

SPAACE :: Self- Properties for an Autonomous &

Autonomic Computing Environment

Roy Sterritt

School of Computing and Mathematics,

Faculty of Engineering

University of Ulster

Northern Ireland

r.sterritt@ulster.ac.uk

Mike Hinchey

NASA Goddard Space Flight Center

Software Engineering Laboratory

Greenbelt, MD 20771

USA

michael.g.hinchey@nasa.gov

Abstract

Self-* properties, or “selfware”, refers to current

and emerging behaviours exhibited by systems that are

considered to be “autonomic” or inspired by another

view of self-management. We describe some emerging

properties, which may range from self-adjusting to self-

destruction. We describe the architecture required to

create self-ware and discuss the relationship between

autonomicity and autonomicity.

Keywords: Self-Managing Systems, Selfware, Self-*,

Autonomic Computing, Autonomic Systems, Autonomy.

1. Introduction

Various initiatives related to the development of self-

managing systems have been proposed as means of

addressing issues in the development of complex

computer-based systems. These initiatives include:

Autonomic Computing (IBM), Adaptive Infrastructure

(HP), N1 (Sun), Dynamic Systems Initiative (Microsoft),

Adaptive Network Care (Cisco), Proactive Computing

(Intel), Organic Computing (Fujitsu). A major focus has

been on biologically-inspired approaches, taking

inspiration from the human body and from nature. At

the heart of this vision of self-managing systems is

selfware, incorporating such self-* properties as self-

configuring, self-healing, self-protecting and self-

optimizing. Achievement of this “selfware” is

dependant on achieving system self-awareness and

environmental awareness, implemented by means of a

feedback control loop consisting of sensors and effectors

within the computer system to provide the self-

monitoring and self-adjusting properties [1].

We consider these properties, the architecture of self-

managing systems, and the relationship between

autonomicity (self-management) and autonomy (self-

government).

2. Selfware: Self-managing Software /

Hardware /Firmware & Communications

IBM, upon launching their initiative, identified the

computing industry’s main concerns as system

complexity and total cost of ownership (TCO). Their

solution, viz. Autonomic Computing, was described as

compromising of eight elements [2];

• Possess system identity - detailed knowledge of

components

• Self configure & re-configure - adaptive

algorithms

• Optimize operations - adaptive algorithms

• Recover - no impact on data or delay on

processing

• Self protection

• Aware of environment and adapt

• Function in a heterogeneous world

• Hide complexity

These eight elements can be expressed in terms of

properties that a system should possess in order to

constitute autonomicity [3]. These are described in

Section 2.1 and elaborated upon in Section 2.2, which

discusses the very constructs that constitute these

properties.

2.1 Self-* and Autonomic Properties

The properties that a system should possess in order

to constitute an autonomic system are depicted in Figure

1 [2],[3],[4].

Figure 1 Autonomic Computing Properties

The general properties of an autonomic (self-

managing) system can be summarised by four

objectives: being self-configuring, self-healing, self-

optimizing and self-protecting, and four attributes: self-

awareness, environment-awareness, self-monitoring and

self-adjusting (Figure 1). Essentially, the objectives

represent broad system requirements, while the attributes

identify basic implementation mechanisms. Since the

2001 launch of the Autonomic Computing initiative, the

self-* list of properties has grown substantially [5],[6]

yet this initial set still represents the general goal.

Self-configuring represents a system’s ability to re-

adjust itself automatically; this may simply be in support

of changing circumstances, or to assist in self-healing,

self-optimization or self-protection. Self-healing, in

reactive mode, is a mechanism concerned with ensuring

effective recovery when a fault occurs, identifying the

fault, and then, where possible, repairing it. In proactive

mode, it monitors vital signs in an attempt to predict and

avoid “health” problems (reaching undesirable

situations). Self-optimization means that a system is

aware of its ideal performance, can measure its current

performance against that ideal, and has defined policies

for attempting improvements. It may also react to policy

changes within the system as indicated by the users. A

self-protecting system will defend itself from accidental

or malicious external attack. This necessitates

awareness of potential threats and a means of handling

those threats (Figure 1) [3].

In achieving such self-managing objectives (Figure 1)

a system must be aware of its internal state (self-aware)

and current external operating conditions (environment-

aware). Changing circumstances are detected through

self-monitoring and adaptations are made accordingly

(self-adjusting) [3]. As such, a system must have

knowledge of its available resources, its components,

their desired performance characteristics, their current

status, and the status of inter-connections with other

systems, along with rules and policies of how these may

be adjusted. Such ability to operate in a heterogeneous

environment will require the use of open standards to

enable global understanding and communication with

other systems [2].

These mechanisms are not independent entities. For

instance, if an attack is successful, this will include self-

healing actions, and a mix of self-configuration and self-

optimisation, in the first instance to ensure dependability

and continued operation of the system, and later to

increase the self-protection against similar future attacks.

Finally, these self-mechanisms should ensure there is

minimal disruption to users, avoiding significant delays

in processing.

Other self-* properties have emerged or have been

revisited in the context of autonomicity. We highlight

some of these briefly here.

self-*

Self-managing properties.

self-anticipating

The ability to predict likely outcomes or simulate self-*

actions.

self-assembling

Assembly of models, algorithms, agents, robots, etc.; self-

assembly is often influenced by nature, such as nest

construction in social insects. Also referred to as self-

reconfigurable systems.

self-awareness

“Know thy self”; awareness of internal state; knowledge of

past states and operating abilities.

self-chop

The initial four (and generic) self-properties (Self-

Configuration, Self-Healing, Self-Optimisation and Self-

Protection).

self-configuring

The ability to configure and re-configure in order to meet

policies/goals.

self-critical

The ability to consider if policies are being met or goals are

being achieved (alternatively, self-reflect)

self-defining

In reference to autonomic event messages between Autonomic

Managers: contains data and definition of that data–metadata

(for instance using XML).

In reference to goals/policies: defining these (from self-

reflection, etc.).

self-governing

As in autonomous: responsibility for achieving goals/tasks.

self-healing

Reactive (self-repair of faults) and Proactive (predicting and

preventing faults).

self-installing

As in a specialized form of self-configuration – installing

patches, new components, etc or re-installation of OS after

major crash.

self-managing

Autonomous, along with responsibility for wider self-*

management issues.

self-optimizing

Optimization of tasks and nodes.

self-organized

Organization of effort/nodes. Particularly used in

networks/communications.

self-protecting

The ability of a system to protect itself.

self-reflecting

The ability to consider if routine and reflex operations of self-*

operations are as expected. May involve self-simulation to test

scenarios.

self-similar

Self-managing components created from similar components

that adapt to a specific task, for instance a self-managing

agent.

self-simulation

The ability to generate and test scenarios, without affecting the

live system.

selfware

Self-managing software, firmware and hardware.

2.2 Autonomic Element

Figure 2 represents a view of an architecture for an

autonomic element that consists of the component

required to be managed, and the autonomic manager [6].

It is assumed that an autonomic manager (AM) is

responsible for a managed component (MC) within a

self-contained autonomic element (AE). This autonomic

manager may be designed as part of the component or

provided externally to the component, as an agent, for

instance. Interaction will occur with remote autonomic

managers (cf. the autonomic communications channel

shown in Figure 2) through virtual, peer-to-peer, client-

server or grid configurations.

Figure 2 An Autonomic Element, including reflection

and reflex layers.

At the heart of the architecture of any autonomic

system are sensors and effectors. A control loop is

created by monitoring behavior through sensors,

comparing this with expectations (knowledge, as in

historical and current data, rules and beliefs), planning

what action is necessary (if any), and then executing that

action through effectors. The closed loop of feedback

control provides the basic backbone structure for each

system component [7]. Figure 2 highlights that there are

at least two control loops in an Autonomic Element –

one for self-awareness and another for environmental

awareness.

IBM represents this self-monitor/self-adjuster control

loop as the monitor, analyze, plan and execute (MAPE)

control loop (Figure 1). The monitor-and-analyze parts

of the structure process information from the sensors to

provide both self-awareness and an awareness of the

external environment. The plan-and-execute parts

decide on the necessary self-management behavior that

will be executed through the effectors. The MAPE

components use the correlations, rules, beliefs,

expectations, histories, and other information known to

the autonomic element, or available to it through the

knowledge repository within the AM [7].

2.3 Reflex Signal – Lub-Dub Pulse Emission

The autonomic environment requires that autonomic

elements and, in particular, autonomic managers

communicate with one another concerning self-*

activities, in order to ensure the robustness of the

environment. Figure 2 depicts that the autonomic

manager communications (AMAM) also includes a

reflex signal. This may be facilitated through the

additional concept of a pulse monitor—PBM (an

extension of the embedded system’s heart-beat monitor,

or HBM, which safeguards vital processes through the

emission of a regular “I am alive” signal to another

process) with the capability to encode health and

urgency signals as a pulse [8]. Together with the

standard event messages on the autonomic

communications channel, this provides dynamics within

autonomic responses and multiple loops of control, such

as reflex reactions among the autonomic managers [9].

This reflex component may be used to safe-guard the

autonomic element by communicating its health to

another AE [10]. The component may also be utilized

to communicate environmental health information [11].

For instance, in the situation where each PC in a LAN is

equipped with an autonomic manager, rather than each

of the individual PCs monitoring the same environment,

a few PCs (likely the least busy machines) may take on

this role and alert the others through a change in pulse to

indicate changing circumstances.

An important aspect concerning the reflex reaction

and the pulse monitor is the minimization of data sent –

essentially only a “signal” is transmitted. Strictly

speaking, this is not mandatory; more information may

be sent, yet the additional information must not

compromise the reflex reaction. For instance, in the

absence of bandwidth concerns, information that can be

acted upon quickly and not incur processing delays

could be sent. The important aspect is that the

information must be in a form that can be acted upon

immediately and not involve processing delays (such as

is the case of event correlation).

Just as the beat of the heart has a double beat (lub-

dub) the autonomic element’s (Figure 2) pulse monitor

may have a double beat encoded – as described above, a

self health/urgency measure and an environment

health/urgency measure. These match directly with the

two control loops within the AE, and the self-awareness

and environment awareness properties.

2.4 Reflection

Reflection techniques allow the system to perform

analysis computation on itself [12] (cf. the reflection

component within the autonomic manager shown in

Figure 2). In terms of an autonomic system, this is

particularly relevant in order to allow the system to

consider the self-managing policies, and to ensure that

they are being performed as expected. This is acutely

key since autonomicity involves self-adaptation to the

changing circumstances in the environment.

2.5 Autonomy and Autonomicity at the System level

A high level perspective for an intelligent machine

design is depicted in Figure 3 (adapted from [13], [8]).

It describes three levels for the design of intelligent

systems:

1. Reaction—lowest level, where no learning

occurs but there is immediate response to state

information coming from sensory systems.

2. Routine—middle level, where largely routine

evaluation and planning behaviors take place.

Input is received from sensors as well as from

the reaction level and reflection level. This

level of assessment results in three dimensions

of affect and emotion values: positive affect,

negative affect, and (energetic) arousal.

3. Reflection—top level, receives no sensory

input or has no motor output; input is received

from below. Reflection is a meta-process,

whereby the mind deliberates about itself.

Essentially, operations at this level look at the

system’s representations of its experiences, its

current behavior, its current environment, etc.

Input from, and output to, the environment only takes

place within the reflex and routine layers. One may

consider that reaction level essentially sits within the

“hard” engineering domain, monitoring the current state

of both the machine and its environment, with rapid

reaction to changing circumstances; and, that the

reflection level may reside within the AI domain

utilizing its techniques to consider the behavior of the

system and learn new strategies. The routine level may

be a cooperative mixture of both (Figure 3).

Figure 3 Comparing intelligent machine design and

system level autonomy and autonomicity

This high-level intelligent machine design is

appropriate for autonomic systems as depicted here

since the case has been made for the dynamics of

responses including reflex reactions and also for

reflection of the self-managing behavior.

Some researchers hold the perception that autonomic

computing resides solely within the domain of the

reaction layer. This is understandable due to the

metaphoric link with the autonomic nervous system,

where no conscious or cognitive activity takes place.

These researchers would point to other biologically-

inspired computing (also referred to as nature-inspired

computing, organic computing, etc.) as providing such

higher level cognitive approaches for instance as in

swarm intelligence. Within the autonomic computing

research community, autonomicity is not normally

considered to imply this narrower view. Essentially, the

autonomic self-managing metaphor is considered to aim

for a user/manager to be able to set high-level policies,

while the system achieves the goals. Similar

overarching views exist in other related initiatives and,

increasingly, they are influencing each other.

In terms of autonomy and autonomicity, autonomy

may be considered as being self-governing while

autonomicity is considered being self-managing. At the

element level, an element will have some autonomy and

autonomic properties, since to self-manage implies some

autonomy, while to provide a dependable autonomous

element requires such autonomic properties as self-

healing along with the element’s self-directed task.

From this perspective, it would appear that the

separation of autonomy and autonomicity as

characteristics will decrease in the future and eventually

will become negligible. On the other hand, at the system

level if one considers again the three tiers of the

intelligent machine design (reaction, routine, and

reflection) and accepts the narrower view of

autonomicity, there is a potential correlation between the

levels. That is, the reaction level correlates with

autonomicity, and the reflection level with autonomy, as

in self-governing of the self-managing policies within

the system. In the end, different classifications or

different perspectives on the matter will be academic

unless they assist and inspire new means to achieve the

self-managing vision.

3. Conclusion

We have discussed emerging self-* properties, self-

managing elements incorporating reflex and reaction

layers, along with the emerging standard components of

self- and environmental control loops, and the necessary

components to provide the self-monitoring and self-

adjusting properties.

We have summarized how the reflex reaction

component – the pulse monitor – may be used to encode

and transmit health/urgency signals of the element (self)

or the environment. We propose that like the heart with

its double beat (lub-dub) that the self and environmental

values may be transmitted together.

The relationship of Autonomous & Autonomic

computing, framed in the context of an intelligent

machine design architecture with reaction, routine, and

reflection layers was also discussed

Self-managing systems, whether viewed from the

autonomic computing perspective, or from the

perspective of another initiative, offers a holistic vision

for the development and evolution of computer-based

systems that aims to bring new levels of automation and

dependability to systems, while simultaneously hiding

their complexity and reducing their total cost of

ownership.

Acknowledgements

This research is partly supported at University of

Ulster by the Computer Science Research Institute and

the Centre for Software Process Technologies (CSPT)

which is funded by Invest NI through the Centres of

Excellence Programme, under the EU Peace II initiative.

Part of this work has been supported by the NASA

Office of Systems and Mission Assurance (OSMA)

through its Software Assurance Research Program

(SARP) project, Formal Approaches to Swarm

Technologies (FAST), and by NASA Goddard Space

Flight Center, Software Engineering Laboratory (Code

581).

References

[1] Sterritt, R., Towards Autonomic Computing:

Effective Event Management, Proceedings of 27th

Annual IEEE/NASA Software Engineering

Workshop (SEW), Maryland, USA, December 3-5,

IEEE Computer Society, pp 40-47.

[2] Horn, P., Autonomic computing: IBM perspective

on the state of information technology, IBM T.J.

Watson Labs, NY, 15 October 2001. Presented at

AGENDA 2001, Scottsdale, AZ (available at

http://www.research.ibm.com/autonomic/), 2001

[3] Sterritt, R. and Bustard, D.W., Autonomic

Computing: a Means of Achieving Dependability?

Proceedings of 10
th

 IEEE International Conference

on the Engineering of Computer Based Systems

(ECBS ’03), Huntsville, Alabama, USA, April 7-11,

IEEE CS Press, pp 247-251.

[4] IBM. An Architectural Blueprint for Autonomic

Computing.

[5] Tianfield, H., Multi-Agent Based Autonomic

Architecture for Network Management,

Proceedings of INDIN 2003, IEEE International

Conference on Industrial Informatics, 21-24 August

2003, pp 462-469.

[6] Sterritt, R., Autonomic Computing, Innovations in

Systems and Software Engineering: a NASA

Journal, Springer, 1(1), April 2005.

[7] Ganek, A.G., and Corbi, T.A., The Dawning of the

Autonomic Computing Era, IBM Systems Journal,

42(1):5–18.

[8] Sterritt, R., Pulse Monitoring: Extending the Health-

check for the Autonomic GRID. Proceedings of

IEEE Workshop on Autonomic Computing

Principles and Architectures (AUCOPA 2003) at

INDIN 2003, Banff, Alberta, Canada, 22–23

August, pp 433–440.

[9] Sterritt, R., Gunning, D., Meban, A., and Henning,

P., Exploring Autonomic Options in a Unified Fault

Management Architecture through Reflex Reactions

via Pulse Monitoring. Proceedings of IEEE

Workshop on the Engineering of Autonomic

Systems (EASe 2004) at the 11th Annual IEEE

International Conference and Workshops on the

Engineering of Computer-Based Systems (ECBS

2004), Brno, Czech Republic, 24–27 May, pp 449–

455.

[10] Sterritt, R. and Chung, S., Personal Autonomic

Computing Self-Healing Tool, Proceedings of IEEE

Workshop on the Engineering of Autonomic

Systems (EASe 2004) at 11th Annual IEEE

International Conference and Workshop on the

Engineering of Computer Based Systems (ECBS

2004), Brno, Czech Republic, 24-27 May, pp 513-

520.

[11] Sterritt, R. and Bantz, D.F., PAC-MEN: Personal

Autonomic Computing Monitoring Environments,

Proceedings of IEEE DEXA 2004 Workshops - 2nd

International Workshop on Self-Adaptive and

Autonomic Computing Systems (SAACS 04),

Zaragoza, Spain, August 30th - September 3rd, pp

737-741.

[12] Maes, P., Concepts and Experiments in

Computational Reflection, Proceedings of the

International Conference on Object-Oriented

Programming Systems, Languages and

Applications, 1987, pp 147-155.

[13] Norman, D.A., Ortony, A. and Russell, D.M.,

Affect and Machine Design: Lessons for the

Development of Autonomous Machines, IBM

Systems Journal, 42(1):38–44.

http://www.infc.ulst.ac.uk/staff/r.sterritt@ulster.ac.uk
http://www.infc.ulst.ac.uk/staff/dw.bustard@ulster.ac.uk

