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Abstract

This paper presents results of computer simulations for a number of different

probabilistic versions of inference to the best explanation (IBE), which are dis-

tinguished by the probabilistic measures used to identify the best explanation.

Simulation results are presented which include cases involving ignorance of a

catch-all hypothesis, uncertainty regarding the prior probability distribution

over the remaining hypotheses, initial elimination of implausible hypotheses,

and variations in the number of pieces of evidence taken into consideration.

The results show that at least some versions of IBE perform very well in a wide

range of cases. In particular, the results for all approaches remain very similar

(or improve in some cases) when just the two hypotheses with the highest prior

probabilities are retained and the rest are eliminated from consideration.

1 Introduction

Inference to the best explanation (IBE) or abduction is an ampliative mode of

reasoning which is often defended as central to scientific reasoning, but also seems

to capture aspects of evidential reasoning as it occurs more generally, including

in everyday life. IBE proceeds by considering a number of plausible candidate

hypotheses in a given evidential context and then comparing these hypotheses in

order to make an inference to the one that best explains the relevant evidence. It

has been discussed widely in both the philosophy of science and computer science
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literature [1–4].

There has been a lot of interest in the relationship between IBE and proba-

bility, particularly in debates about the compatibility or otherwise between IBE

and Bayesian inference [5–8] and on IBE or abduction in the context of Bayesian

networks [9–14]. Here the focus is on using probabilistic approaches to determine

which one of a collection of competing hypotheses provides the best explanation

of the evidence. These approaches enable two key questions about IBE to be ad-

dressed. First, they provide ways of making IBE precise by specifying what is meant

by ‘best’. Various probabilistic measures have been proposed to this end in the lit-

erature [15–19]. Second, they make it possible to investigate whether selecting the

best explanation is a good strategy for inferring truth. In this context, some stud-

ies have been carried out using computer simulations to evaluate how well various

measures perform in hypothesis selection tasks and provide more general defences

of versions of IBE based on probabilistic measures [18, 20, 21]. Hence, although the

paper does not attempt to address all the philosophical issues surrounding IBE (see

for example [2, 3]), the results obtained are very relevant to those debates.

An interesting aspect of previous work is that in cases where there is uncertainty

in the prior probability distribution over the hypotheses, inference based on a coher-

ence measure for ranking hypotheses outperformed the approach that simply selects

the most probable hypothesis in light of the evidence [18]. The current paper builds

on this work by providing a more adequate and realistic account of how probability

can be used in IBE and a more systematic evaluation of how IBE so construed per-

forms as a mode of reasoning when ignorance of a catch-all hypothesis, uncertainty

regarding the prior distribution, initial elimination of implausible hypotheses, and

variations in the number of pieces of evidence available are taken into account.

These are important considerations for IBE in general. For example, whether in

the context of scientific reasoning or in everyday, commonsense reasoning, it would

be unrealistic to assume complete knowledge of all possible hypotheses. As such,

inclusion of a catch-all hypothesis allows for IBE to be modelled and evaluated

in a more realistic way. Similarly, even among the known hypotheses, it would

be unreasonable to expect that they should all be evaluated in detail since the
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number of hypotheses could be large and some hypotheses might be considered very

implausible based on background knowledge. Hence, modelling this practical aspect

of IBE enables us to see how it affects its performance.

Rather than exploring IBE in the context of particular applications, whether

in science or everyday life, the goal of the paper is to evaluate IBE as a general

mode of inference. More specifically, the goal is to investigate the performance of

various probabilistic models of IBE. Thus, the focus is of a conceptual nature, but by

incorporating more realistic aspects of IBE into the simulations the results may also

have implications for how IBE could be justified and used in practical applications.

2 Measures for comparing hypotheses

A number of measures have been proposed in the literature to quantify how well a

hypothesis h explains evidence e. These include the following measure of explanatory

power proposed by Schupbach and Sprenger [16]:

ESS(e, h) =
P (h|e)− P (h|∼e)
P (h|e) + P (h|∼e)

, (1)

an alternative measure of explanatory power proposed by Crupi and Tentori [19]:

ECT (e, h) =


P (e|h)− P (e)

1− P (e)
if P (e|h) ≥ P (e)

P (e|h)− P (e)

P (e)
if P (e|h) < P (e),

(2)

another measure that has been discussed by Good [22] and McGrew [23]:

EGM (e, h) = ln

[
P (e|h)

P (e)

]
. (3)

and the overlap coherence measure (OCM) used to rank explanations by Glass

[17, 18]:

EOCM (e, h) =
P (h ∧ e)
P (h ∨ e)

. (4)

Criticisms of some of these measures were presented by Glymour [24], while a

response has been given by Glass [21]. In order to respond to a criticism based on the

fact that advantages of the EOCM diminished as the sample size (i.e. the number of
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samples of evidence) increased, the following alternative product coherence measure

(PCM) was proposed and shown to retain the advantages with increasing sample

size:

EPCM (e, h) = P (e|h)× P (h|e). (5)

The strategy used in this paper and discussed in detail in section 3 is to consider

a set of hypotheses {hi} for evidence e and select the hypothesis which gives the

maximum value of a particular measure, E . It would be possible to use all the

measures defined above, but it turns out that ESS , ECT and EGM all give the same

ranking of hypotheses, giving the same result as selecting the hypothesis with the

maximum likelihood, P (e|hi).1

Another measure that will be considered is the posterior probability of the hy-

potheses in light of the evidence, P (hi|e). The hypothesis that maximizes posterior

probability is often referred to in the artificial intelligence literature as the most

probable explanation (MPE). Arguably, this is a poor definition of ‘best explana-

tion’ [15, 17], but it nevertheless provides a standard against which to compare the

various explanatory measures.

A final measure which will be considered is the likelihood ratio measure:

ELR(e, h) =
P (e|h)

P (e|∼h)
. (6)

As a popular Bayesian confirmation measure it provides a further alternative to

which the other explanatory measures can be compared.

In summary, the following hypothesis selection strategies will be used:

MPE: most probable explanation; selects the hypothesis with the maximum pos-

terior probability, P (hi|e),

ML: selects the hypothesis with the maximum likelihood, P (e|hi),
1This is straightforward to show for ECT and EGM . From the definition of ESS it is easy to show

that ESS(e, h1) > ESS(e, h2) if and only if P (h1|e)P (h2|∼e) > P (h1|∼e)P (h2|e). Using Bayes’

theorem to replace each term and then rearranging, we can see that this expression is true if and

only if P (e|h1) > P (e|h2), provided that P is a regular probability function. See also theorem 1 in

[19].
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PCM: selects the hypothesis with the maximum value of EPCM ,

OCM: selects the hypothesis with the maximum value of EOCM ,

LR: selects the hypothesis with the maximum value of ELR.

Essentially, this means that five different versions of IBE will be implemented and

evaluated against each other, one using each of these strategies.2 However, since

PCM and OCM turn out to give almost identical results when only one piece of

evidence is considered, results for OCM will only be presented in cases where the

sample size is greater than one.

3 Computational implementation of IBE

3.1 Defining IBE

As noted earlier, the general idea is to make an inference to the hypothesis which best

explains the evidence. Assuming that an agent has a probability model, then one of

five strategies identified in section 2 can be used to make this selection. However,

much more detail is needed to make IBE more realistic and to make it feasible to

implement and evaluate it. At a high level, it is divided into a two stage process

as illustrated in figure 1. In practice there could be a very large set of possible

hypotheses and so, following Lipton [2, p.59], a subset of plausible ‘live options’

will be considered for inference. The second step is then to discriminate between

these hypotheses using one of the five strategies in order to make an inference. IBE

assumes that the hypotheses are competing and for the purposes of this paper, this

will be taken to mean that they are mutually exclusive as is typical for most work

on this topic.3

Let us now consider the first step in more detail. One aspect of this relates to

ignorance concerning the set of possible hypotheses; the agent simply may not be

2The MPE strategy should really be considered as a standard to compare the others against

rather than part of a legitimate account of IBE.
3An alternative account of competition is explored in [25] which also explores how inference is

affected when the hypotheses are not mutually exclusive, see also [26].
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Set of possible 

hypotheses, 

h1, , hn. 

Select set of 

plausible hypotheses, 

hi1, , him. 

Select hypothesis, hc, 

that best explains e. 

Figure 1: Basic schema for implementing IBE.

aware of some of these hypotheses. This will be modelled via a catch-all hypothesis,

which could represent the disjunction of multiple mutually exclusive hypotheses.

This catch-all hypothesis could be the actual or true hypothesis, in a sense to be

discussed shortly, and so could give rise to the evidence, but it cannot be inferred

by the agent, who is simply ignorant of this possibility.

Even taking into account the ignorance of the agent, a further aspect to the

first step is the selection of a subset of plausible hypotheses out of all the possible

hypotheses of which the agent is aware. This will be modelled by ruling out a

number of hypotheses which have low prior probability according to the agent.

But where do these prior probabilities come from? Here we need to distinguish

between what we can call the actual or objective probability distribution over the

set of all possible hypotheses and the subjective probability of the agent. What is

the relationship between these two probabilities? One option is that the subjective

probability of the agent is simply a modified version of the objective probability

distribution which takes into account ignorance of the catch-all hypothesis. This

can be achieved by assigning the values of the objective prior probabilities to the

subjective prior probabilities over all the hypotheses excluding the catch-all, and

then normalizing to ensure they sum to one. However, we can also incorporate un-

certainty in the subjective probabilities by assigning the objective prior probabilities

with a random error and then normalizing as before. The inclusion of uncertainty

in the priors helps to make the model more realistic and hence more relevant to

applications since in practice priors can be based on limited knowledge.

So far the focus has been on incorporating ignorance, initial selection and un-

certainty in the first step. Let us now consider the second step, i.e. selecting the

hypothesis from the set of plausible hypotheses that best explains the evidence. To

achieve this the agent’s subjective likelihoods will be assigned the values of the ob-
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jective likelihoods and then using the five different strategies defined in the previous

section the agent will select the plausible hypothesis which maximizes the respective

measure.

One final component of the second step is that instead of selecting the best

hypothesis based on a single piece of evidence, a sample size of one, we can also look

at the selection being made on multiple samples of evidence. For example, suppose

the agent were trying to select one out of a number of hypotheses concerning the bias

of a coin. Instead of just tossing the coin once and making an inference, the agent

could toss it multiple times. Again, this helps to make the model more realistic

and enables us to see how the performance of the different approaches depends on

sample size.

Having identified the relevant factors, let us now consider exactly how IBE will

be implemented and evaluated.

3.2 Implementing IBE

Following the approach in [18], but extending it in a number of directions, the first

task is to identify an objective probability model, PO, which is used to identify one of

the hypotheses as the actual hypothesis hA and then simulate whether the evidence

e or its negation ∼e occurs. It is important to emphasize that the goal is not

to model a particular application of IBE, where prior probabilities and likelihoods

might be based on available data or expert opinion. Rather, the goal is to evaluate

the various probabilistic approaches for IBE in a much more general way. Hence, the

strategy adopted is to sample the entire probability space for the prior probabilities

and likelihoods. Each particular simulation can then be viewed as representing a

specific instance of IBE with a particular distribution of prior probabilities and

likelihoods.

For a task with n possible hypotheses, including a catch-all, the objective prior

probabilities, PO(hi), where i ∈ {1, ..., n}, are obtained by sampling a Dirichlet

distribution. A uniform Dirichlet distribution is obtained by setting all the α pa-

rameters (corresponding to each of the hypotheses) in the Dirichlet distribution to

1 and this is the distribution that was sampled for all the results presented in the
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main paper, although values for all the α parameters of 0.5 and 2 respectively were

also used for comparative purposes and are presented in Supplementary Material.

Setting α = 2 results in the hypotheses being assigned priors that are more sim-

ilar to each other, while a value of 0.5 results in priors which are more varied so

that most tend to be small while a few have higher values.4 Based on these prior

probabilities, one of the hypotheses is randomly selected and designated the actual

hypothesis, hA.

Likelihoods for each hypothesis, PO(e|hi), are randomly selected from the uni-

form distribution over the interval [0, 1]. Based on the likelihood of the actual

hypothesis, PO(e|hA), a random selection is made as to whether the evidence e or

its negation ∼e occurs. Or if multiple samples of evidence are required, multiple

random selections of e or ∼e are made.

Having identified the actual hypothesis and whether e or ∼e occurs, the next

step is to construct the agent’s subjective probability model, PS , which will then

be used to make an inference. First of all, one of the possible hypotheses, h1, ..., hn

is randomly selected and designated the catch-all hypothesis, hCA. The agent’s

prior probability for this hypothesis is set to zero, PS(hCA) = 0, i.e. it is excluded

from the agent’s set of possible hypotheses. Clearly, if the catch-all is also the actual

hypothesis, hCA = hA, there is no possibility of the agent making a correct inference.

As noted earlier, values for the agent’s prior probabilities for the remaining

hypotheses are obtained by assigning the respective objective probabilities with a

random error obtained from the normal distribution with a specified variance. These

values are then normalized to give PS(hi). In order to obtain a desired number, ns,

of plausible hypotheses, it is simply a matter of selecting the ns hypotheses with

the highest values of PS(hi).

4The author would like to thank an anonymous reviewer for suggesting this approach. In [18, 21],

n priors were obtained by selecting n − 1 values randomly selected from the uniform distribution

over the interval [0, 1]. These values together with values 0 and 1 were then put in ascending

order and the differences between consecutive numbers were then assigned as the objective prior

probabilities, PO(hi), where i ∈ {1, ..., n}. The results obtained using that approach are identical

to those used here, i.e. a Dirichlet distribution with all the α parameters set to 1. The equivalence

of the two approaches is demonstrated in Appendix A.
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In order to make an inference, the agent’s likelihoods are assigned the same values

as the objective likelihoods, PS(e|hi) = PO(e|hi). For each strategy (MPE, ML,

PCM, OCM, LR), the agent then selects the plausible hypothesis that maximizes

the corresponding measure for the evidence (e or ∼e or a sequence of such values if

multiple samples of evidence are required) and if it matches the actual hypothesis

it is counted as a success, otherwise it is a failure. This process is then repeated

multiple times to get the accuracy for each strategy, which is simply defined as the

number of successes divided by the number of trials.5

Instead of using simulations, it is possible to obtain analytical results in at

least some cases. For example, when there are two hypotheses, a triple integral

over the priors and the likelihoods for each hypothesis can be used to determine

the expected accuracy for each of the approaches. Letting x = PO(h1) = PS(h1),

y = PO(e|h1) = PS(e|h1) and z = PO(e|h2) = PS(e|h2), the result for the MPE

approach can be obtained by integrating as follows:

2

∫ 1

0

∫ 1

0

(∫ z
y+z

0
(1− x)z dx+

∫ 1

z
y+z

xy dx

)
dydz (7)

which evaluates to 2log(2)/3 + 1/3 ≈ 0.7954. A similar approach yields pi/4 ≈

0.7854 for the PCM approach and 2/3 for the LR and ML approaches. (These

results provide a check of corresponding results obtained by simulations that are

presented in figure 3a.) However, for larger numbers of hypotheses the multiple

integrals become much more complex (2n−1 integrals for n hypotheses) and further

complexity arises from the selection of a catch-all hypothesis, the agent’s restriction

of the set of possible hypotheses and the introduction of uncertainty in the priors.

For these reasons, all the results presented in subsequent sections were obtained

5Accuracy as defined here makes sense in the current context since it captures how well on average

an approach identifies the actual or true hypothesis, which is relevant for IBE. Nevertheless, various

other performance metrics could also be explored. For example, a metric could be used that takes

into account the agent’s overall ranking of hypotheses so that an actual hypothesis that is ranked

highly by the agent (though not ranked highest) would contribute to the score. Although IBE

is not used to update probabilities in the current work, it is worth noting that in the context of

debates about IBE and Bayesianism, there has been discussion about the relevance of epistemic

and decision-theoretic principles in determining whether update rules are coherent [7, 8].
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from simulations implemented in C++, with the process described earlier being

repeated 107 times to get average accuracies. Algorithm 1 summarizes the pro-

cess. The variables Pho(i), Peho(i), Phs(i), and Pehs(i) represent the probabilities

PO(hi), PO(e|hi), PS(hi), and PS(e|hi) respectively. Results obtained using this

algorithm and slight modifications of it, which will be noted in due course, will now

be presented.

4 Experimental results

As noted earlier, prior probabilities for the hypotheses were sampled from a Dirich-

let distribution. All the results presented in this section were obtained by using a

uniform Dirichlet distribution where all the α parameters were set to 1, but results

obtained with α = 0.5 and α = 2 are presented in Supplementary Material. Qual-

itatively, the results are very similar. The main difference is that the MPE and

PCM approaches in particular perform better for small α and hence their advantage

over the ML and LR approaches becomes more pronounced at α = 0.5 and less pro-

nounced at α = 2. This is due to the fact that there are greater differences between

the priors for small α and MPE and PCM are able to take advantage of this.

4.1 Catch-all hypothesis

Results presented in figure 2 are for cases where there is a catch-all hypothesis,

but there is no uncertainty in the agent’s prior probability, the plausible hypothe-

ses consist of all the possible hypotheses (i.e. there is no initial restriction of the

hypotheses apart from excluding the catch-all) and only a single piece of evidence

is taken into account. Figure 2a presents results obtained when one hypothesis is

randomly selected as the catch-all hypothesis, while figure 2b presents results when

the hypothesis with the lowest likelihood is selected as the catch-all hypothesis. This

latter option would represent a scenario where the agent is ignorant of a hypothesis

with low likelihood, but is aware of all the hypotheses with higher likelihoods. In

both cases the results for the MPE approach when there is no catch-all, and so the

agent is aware of all the hypotheses, are presented for comparative purposes.
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Algorithm 1 Calculate accuracy for explanatory measure E
1: input: nrepeat : no. of repetitions; n : number of hypotheses;

2: input: ns : no. of plausible hypotheses; nev : no. of evidence samples

3: ouput: accuracy

4: success← 0

5: for j = 1 to nrepeat do

6: for i ∈ {1, ..., n} do

7: Pho(i)← randomly select objective prior probabilities

8: Peho(i)← randomly select objective likelihoods

9: hA ← Randomly select actual hypothesis based on priors

10: hCA ← Randomly select catch-all based on uniform distribution

11: Phs(CA)← 0

12: for i ∈ {1, ..., CA− 1, CA+ 1, ..., n} do

13: Phs(i)← Pho(i)+ random error from normal distribution

14: Pehs(i)← Peho(i)

15: Normalize Phs

16: Select ns plausible hypotheses with highest values of Phs

17: etotal ← ∅

18: for k ∈ {1, ..., nev} do

19: ek ← e or ∼e based on likelihood of hA

20: etotal ← etotal ∪ ek

21: Select hC from plausible hypotheses which maximizes E(etotal, hi)

22: if hC = hA then

23: success← success+ 1

24: accuracy ← success/nrepeat

25: return accuracy
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It is clear from both sets of results that there is almost no difference between

the results for MPE and PCM when a catch-all hypothesis is included for both

approaches. This is consistent with the results for the OCM approach in [18].

Also, both MPE and PCM outperform LR which in turn outperforms ML. When

the catch-all hypothesis is selected at random the results in figure 2a show that

MPE and PCM perform much worse than MPE without a catch-all, but as the

number of hypotheses under consideration increases this difference becomes much

less significant; being ignorant of one of ten hypotheses has very little effect on

accuracy.

Figure 2b displays results for MPE and PCM which are almost identical to those

of MPE without a catch-all. Hence being ignorant of one low likelihood hypothesis

has very little impact on these approaches to inference even for small numbers of

hypotheses. By contrast the results for LR and ML change very little between the

two scenarios.

4.2 Selection of plausible hypotheses

Figure 3 shows results for the scenario where the agent restricts the pool of plausible

hypotheses to just the two which have the highest prior probability according to the

agent’s subjective probability distribution. As before, there is no uncertainty in the

agent’s distribution and only a single piece of evidence is considered. Figure 3a

presents results for the case where there is no catch-all, while 3b includes a catch-all

selected at random. It should be noted that the restriction to two hypotheses has

no effect if there are just two hypotheses in figure 3a or just three hypotheses in 3b

(since in this case the agent is only considering two anyway, having excluded the

catch-all).

Despite the fact that excluding all but two hypotheses seems very drastic, at

least for higher numbers of hypotheses, it has almost no effect on the results for

MPE or PCM. This can be seen by comparing the results for these approaches in

figure 3a for MPE and PCM with those in figure 2a for MPE with no catch-all and

for the results in figure 3b for these approaches with those for the same approaches

in 2a. This seems like a very surprising result. Further investigation shows that
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Figure 2: Results when a catch-all hypothesis is included so that the agent is making

an inference based on n− 1 hypotheses instead of all n. a) The catch-all hypothesis

is selected randomly from the set of all hypotheses. b) The hypothesis with the

lowest likelihood is selected as the catch-all. In both cases, results for MPE with no

catch-all are also presented for comparison.

MPE and PCM only succeed in identifying the actual hypothesis in very few cases

if it is not one of the top two in terms of prior probability.
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Figure 3: Results for the case where the agent excludes all hypotheses except the

two that have the highest prior probability according to the agent’s distribution. a)

No catch-all is included. b) A catch-all hypothesis is selected at random.

Both sets of results in figure 3 also show that LR and ML perform much bet-

ter when only the top two hypotheses are considered. It can be seen that the

gap between these two approaches and MPE and PCM has narrowed considerably

compared to figure 2 and in fact all the approaches appear to converge for higher
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numbers of hypotheses. Again, this initially seems surprising since most of the hy-

potheses are excluded yet the results improve. Further investigation has shown that

although these approaches do better than MPE and PCM at identifying the actual

hypothesis when it has a low prior probability, this is more than outweighed by

the fact that they do much worse than MPE and PCM when the actual hypothesis

has a high prior probability. Hence, by only considering hypotheses with high prior

probabilities this reduces the number of failures and so enhances their accuracy.

4.3 Uncertainty in the priors

Figure 4 shows results for scenarios where there is uncertainty in the agent’s prior

probability distribution with increasing standard deviation representing a larger

random error and hence greater uncertainty. Figure 4a presents results for the case

where there is a catch-all, but otherwise the agent does not restrict the number of

hypotheses, while 4b does not include a catch-all, but now the agent does restrict

the pool of hypotheses to just two. As was shown for the OCM approach in [18],

the PCM approach tracks the MPE approach very closely and actually achieves a

higher accuracy in figure 4a when the standard deviation is above about 0.4. While

LR and ML also do better than MPE for greater uncertainty, they do much worse

for lower values of uncertainty.

Figure 4b shows, as before, that LR and ML do much better when the pool of

plausible hypotheses is restricted to just two, but this is only true for low values of

the standard deviation and hence uncertainty. For higher values, the advantage over

MPE is lost and indeed there is very little difference between any of the approaches.

4.4 Increasing the sample size

Figure 5 shows results for scenarios where the number of evidence samples is varied.

Both sets of results include a catch-all, but not uncertainty. Figure 5a confirms a

finding presented in [21], but now in the case where there is ignorance of the catch-

all hypothesis. It is that PCM continues to track the MPE result as the sample

size increases whereas OCM does not and instead converges to the ML result. LR

is shown to lie midway between ML and MPE/PCM and continues to do so as the
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Figure 4: Results for the case where the number of hypotheses is five and there is

uncertainty in the agent’s prior probability distribution, with the standard deviation

being that of the random error. a) A catch-all hypothesis is selected at random, but

otherwise the agent does not restrict the number of hypotheses. b) No catch-all is

included, but now the agent does restrict the pool of hypotheses to just two.

sample size increases.

Figure 5b compares results where there is no restriction in the pool of plausible
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Figure 5: Results for the case where the number of hypotheses is five and where

the number of pieces evidence sampled is varied. Both figures include a catch-all

hypothesis, but no uncertainty. a) The agent does not restrict the pool of plausible

hypotheses. b) Results for MPE and ML to compare the case where there is no

restriction of plausible hypotheses, NS = 5, to that where it is restricted to just

two, NS = 2.
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hypotheses to those where it is restricted to just two hypotheses. Results are only

shown for MPE and ML, but similar results could be presented for PCM and LR.

As noted earlier, restricting the plausible hypotheses to just two has little effect on

the accuracy of MPE when there is just one sample, but improves the accuracy of

ML substantially. This can be seen in this figure also for low sample sizes. However,

as the sample size increases the accuracy of MPE does indeed drop off compared

to the no-restriction case, while the advantage of ML over the no-restriction case

diminishes.

These results help to provide an explanation of the surprising results in figure 3.

With only one piece of evidence MPE is typically unable to correctly identify the

actual hypothesis when it has a low prior probability and so the restricted case works

well. However, when much more evidence is available MPE is able to discriminate

between the hypotheses more accurately and so the advantages of the no-restriction

case can now be seen as might have been expected. Similarly, since the significance

of the priors is reduced when there is more evidence available, there is then less

difference between the restricted and non-restricted versions of ML.

5 Conclusion

Several probabilistic versions of IBE have been compared through the use of com-

puter simulations. In particular, explanatory approaches based on the product

coherence measure (PCM), the overlap coherence measure (OCM), maximum like-

lihood (ML) and the likelihood ratio (LR) have been evaluated to see how well they

compare with the most probable explanation (MPE) approach that simply selects

the hypothesis that has the greatest posterior probability. The results show that

PCM performs much better than ML and LR in almost all cases and better than

OCM for larger sample sizes. PCM also tracks the accuracy of the MPE very well

in all cases that have been considered and actually performs better for high levels

of uncertainty in the priors. Hence, if PCM is considered to be a viable approach

to IBE, then IBE is a successful mode of inference.

The results also show that IBE, at least when implemented using PCM, still
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performs well when there is ignorance about one of the hypotheses as represented

by the catch-all hypothesis. It might have been expected that the performance of

IBE would diminish considerably when there is a preliminary selection of plausible

hypotheses. When the agent’s prior probabilities are used to achieve this, the per-

formance is remarkably robust (and improves for ML and LR) even when just two

hypotheses are selected and the others discarded. The results do tail off somewhat

for larger sample sizes, but the surprising nature of this result for low sample sizes

could have implications for abductive inference and inference more generally since

it suggests preliminary selection of hypotheses, which could be significant in compu-

tational terms, could be carried out with little effect on accuracy when the sample

size is small.

Future directions for research include investigating IBE in contexts where there

is uncertainty in the likelihoods as well as the priors and where the hypotheses are

not assumed to be mutually exclusive. It would also be interesting to explore how

these approaches compare to other probabilistic approaches to IBE that involve al-

ternatives to Bayesian updating by giving a boost to hypotheses that provide better

explanations [8, 27], including how such approaches can be applied in a social net-

work of interacting agents [28] and extended to handle uncertain evidence [29]. As

in the current work, these alternative approaches have presented different compu-

tational results concerning IBE and have highlighted various complementary merits

to IBE as a mode of inference.
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Appendix A. Equivalence of approaches for selecting pri-

ors

As discussed in section 3.2, a Dirichlet distribution was used to obtain prior proba-

bilities. It was pointed out that this approach gave the same results as an alternative
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approach to obtaining priors used in earlier work [18,21]. Here it is shown that these

approaches are in fact equivalent to each other.

In the current work, n priors were obtained by sampling a uniform Dirichlet

distribution. The Dirichlet distribution of order n ≥ 2 with parameters α1, . . . , αn >

0 has a probability density function given by:

f(x1, . . . , xn;αi, . . . , αn) =
Γ(
∑n

i=1 αi)∏n
i=1 Γ(αi)

n∏
i=1

xαi−1
i . (A.1)

For a uniform distribution, f1, αi = 1 for all i, which gives:

f1(x1, . . . , xn) =
Γ(n)

Γ(1)n
= (n− 1)! (A.2)

In the earlier work, n priors were obtained by first of all selecting n − 1 values

randomly from the uniform distribution over the interval [0, 1], which we will denote

z = (z1, . . . , zn−1). Since the values are selected independently, the probability

density, g, is just a product of n− 1 uniform distributions:

g(z1, . . . , zn−1) = 1. (A.3)

These values together with the value one were then put in ascending order to give

a sequence which we shall call y = (y1, . . . , yn−1, yn), where yn = 1, for each i ∈

{1, . . . , n − 1}, ∃j ∈ {1, . . . , n − 1} such that yi = zj , and yi+1 > yi. In going

from z to y, note that there are (n − 1)! unordered sequences of random numbers

that result in the same ordered sequence y. These unordered sequences are just

the (n− 1)! permutations of the values y1, . . . , yn−1. For example, when n = 3, the

random selected sequences z1 = (0.43, 0.29) and z2 = (0.29, 0.43), where there is no

restriction on the order of the numbers, both result in the same ordered sequence

y = (0.29, 0.43, 1). According to equation (A.3), the probability density for each of

the (n − 1)! unordered sequences is the same and so the probability density, h, for

the ordered sequences is given by:

h(y1, . . . , yn−1, 1) = (n− 1)!× g(z1, . . . , zn−1) = (n− 1)! (A.4)

where (z1, . . . , zn−1) is one of the sequences that results in (y1, . . . , yn−1) when the

values are put in ascending order.
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The final step in the second approach is to convert the sequence y into a sequence

that sums to one and so can be assigned as probabilities. This is achieved by taking

the difference between subsequent values in y to obtain x = (x1, . . . , xn), where

x1 = y1 and xi = yi − yi−1 for all i from 2 to n − 1 and xn = 1 − yn−1. With this

transformation of variables, the probability density for x, denoted f2 is given by:

f2(x1, . . . , xn) = h(y1, . . . , 1)× |J | (A.5)

where J is the (n− 1)-dimensional Jacobian matrix (since the probability densities

are actually defined on a (n − 1)-dimensional space) with elements Jij = ∂yi/∂xj .

Since yi =
∑i

j=1 xj , it follows that ∂yi/∂xj = 1 if i ≥ j and 0 otherwise, from which

it further follows that |J | = 1. Hence,

f2(x1, . . . , xn) = h(y1, . . . , 1) = (n− 1)! (A.6)

and so by comparison with equation (A.2) we see that the probability densities from

the two approaches are the same.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at

https://doi.org/10.1016/j.ijar.2018.09.004.
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