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Abstract 
 

Self-* properties, or “selfware”, refers to current 

and emerging behaviours exhibited by systems that are 

considered to be “autonomic” or inspired by another 

view of self-management.  We describe some emerging 

properties, which may range from self-adjusting to self-

destruction.  We describe the architecture required to 

create self-ware and discuss the relationship between 

autonomicity and autonomicity. 
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1. Introduction 
 

Various initiatives related to the development of self-

managing systems have been proposed as means of  

addressing issues in the development of complex 

computer-based systems.     These initiatives include: 

Autonomic Computing (IBM), Adaptive Infrastructure 

(HP), N1 (Sun), Dynamic Systems Initiative (Microsoft), 

Adaptive Network Care (Cisco), Proactive Computing 

(Intel), Organic Computing (Fujitsu).  A major focus has 

been on biologically-inspired approaches, taking 

inspiration from the human body and from nature.  At 

the heart of this vision of self-managing systems is 

selfware, incorporating such self-* properties as self-

configuring, self-healing, self-protecting and self-

optimizing.  Achievement of this “selfware” is 

dependant on achieving system self-awareness and 

environmental awareness, implemented by means of a 

feedback control loop consisting of sensors and effectors 

within the computer system to provide the self-

monitoring and self-adjusting properties [1]. 

We consider these properties, the architecture of self-

managing systems, and the relationship between 

autonomicity (self-management) and autonomy (self-

government). 

 

2. Selfware: Self-managing Software / 

Hardware /Firmware & Communications 
 

IBM, upon launching their initiative, identified the 

computing industry’s main concerns as system 

complexity and total cost of ownership (TCO).  Their 

solution,  viz. Autonomic Computing, was described as 

compromising of eight elements [2]; 

 

• Possess system identity - detailed knowledge of 

components 

• Self configure & re-configure - adaptive 

algorithms 

• Optimize operations - adaptive algorithms 

• Recover - no impact on data or delay on 

processing 

• Self protection 

• Aware of environment and adapt 

• Function in a heterogeneous world 

• Hide complexity 

 

These eight elements can be expressed in terms of 

properties that a system should possess in order to 

constitute autonomicity [3].  These are described in 

Section 2.1 and elaborated upon in Section 2.2, which 

discusses the very constructs that constitute these 

properties. 

 

2.1 Self-* and Autonomic Properties 

The properties that a system should possess in order 

to constitute an autonomic system are depicted in Figure 

1 [2],[3],[4]. 

 

 



 

 

Figure 1  Autonomic Computing Properties 

 

The general properties of an autonomic (self-

managing) system can be summarised by four 

objectives: being self-configuring, self-healing, self-

optimizing and self-protecting, and four attributes: self-

awareness, environment-awareness, self-monitoring and 

self-adjusting (Figure 1).  Essentially, the objectives 

represent broad system requirements, while the attributes 

identify basic implementation mechanisms.  Since the 

2001 launch of the Autonomic Computing initiative, the 

self-* list of properties has grown substantially [5],[6] 

yet this initial set still represents the general goal. 

Self-configuring represents a system’s ability to re-

adjust itself automatically; this may simply be in support 

of changing circumstances, or to assist in self-healing, 

self-optimization or self-protection.  Self-healing, in 

reactive mode, is a mechanism concerned with ensuring 

effective recovery when a fault occurs, identifying the 

fault, and then, where possible, repairing it.  In proactive 

mode, it monitors vital signs in an attempt to predict and 

avoid “health” problems (reaching undesirable 

situations).  Self-optimization means that a system is 

aware of its ideal performance, can measure its current 

performance against that ideal, and has defined policies 

for attempting improvements.  It may also react to policy 

changes within the system as indicated by the users.  A 

self-protecting system will defend itself from accidental 

or malicious external attack.  This necessitates 

awareness of potential threats and a means of handling 

those threats (Figure 1) [3].  

In achieving such self-managing objectives (Figure 1) 

a system must be aware of its internal state (self-aware) 

and current external operating conditions (environment-

aware). Changing circumstances are detected through 

self-monitoring and adaptations are made accordingly 

(self-adjusting) [3]. As such, a system must have 

knowledge of its available resources, its components, 

their desired performance characteristics, their current 

status, and the status of inter-connections with other 

systems, along with rules and policies of how these may 

be adjusted.  Such ability to operate in a heterogeneous 

environment will require the use of open standards to 

enable global understanding and communication with 

other systems [2]. 

These mechanisms are not independent entities.  For 

instance, if an attack is successful, this will include self-

healing actions, and a mix of self-configuration and self-

optimisation, in the first instance to ensure dependability 

and continued operation of the system, and later to 

increase the self-protection against similar future attacks.  

Finally, these self-mechanisms should ensure there is 

minimal disruption to users, avoiding significant delays 

in processing. 

Other self-* properties have emerged or have been 

revisited in the context of autonomicity.  We highlight 

some of these briefly here. 

self-* 

Self-managing properties. 

self-anticipating 

The ability to predict likely outcomes or simulate self-* 

actions. 

self-assembling 

Assembly of models, algorithms, agents, robots, etc.; self-

assembly is often influenced by nature, such as nest 

construction in social insects.  Also referred to as self-

reconfigurable systems. 

self-awareness 

“Know thy self”; awareness of internal state; knowledge of 

past states and operating abilities.  

self-chop 

The initial four (and generic) self-properties (Self-

Configuration, Self-Healing, Self-Optimisation and Self-

Protection). 

self-configuring 

The ability to configure and re-configure in order to meet 

policies/goals. 



 

self-critical 

The ability to consider if policies are being met or goals are 

being achieved (alternatively, self-reflect) 

self-defining 

In reference to autonomic event messages between Autonomic 

Managers: contains data and definition of that data–metadata 

(for instance using XML).   

 

In reference to goals/policies: defining these (from self-

reflection, etc.). 

self-governing 

As in autonomous: responsibility for achieving goals/tasks. 

self-healing 

Reactive (self-repair of faults) and Proactive (predicting and 

preventing faults). 

self-installing 

As in a specialized form of self-configuration – installing 

patches, new components, etc or re-installation of OS after 

major crash. 

self-managing 

Autonomous, along with  responsibility for wider self-* 

management issues. 

self-optimizing 

Optimization of tasks and nodes. 

self-organized 

Organization of effort/nodes.  Particularly used in 

networks/communications. 

self-protecting 

The ability of a system to protect itself. 

self-reflecting 

The ability to consider if routine and reflex operations of self-* 

operations are as expected.  May involve self-simulation to test 

scenarios.  

self-similar 

Self-managing components created from similar components 

that adapt to a specific task, for instance a self-managing 

agent. 

self-simulation 

The ability to generate and test scenarios, without affecting the 

live system. 

selfware 

Self-managing software, firmware and hardware. 

 

2.2 Autonomic Element 

Figure 2 represents a view of an architecture for an 

autonomic element that consists of the component 

required to be managed, and the autonomic manager [6].   

It is assumed that an autonomic manager (AM) is 

responsible for a managed component (MC) within a 

self-contained autonomic element (AE). This autonomic 

manager may be designed as part of the component or 

provided externally to the component, as an agent, for 

instance.  Interaction will occur with remote autonomic 

managers (cf. the autonomic communications channel 

shown in Figure 2) through virtual, peer-to-peer, client-

server or grid configurations.  

 

 

Figure 2  An Autonomic Element, including reflection 

and reflex layers. 

 

At the heart of the architecture of any autonomic 

system are sensors and effectors.  A control loop is 

created by monitoring behavior through sensors, 

comparing this with expectations (knowledge, as in 

historical and current data, rules and beliefs), planning 

what action is necessary (if any), and then executing that 

action through effectors.  The closed loop of feedback 

control provides the basic backbone structure for each 

system component [7].  Figure 2 highlights that there are 

at least two control loops in an Autonomic Element – 

one for self-awareness and another for environmental 

awareness. 



 

IBM represents this self-monitor/self-adjuster control 

loop as the monitor, analyze, plan and execute (MAPE) 

control loop (Figure 1).  The monitor-and-analyze parts 

of the structure process information from the sensors to 

provide both self-awareness and an awareness of the 

external environment.  The plan-and-execute parts 

decide on the necessary self-management behavior that 

will be executed through the effectors.  The MAPE 

components use the correlations, rules, beliefs, 

expectations, histories, and other information known to 

the autonomic element, or available to it through the 

knowledge repository within the AM [7]. 

 

2.3 Reflex Signal – Lub-Dub Pulse Emission 

The autonomic environment requires that autonomic 

elements and, in particular, autonomic managers 

communicate with one another concerning self-* 

activities, in order to ensure the robustness of the 

environment. Figure 2 depicts that the autonomic 

manager communications (AMAM) also includes a 

reflex signal.  This may be facilitated through the 

additional concept of a pulse monitor—PBM (an 

extension of the embedded system’s heart-beat monitor,  

or HBM, which safeguards vital processes through the 

emission of a regular “I am alive” signal to another 

process) with the capability to encode health and 

urgency signals as a pulse [8].  Together with the 

standard event messages on the autonomic 

communications channel, this provides dynamics within 

autonomic responses and multiple loops of control, such 

as reflex reactions among the autonomic managers [9]. 

This reflex component may be used to safe-guard the 

autonomic element by communicating its health to 

another AE [10].   The component may also be utilized 

to communicate environmental health information [11]. 

For instance, in the situation where each PC in a LAN is 

equipped with an autonomic manager, rather than each 

of the individual PCs monitoring the same environment, 

a few PCs (likely the least busy machines) may take on 

this role and alert the others through a change in pulse to 

indicate changing circumstances. 

An important aspect concerning the reflex reaction 

and the pulse monitor is the minimization of data sent – 

essentially only a “signal” is transmitted.  Strictly 

speaking, this is not mandatory; more information may 

be sent, yet the additional information must not 

compromise the reflex reaction.   For instance, in the 

absence of bandwidth concerns, information that can be 

acted upon quickly and not incur processing delays 

could be sent.  The important aspect is that the 

information must be in a form that can be acted upon 

immediately and not involve processing delays (such as 

is the case of event correlation). 

Just as the beat of the heart has a double beat (lub-

dub) the autonomic element’s (Figure 2) pulse monitor 

may have a double beat encoded – as described above, a 

self health/urgency measure and an environment 

health/urgency measure.  These match directly with the 

two control loops within the AE, and the self-awareness 

and environment awareness properties.  

 

2.4 Reflection 

Reflection techniques allow the system to perform 

analysis computation on itself [12] (cf. the reflection 

component within the autonomic manager shown in 

Figure 2).  In terms of an autonomic system, this is 

particularly relevant in order to allow the system to 

consider the self-managing policies, and to ensure that 

they are being performed as expected.  This is acutely 

key since autonomicity involves self-adaptation to the 

changing circumstances in the environment. 

 

2.5 Autonomy and Autonomicity at the System level 

A high level perspective for an intelligent machine 

design is depicted in Figure 3 (adapted from [13], [8]).  

It describes three levels for the design of intelligent 

systems:  

 

1. Reaction—lowest level, where no learning 

occurs but there is immediate response to state 

information coming from sensory systems.  

2. Routine—middle level, where largely routine 

evaluation and planning behaviors take place.  

Input is received from sensors as well as from 

the reaction level and reflection level.  This 

level of assessment results in three dimensions 

of affect and emotion values: positive affect, 

negative affect, and (energetic) arousal.  

3. Reflection—top level, receives no sensory 

input or has no motor output; input is received 

from below.  Reflection is a meta-process, 

whereby the mind deliberates about itself. 

Essentially, operations at this level look at the 

system’s representations of its experiences, its 

current behavior, its current environment, etc. 

 

Input from, and output to, the environment only takes 

place within the reflex and routine layers.  One may 

consider that reaction level essentially sits within the 

“hard” engineering domain, monitoring the current state 

of both the machine and its environment, with rapid 

reaction to changing circumstances; and, that the 

reflection level may reside within the AI domain 

utilizing its techniques to consider the behavior of the 



 

system and learn new strategies.  The routine level may 

be a cooperative mixture of both (Figure 3).  

 

 

 

Figure 3  Comparing intelligent machine design and 

system level autonomy and autonomicity 

 

This high-level intelligent machine design is 

appropriate for autonomic systems as depicted here 

since the case has been made for the dynamics of 

responses including reflex reactions and also for 

reflection of the self-managing behavior. 

Some researchers hold the perception that autonomic 

computing resides solely within the domain of the 

reaction layer.   This is understandable due to the 

metaphoric link with the autonomic nervous system, 

where no conscious or cognitive activity takes place.  

These researchers would point to other biologically-

inspired computing (also referred to as nature-inspired 

computing, organic computing, etc.) as providing such 

higher level cognitive approaches for instance as in 

swarm intelligence.  Within the autonomic computing 

research community, autonomicity is not normally 

considered to imply this narrower view. Essentially, the 

autonomic self-managing metaphor is considered to aim 

for a user/manager to be able to set high-level policies, 

while the system achieves the goals.  Similar 

overarching views exist in other related initiatives and, 

increasingly, they are influencing each other. 

In terms of autonomy and autonomicity, autonomy 

may be considered as being self-governing while 

autonomicity is considered being self-managing.  At the 

element level, an element will have some autonomy and 

autonomic properties, since to self-manage implies some 

autonomy, while to provide a dependable autonomous 

element requires such autonomic properties as self-

healing along with the element’s self-directed task.  

From this perspective, it would appear that the 

separation of autonomy and autonomicity as 

characteristics will decrease in the future and eventually 

will become negligible.  On the other hand, at the system 

level if one considers again the three tiers of the 

intelligent machine design (reaction, routine, and 

reflection) and accepts the narrower view of 

autonomicity, there is a potential correlation between the 

levels.  That is, the reaction level correlates with 

autonomicity, and the reflection level with autonomy, as 

in self-governing of the self-managing policies within 

the system.  In the end, different classifications or 

different perspectives on the matter will be academic 

unless they assist and inspire new means to achieve the 

self-managing vision. 

 

 

 

3. Conclusion 
 

We have discussed emerging self-* properties, self-

managing elements incorporating reflex and reaction 

layers, along with the emerging standard components of 

self- and environmental control loops, and the necessary 

components to provide the self-monitoring and self-

adjusting properties.  

We have summarized how the reflex reaction 

component – the pulse monitor – may be used to encode 

and transmit health/urgency signals of the element (self) 

or the environment.   We propose that like the heart with 

its double beat (lub-dub) that the self and environmental 

values may be transmitted together.   

The relationship of Autonomous & Autonomic 

computing, framed in the context of an intelligent 

machine design architecture with reaction, routine, and 

reflection layers was also discussed 

Self-managing systems, whether viewed from the 

autonomic computing perspective, or from the 

perspective of another initiative, offers a holistic vision 

for the development and evolution of computer-based 

systems that aims to bring new levels of automation and 

dependability to systems, while simultaneously hiding 

their complexity and reducing their total cost of 

ownership.   
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