanded into the European cuisine, and various 

species of edible seaweeds are now increasingly used worldwide as a source of 

components with potential industrial applications  [6-8]. 

Seaweeds are a rich source of a range of bioactive compounds [9-11], including 

polyphenolic compounds [12]. Polyphenols found in algae [13, 14] show some similarities 

to those present in land plants [13-15], Brown seaweeds contain a characteristic class of 

compounds called phlorotannins  [16-19], which are only found in brown seaweeds [20]. 

and  can account for  5 to 15 % of the plant dried weight [15]. They are oligomers and 

polymers of phloroglucinol units, and their molecular weight can vary greatly, from 126 Da 

to 650KDa [12, 19]. Phlorotannins are being increasingly investigated for their vast array of 

bioactivities [14, 21, 22] such as antioxidant [23-27], anti-inflammatory [24, 28, 29], 

antibacterial [30], anticancer [31-35], and antidiabetic [31, 36, 37], showing promising 

potential to develop seaweed-derived products rich in bioactive components with 

commercial potential for food and pharma applications [38, 39]. However the 

gastrointestinal tract may largely impact the structure of phlorotannins during digestion and 

this can have an impact on their bioactivity [40, 41]. The ability of phlorotannins to act as 

effective bioactive molecules in vivo will be dependent on the degree of their 

biotransformation and conjugation during absorption from the gastrointestinal (GI) tract, in 

the liver and finally in cells [40, 42]. In view of this, the way phlorotannins are modified and 

metabolised during gastrointestinal digestion and colonic fermentation, needs to be 

considered, because it will affect their bioactivity [43]. We have recently shown that after 

consumption of a phlorotannin-rich capsule a range of oligomeric metabolites appear in 
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plasma and are excreted in urine, and the data suggest that extensive gastrointestinal 

modifications occur prior to absorption [42].  In the present study, the in vitro 

digestion/fermentation and their impact on antioxidant and anti-genotoxic activity of 

extracts from Ascophyllum nodosum (a common brown alga in British Isles) was 

investigated. An ethanol-based seaweed polyphenol extract (SPE) and its High Molecular 

Weight (HMW) fraction and Low Molecular Weight (LMW) fraction were produced from the 

seaweed and were digested (GID) in vitro to mimic the condition of the human 

gastrointestinal tract [44, 45] and fermented (CF) by using a pH-controlled, stirred, batch-

culture system reflective of the distal region of the human large intestine [46]. We have 

assessed the impact of digestion and fermentation on the in vitro antioxidant capacity, and 

anti-genotoxic potential of the extracts in HT-29 cells. 
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Materials and methods 

Seaweed material.  Fresh Ascophyllum nodosum was supplied by The Hebridean 

Seaweed Company, Isle of Lewis, Scotland in March 2011. The seaweed biomass was 

harvested by hand to ensure quality, cleaned of any contaminating sand and fouling 

organisms and then shipped refrigerated to a processing facility in France where it was 

immediately chopped and frozen. 

Preparation of seaweed extracts.  A novel seaweed polyphenol extract (SPE) from 

Ascophyllum nodosum was produced by CEVA (France) using a proprietary solvent based 

extraction system that was specifically adapted for use with fresh or frozen Ascophyllum 

nodosum.  The extraction step was carried out at room temperature overnight, using an 

ethanol/water (60/40) solvent mix and 400kg of defrosted seaweed. Post extraction, 

insoluble material (>100μm) was removed through a series of filtration steps followed by 

ethanol removal and concentration using a vacuum evaporator.  Approximately half of the 

produced extract was then fractionated using tangential flow ultra-filtration to produce two 

further extracts of high molecular weight (HMW, >10KDa) and low molecular weight (LMW, 

1-10KDa) range, and with varying polyphenol content. The phlorotannins in the extract and 

fractions were characterized by NP-HPLC analysis. Total polyphenols were quantified 

using the Folin-Ciocalteau method as equivalents of phloroglucinol units. 

Simulated Gastro-Intestinal Digestion: The procedure was adapted from Mills et al. and 

McDougall et al. [44, 45] and conducted as previously described [42]. This method 

consists of two sequential stages: gastric digestion and small intestinal digestion with a 

dialysis step. Seaweed extracts and fractions (SPE, HMW, LMW) were dissolved (10g in 

30 ml acidified water pH=2) and pepsin (320 U/ml) was added. Samples were incubated at 

37 °C for 2 h on a shaker covered with foil to exclude light. The pH was adjusted to 7.5 by 

adding few drops of 6M NaOH, and pancreatin (4 mg/ml) and bile extracts (25 mg/ml) 
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were added. The samples were incubated at 37 °C for 2 h on a shaker, transferred into the 

dialysis tubing (100-500 Da, cut-off, 1.8 ml/cm, Spectra/Por, Biotech) and dialysed 

overnight at 4 °C against water (4 L) to remove low molecular weight digested materials. 

The dialysis fluid was changed and dialysis continued for additional 2 h. Digested samples 

(GID) were freeze-dried and stored at -20 °C. Aliquots of digested and dialyzed extracts 

were used in the subsequent in vitro assays and cell culture treatments. 

Colonic Fermentation (Batch Culture):  An aliquot of the digested extracts (GID) was 

subjected to in vitro colonic fermentation procedure, using the previously described 

method [42]. Batch-culture fermentation vessels (300 ml; one vessel per treatment) were 

autoclaved and filled with 135 ml sterilized basal medium. Medium was stirred and gassed 

overnight with O2-free N2. Before addition of the digested extracts (equivalent to 1.5 g of 

undigested extracts), the temperature inside the vessels was set to 37 °C by a circulating 

water bath and the pH was controlled at 6.8 by an electrolab pH controller, in order to 

mimic conditions in the distal region of the human large intestine (anaerobic; 37 °C; pH 

6.8). Vessels were inoculated with 15 ml faecal slurry (1:10, w/v) and batch cultures were 

run for 24 h. Fermented samples were centrifuged at 13200 rcf for 10 minutes and 

supernatants were transferred into the dialysis tubing (100-500 Da, cut-off, 1.8 ml/cm, 

Spectra/Por, Biotech) and dialysed overnight at 4 °C against water (4 L) to remove low 

molecular weight fermented materials. The dialysis fluid was changed and dialysis 

continued for additional 2 h. Samples were stored at -20 °C until subsequent analysis (NP-

HPLC analysis, in vitro assays and cell culture treatments). 

NP-HPLC analysis:  The phlorotannin levels of the non-digested (ND) digested (GID) and 

fermented (CF) extracts were analyzed by normal phase HPLC analysis as previously 

described [42], using an HPLC 1100 series (Agilent) equipped with  LiChrospher Si60-5 

column. The compounds were detected at a wavelength of 268 nm. All data were analyzed 



7 
 

 
 

by ChemStation software. The phloroglucinol standard was injected at 0.1-100 µg/ml and 

phlorotannins in the extracts were analysed as phloroglucinol equivalents. 

LC-MS analysis:  Further characterization of the non-digested (ND) digested (GID) and 

fermented (CF) extracts was carried out in the negative ion mode using LC-MS/MS 

utilizing electrospray ionisation (ESI) as previously described as previously described [42]. 

Total polyphenol content (Folin-Ciocalteau).  Total polyphenol (TP) content of the non-

digested (ND) digested (GID) and fermented (CF) extracts was determined by the Folin-

Ciocalteau’s method adapted from Yuan et al. [47]. 100 μl of sample were mixed with 50 μl 

of 2M Folin-Ciocalteau’s reagent and left at room temperature for 3 min. Then 200 μl of 

20% Na2CO3 were added and the mixture incubated at room temperature in the dark for 

45 min before transferring 150 μl to a 96 microwell plate in duplicate. Absorbance was 

measured at 730 nm on a GENios TECAN microplate reader using phloroglucinol as the 

standard. TP content of the extracts was expressed as µg/mg phloroglucinol equivalents. 

Antioxidant capacity (TEAC assay).  The antioxidant capacity of the ND, GID and CF 

extracts was determined by the Trolox Equivalent Antioxidant Capacity (TEAC assay) 

assay method [48] as follows: A stable stock solution of ABTS˙+ was produced by reacting 

a 7 mmol/L aqueous solution of ABTS with 2.45 mmol/L potassium persulfate (final 

concentration) and allowing the mixture to stand in the dark at room temperature for 12–16 

h before use. An ABTS˙+ working solution was obtained by diluting the stock solution in 

ethanol to an absorbance of 0.70 (730nm). 15 μl of each sample were mixed with 450 μl of 

ABTS˙+ working solution and left at room temperature for 5 min. 150 μl of sample 

solutions were transferred to microwell plate in duplicate and absorbance was measured 

at 730 nm on the GENios TECAN microplate reader. Trolox (6-hydroxy-2,5,7,8-

tetramethylchroman-2-carboxylic acid) was used as the standard for a calibration curve. 

Results from TEAC assay were quantified as μmol/mg Trolox equivalents. 
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HT-29 cell culture:  HT-29 human colorectal adenocarcinoma cells were cultured in high 

glucose (4.5g/L) Dulbecco’s modified Eagle’s medium (DMEM) containing Na pyruvate, 

supplemented with 10 % heat-inactivated bovine serum, 2 mM L-glutamine, 100 U/ml 

penicillin, and 100 g/ml streptomycin.  Cells were kept in 75cm2 culture flasks at 37°C, 

5% CO2 and passaged once a week. Spent media was replaced 1 day after seeding and 

every 2-3 days thereafter. 

Treatment of HT-29 cells for DNA damage assay (COMET): HT-29 cells were prepared 

as follows: 1 x 106 cells/well were seeded on 6 well plates (0.5ml/well) and incubated 

overnight at 37 °C, 5% CO2 before treatment. Cells were treated with 100μg/ml of extracts 

and incubated at 37 °C, 5% CO2 for 24h. After the incubation time the media was 

removed, and cells were trypsinized, washed with PBS, centrifuged (1800rpm, 5 min), re-

suspended in serum-free media and counted with trypan blue staining. The cell 

concentration was adjusted to 1.5 x 106 cells/ml and subjected to the Comet assay. 

COMET assay: An alkaline COMET assay was performed as described by Gill et al. [49] 

on HT-29 cells suspended in 1 ml phosphate buffer saline (PBS). Cells aliquots were 

incubated for 5 min on ice in presence or absence of hydrogen peroxide (75μM). Each 

sample was analyzed in triplicate, along with positive and negative controls. Cells were 

washed with PBS and centrifuged (380 g for 8 minutes) to remove residual H2O2, re-

suspended in 0.85% low melting agarose and added into fully frosted slides coated with 

normal melting agarose. Slides were dried (4 °C, 10 min) and cells were lysed by 

incubating with lysis buffer containing 1% Triton X-100 (4 °C, 1 h). Slides were transferred 

into the electrophoresis tank, covered with alkaline buffer and allowed to unwind for 20 

minutes prior to run (20 minutes, 26 volts, 300 mA at 4 ºC). After 3 washes in neutralizing 

buffer the slides were stained with ethidium bromide (20μg/ml), dried and analysed using 

an Epi-fluorescent Nikon microscope connected with a digital camera. Imaging was 
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performed using a computerized image analysis system (Komet 5.5, Andor Bio-Imaging). 

Fifty cells per slide were analyzed randomly and the data were presented as the 

percentage of tail DNA. 

Treatment of HT-29 cells for cell growth assay (SRB):  HT-29 cells were seeded at low 

confluence in 24-well plates (2.5 × 104 per well) and were treated with the extracts (100, 

250, 500 µg/ml) or vehicle 8 h after seeding. Following 48 h incubation (37 °C, 5% CO2), 

cells were fixed and cell biomass was determined using the SRB assay [50].   

SRB assay: sulforodhamine B (SRB) assay was performed as previously described [50]. 

Briefly, cells were fixed by the addition of 125 µl ice-cold TCA (10 % final concentration; 4 

°C; 1 h). After fixing, media was removed, cells were washed and total biomass was 

determined using SRB (250 µl of 0.4 % SRB; 0.5 h).  Unincorporated dye was discarded 

by washing with 1 % acetic acid, whilst cell incorporated dye was solubilised using Tris 

Base (10 mM, pH 10.5).  Dye incorporation, reflecting cell biomass, was measured at 492 

nm, using a GENios microplate reader (TECAN, Reading, UK). 

Statistical analysis:  The statistical evaluation of the results was performed using 

GraphPad Prism version 7 (GraphPad Software, San Diego, CA, USA). Grouped data 

format was used, and the statistical analysis performed was a two-way analysis of 

variance (ANOVA) followed by a Bonferroni post-hoc t-test. Statistical significance was set 

at P < 0.05.  
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Results  

Seaweed polyphenol extract characterization:  The chromatogram (Figure 1) illustrates 

the traces obtained by NP-HPLC with diode array detection after injecting a water solution 

of the SPE and the HMW (>10KDa) and LMW (1-10KDa) fractions. The 3 chromatograms 

show a number of peaks eluting, predominantly at 20-70 min, the elution time being 

directly related to the molecular weight of the phlorotannins, where low molecular weight 

components will elute early and high molecular weight components will appear at later 

retention times. A calibration curve of phloroglucinol was used to quantify all the 

phlorotannins in the samples as phloroglucinol equivalents. The SPE, HMW and LMW 

extracts comprised a wide range of molecular weight of phloroglucinol derivatives with a 

total phlorotannin concentration of 358.9 µg/mg (SPE), 938.2 µg/mg (HMW), 374.5 µg/mg 

(LMW), as phloroglucinol equivalents.  

In vitro digestion and characterisation: SPE, HMW and LMW were subjected to in vitro 

digestive and fermentative processes and simulation of absorption into the circulation 

(Figure 2). , Samples from the procedure were analysed by NP-HPLC with diode array 

detection. Figure 3 shows the traces obtained for the 3 extracts (SPE, HMW and LMW) 

when undigested (black trace, ND), digested (grey trace, GID) and fermented (black 

dashed trace, CF) aliquots were injected. For all 3 extracts, we observed a reduction of the 

components eluting at 20-70 min after GID (grey line), which is limited for HMW (5.4%), 

and much more important for SPE (59.0%) and LMW (52.8%).  After the CF procedure 

(black dashed line) we observed a further reduction of the peaks eluting at 20-70 minutes, 

with reduction levels of 96.8 % (SPE), 89.9 (HMW) and 68.0% (LMW). In parallel, we 

observe the appearance and/or increase of some large peaks eluting at earlier timepoints, 

0-20min. In our Normal Phase chromatographic conditions, the elution times are correlated 

to the size/molecular weight of the phlorotannin units, and therefore our results indicated 

the progressive reduction of the larger molecular weight polymeric phlorotannins into low 
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molecular weight forms (oligomeric units, degradation products) during simulated 

gastrointestinal digestion and in vitro colonic fermentation. It is interesting to note that the 

very high molecular weight component present in the HMW fraction (≥1KDa) were reduced 

to a very limited extent under gastric and small intestinal conditions (5.4%), whereas they 

were more significantly reduced during colonic fermentation conditions (89.9%). 

Additionally, the samples were analysed by LC-MS/MS utilizing electrospray ionisation 

(ESI) in negative ion mode (Supplementary tables 1 and 2) as previously described [42]. In 

both GID and CF extracts, we found a range of newly formed metabolites, and we were 

able to identify molecular ions and fragments corresponding to hydroxytrifuhalol A (405), 

the C-O-C dimer of phloroglucinol (247), the dimer diphlorethol/ difucol (249) and 7-

hydroxyeckol (387), in accordance with what observed in our previous study [42]. 

Total Polyphenol content and antioxidant capacity. 

The three extracts (SPE, HMW and LMW) undigested (ND), digested (GID) and fermented 

(CF) were assessed for TP content (Figure 4A) and for in vitro antioxidant capacity (Figure 

4B) using the TEAC assay method. As shown in Figure 4A, before digestion (ND) the high 

molecular weight fraction HMW had the highest TP content (441.6 µg/mg), followed by 

SPE (211.9 µg/mg) and LMW (155.3 µg/mg). The TP content of all extracts was 

significantly reduced by GID (P<0.001 vs. ND), with reduction levels of 81.7% (SPE), 

40.4% (HMW) and 64.7% (LMW). After CF, the TP levels were further reduced (P<0.001 

vs. ND) to 99.5% (SPE), 86.5% (HMW) and 92.5% (LMW) of the initial levels measured in 

the ND extracts.  In accordance with TP results, the antioxidant test (Figure 4B) showed 

that before digestion the high molecular weight fraction HMW had the highest TEAC value 

(3.7 µmol/mg), followed by SPE (2.6 µmol/mg) and LMW (2.1 µmol/mg). Digestion 

significantly reduced the TEAC value of all extracts (P<0.001 vs. ND), with reduction levels 

of 79.5% (SPE), 27.4% (HMW) and 68.7% (LMW). After CF, the TEAC values were further 
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reduced (P<0.001 vs. ND) to 94.8% (SPE), 82.4% (HMW) and 84.0% (LMW) of the initial 

levels measured in the ND extracts. It is interesting to note that TP levels and TEAC 

values of the HMW fraction were affected less than the HMW fraction by the GID 

procedure.  

DNA damage in human colon cells HT29 (COMET assay) 

HT-29 cells were exposed to the GID and CF extracts (100 μg/ml, 24 h) and we tested the 

ability of each extract (SPE, HMW, LMW) to reduce H2O2 induced cellular DNA damage 

(COMET assay).  As shown in Figure 5, a low level of DNA damage (% of DNA in tail) was 

measured in the controls whereas in cells challenged with H2O2, the DNA damage was 

significantly increased (P<0.001). Among the extracts subjected to the GID procedure, 

only HMW was able to significantly reduce DNA damage compared to H2O2 alone 

(P<0.01), whereas SPE and LMW were not effective (P>0.05). When analysing the effects 

of the extracts subjected to CF procedure, however, all extracts were significantly effective 

(P<0.001) in reducing the DNA damage induced by H2O2, despite the loss of antioxidant 

capacity of the CF extracts. The statistical analysis also highlighted that within each group 

(GID and CF) the effect of HMW was significantly higher than SPE and LMW (P<0.05). 

Cell growth inhibition in human colon cells HT29 (SRB assay):   

HT-29 cells were exposed to the GID (Figure 6A) and CF (Figure 6B) extracts (100, 250 

and 500 μg/ml, 72 h) and we tested the ability of each extract (SPE, HMW, LMW) to 

induce cell growth inhibition by measuring changes in the cell biomass (SRB assay).   

Fig.6A shows that the lower concentration tested (100 µg/ml) was ineffective (P>0.05), 

whereas at higher doses all GID extracts significantly inhibited (P<0.01) HT-29 cell growth, 

with HMW being the most effective. In contrast, when the cells were treated with the CF 

extracts (Figure 6B), only HMW was able to significantly inhibit (P<0.05) the growth of the 

cells at the concentrations 250 and 500 µg/ml. it is interesting to note that the HMW seems 
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to exert the strongest effects in both GID and CF groups, and again it is worth highlighting 

the fact that the CF extract is able to exert a significant effect despite the loss of 

antioxidant capacity. 

 

 

Discussion 

Over the past few years, significant interested has developed in bioactives from brown 

seaweed [11, 51] and phlorotannins have gained attention for their potential beneficial 

effects for human health [11] However, due to the many analytical challenges faced when 

conducting phlorotannin analysis, knowledge on phlorotannin bioavailability, 

gastrointestinal modifications and their impact on bioactivity is scarce or absent.  We 

recently reported [42] for the first time that seaweed phlorotannins are metabolized to 

small oligomeric units, and their time of appearance in urine and plasma is indicative of a 

predominant large intestinal metabolic transformation. The analysis of phlorotannins is 

challenging due to high range of molecular weight present, and their characterisation is 

complicated further by the lack of commercially available standards, therefore in our recent 

work we made use of both reverse phase (RP) and normal phase (NP) HPLC 

chromatography coupled to diode array (DAD) and mass spectrometry detection to try and 

understand how phlorotannins are digested and absorbed into the circulation, and what 

kind of modifications can occur in the small and large intestine prior to absorption [42]. NP-

HPLC coupled to DAD is indeed a simple and useful tool for the analysis of oligomeric and 

polymeric phlorotannins [12], and we used it in the present study  to characterize 

phlorotannins in the 3 extracts, and to understand the modifications they are subjected to 

during gastrointestinal digestion and colonic fermentation at different degrees of 

polymerization. Our results highlight a large reduction in the amount of the polymeric forms 
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eluting a late retention times in our NP method. The forms with molecular weight > 10KDa 

were only marginally affected by the GID condition, whereas they were largely reduced 

following CF in the presence of the large intestinal microbiota. In addition, further 

characterization via LC-MS/MS analysis of the GID and CF extracts has indicated the 

presence of some oligomeric phlorotannins (hydroxytrifuhalol A, diphloretol/difucol, 7-

hydroxyeckol, C-O-Cdimer of phloroglucinol), in addition to a range of newly formed, 

unknown metabolites. In parallel, using traditional in vitro tests for TP content and 

antioxidant scavenging capacity, we observed a reduction of both after in vitro GID and 

CF. These results imply that the putative beneficial health effects of polyphenolic 

compounds cannot be meaningfully assessed by measuring their total polyphenolic 

content and scavenging potential without taking into consideration the impact of digestive 

and fermentative processes in the gastro-intestinal tract. In the upper gastrointestinal tract, 

where GID occurs, dietary polyphenols are exposed to specific pH conditions, and act as 

substrates for a number of enzymes found both in the stomach and small intestine [40].  

Further transformations can occur in the colon, where the enzymes of the gut microbiota 

act to breakdown complex polyphenolic structures to smaller units.  Bacterial enzymes 

may catalyse many reactions including hydrolysis, dehydroxylation, demethylation, ring 

cleavage and decarboxylation as well as rapid de-conjugation [52]. 

In addition, our study made use of a simple cell culture system (colonic HT-29 cells), to 

assess changes in bioactivity of phlorotannins after digestion and fermentation. We stress 

the attention on the fact that despite the significant reduction of phlorotannins, TP and 

antioxidant potential in GID conditions, the HMW extract exerted a significant protective 

effect in counteracting H2O2-induced DNA damage. In addition, after CF all extracts 

showed a further reduction of TP and antioxidant capacity, thus they were able to 

significantly reduce H2O2-induced DNA damage, indicating how the potential beneficial 

effects of the extracts are not linked to their in vitro antioxidant potential.  Our results are 
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consistent with observations of (poly)phenolic compounds from other terrestrial dietary 

sources [53-56]. Our results also highlight the strong impact of GID and CF on the ability of 

the extracts to induce cell growth inhibition on HT-29 cells. In this case, all GID extracts 

exerted a significant effect, whereas after CF only HMW was able to significantly inhibit the 

growth of the cells. Therefore we highlight the differential effects of GID and CF, with CF 

more strongly influencing the anti-genotoxic potential of the extract, whereas GID has 

more strongly impacted the potential of the extracts to induce cell growth inhibition. Our 

data indicates that the gut microbiota metabolism of the seaweed extracts increased their 

ability to counteract the H2O2 induced DNA damage, whereas it reduced the ability of the 

extracts to inhibit cell growth. 

Therefore, the present work gives some important insights on the role of gastrointestinal 

digestion and colonic biotransformation on phlorotannin bioactivity in the colon, providing a 

basis for further investigating the seaweed-derived bioactive components in vivo, and help 

to elucidate their mechanism of action.  
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Figure Legends: 

Figure 1. Chromatographic separation of phlorotannins contained in the seaweed 

polyphenol extract (SPE), High Molecular Weight (HMW) and Low Molecular Weight 

(LMW) fractions by Normal-Phase HPLC with diode array detection (268nm).  

Figure 2. Digestion scheme. Schematic illustration of the simulated Gastro-

Intestinal Digestion (GID) and Colonic Fermentation (CF) procedures. 

Figure 3. HPLC analysis/digestion. Normal-Phase HPLC analysis (268nm) of the 

extracts showing the impact of digestion and fermentation on the phlorotannin 

content. Black line = Non-Digested (ND); grey line = Gastro-Intestinal Digestion 

(GID); black dashed line = Colonic Fermentation (CF). 

Figure 4. In vitro activity of seaweed extracts. Total Polyphenol content (A) and 

Trolox Equivalent Antioxidant Capacity (B). Data are means of 3 separate 

experiments, each performed in 3 replicates (n = 9), and presented as mean ±SEM. 

Statistical analysis of grouped data was conducted by Two-way ANOVA, using a 

Bonferroni post-hoc test to analyse simple effects of the digestion procedure in each 

extracts. In all groups, P<0.001 vs. ND. 

Figure 5. DNA damage (% cells in tail) measured by COMET assay in HT-29 cells 

treated with digested (GID) and fermented (CF) seaweed extracts. Data are means 

of 3 separate experiments, each performed in 3 replicates (n = 9), and presented as 

mean ±SEM. Statistical analysis of grouped data was conducted by Two-way 

ANOVA, using a Bonferroni post-hoc test to analyse simple effects of the treatments 

for each digestion procedure. A = P < 0.05 vs. control; a = P < 0.05 vs. H2O2 
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Figure 6. SRB assay.  Cell growth inhibition induced by in Ht-29 cells pretreated 

with SPE, HMW and LMW extracts (100, 250 and 500 μg/ml) for 24h.   GID extracts 

(A) and CF extract (B). Data are means of 3 separate experiments, each performed 

in 3 replicates (n = 9), and presented as mean ±SEM. Statistical analysis was 

conducted by Two-way ANOVA with Bonferroni post-hoc test. a = P < 0.05 vs. 

control; A = P < 0.05 vs. control H2O2. 
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Figure 6 
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Supporting Information tables: 

 

SI Table1. LC-MS analysis in negative ion mode of the in vitro digested (GID) seaweed extracts 

RT (min) [M-H]-  (m/z) MS2 (m/z) tentative identification 

SPE 

1.7 289 261 221 175  Unknown 

1.75 317 249 225 181 113 Unknown 

2.70 405 387 191   hydroxytrifuhalol A 

5.00 247 203    C-O-C dimer of phloroglucinol  

5.70 249 231 207 163 113 diphlorethol / difucol 

9.30 387 369 230   7-hydroxyeckol 

HMW 

1.65 249 181 113     Unknown 

1.75 317 249 225 181 113 Unknown 

2.70 405 387 191   hydroxytrifuhalol A 

5.70 249 231 207 163 113 diphlorethol / difucol 

9.30 387 369 230   7-hydroxyeckol 

LMW 

1.75 317 249 225 181 113 Unknown 

2.70 405 387 191   hydroxytrifuhalol A 

5.00 247 203    C-O-C dimer of phloroglucinol  

9.30 387 369 230     7-hydroxyeckol 
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SI Table2. LC-MS analysis in negative ion mode of the in vitro fermented (CF) seaweed extracts 

RT (min) [M-H]-  (m/z) MS2 (m/z) tentative identification 

SPE 

1.7 289 261 221 175   Unknown 

1.75 317 249 225 181 113 Unknown 

1.8 327 269 211 93  Unknown 

3.3 497 479 353 205  tetrafucol, fucodiphlorethol 

9.30 387 369 230     7-hydroxyeckol 

HMW 

1.75 317 249 225 181 113 Unknown 

1.80 327 269 211 93  Unknown 

9.30 387 369 230   7-hydroxyeckol 

LMW 

1.75 317 249 225 181 113 Unknown 

1.80 327 269 211 93  Unknown 

3.3 497 479 353 205  tetrafucol, fucodiphlorethol 

9.3 387 369 230     7-hydroxyeckol 
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Graphical abstract text: 

Effect of simulated gastrointestinal digestion and fermentation on polyphenolic 

content and bioactivity of brown seaweed phlorotannin-rich extracts. 

Giulia Corona1,2,*, Maria Magdalena Coman2,3, Yuxuan Guo2, Sarah Hotchkiss4, Chris Gill5, 

Parveen Yaqoob2, Jeremy P.E. Spencer2 and Ian Rowland2 

 

 

This study examines the impact of in vitro gastrointestinal digestion and colonic fermentation 

on the stability and bioactivity of a seaweed phlorotannins. An ethanolic extract from 

Ascophyllum nodosum rich in phlorotannins, and its high molecular weight (HMW) and low 

molecular weight (LMW) fractions were utilized. Both gastrointestinal digestion (GID) and 

colonic fermentation (CF) significantly affected polymeric phlorotannins, total polyphenol 

levels, and antioxidant activity of the extract and fractions. Despite this, the anti-genotoxic 

activity and cell growth inhibitory effect of the extracts in colon HT-29 cells was maintained 

and enhanced. HMW was the most effective fraction, indicating that the high molecular 

weight phlorotannins potentially exert a stronger beneficial effect in the colon. 

 

 


