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Abstract— Convolutional Neural Network (CNN) has 
outperformed many traditional linear and polynomial classifiers 
in various domains. CNN and other deep learning methods have 
gained attention in the Brain-Computer Interface (BCI) domain 
also. Here, we investigate a CNN-based model with two different 
optimizers for reducing error of classification of brain states 
using EEG motor imagery data. Two different optimizers 
namely stochastic gradient descent (SGD) and adaptive 
momentum (Adam) are investigated for increasing classification 
accuracy using the well-known BCI competition IV 2b dataset. 
The study was conducted to investigate the feasibility of a single 
deep learning model for all subjects without compromising on 
information decoding rate for any of the BCI participants. Using 
two different models, mean cross-validation accuracy of 80.32% 
(±2.2) was achieved across participants, which is significantly 
higher (p<0.05) compared to a state-of-the-art deep learning 
approach. 

I. INTRODUCTION 

Accurate pattern recognition in brain-computer interface 
(BCI) systems is crucial to let participants interact with their 
environment effectively [1][2]. Several studies related to 
preprocessing, feature extraction and classification algorithms 
have been conducted towards enhancing motor imagery (MI) 
task detection accuracy [3][20]. Popular methods such as 
common spatial pattern (CSP) [7] [15], principal component 
analysis (PCA) [11], bandpower [12] and independent 
component analysis (ICA) [13] have been used extensively for 
preprocessing and feature extraction. Introduction of deep 
neural networks and their revolutionary impact in the domains 
of image recognition, natural language processing (NLP) and 
speech signal processing have opened up new avenues for the 
neuroscience community dealing with BCIs. However, their 
application in the area of electroencephalography (EEG) and 
magnetoencephalography (MEG) based BCIs is very limited. 

Deep learning, as per convention, does not require tailored 
features to perform optimally in image classification or NLP, 
but this situation is debatable in the case of electromagnetic 
brain signals. In an EEG/MEG-based BCI, the number of trials            
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needed for data collection are high. Also, the non-stationary 
nature of the brain signals leads to inter-trial and inter-session 
inconsistencies. These signals have very low signal-to-noise 
ratio (SNR), due to multitude of noise resulting from different 
muscular or physiological artefacts (such as heart-rate, muscle 
activity, breathing etc.) and background brain activity. SNR in 
single-trial EEG and MEG measurements is typically assumed 
to be < 1 for evoked responses and ≈1 for oscillatory activity, 
which puts these data in stark contrast to those in traditional 
applications of deep learning which are typically related to 
image classification [4].  For a better classification 
performance, noise suppression is highly recommended. Deep 
learning if used efficiently can be of great help in analysing 
EEG and MEG data, as the dimensionality and spatio-temporal 
resolution are very high due to the large amount of sensors 
capable of sampling with millisecond accurate temporal 
resolution.  

Deep learning architecture has been used on EEG data to 
review performance compared to feature-based classification 
using SVM or LDA. Recently, a study by Zubarev et al. [4] 
based on an adaptive neural network showed improvement in 
classification performance. The two different models, i.e. 
latent factor CNN and vector autoregressive CNN, were 
compared with linear SVM, RBF-SVM and shallow FBCSP-
based CNN model. They also compared with the existing 
architecture of EEGNet [6] and VGG19 [14]. They concluded 
that incorporation of prior knowledge about the process 
generating MEG observations helped in reducing the model 
complexity substantially while maintaining high accuracy and 
interpretability. In [5], a short time Fourier transform-based 
CNN method was evaluated along with stacked auto encoders, 
which gave them better classification accuracy on the BCI 
competition IV 2b dataset. The mean classification accuracy 
obtained using 10-fold cross-validation was 74.8% (±2.3%) 
for only CNN-based architecture and after combining with 
stacked auto encoders the mean accuracy across subjects was 
77.6% (±2.1%). However, authors did not explain the concept 
behind the use of stacked auto encoders and it was not clear 
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where in the model encoding and decoding happened. From 
the overview, it looked like more of a feed forward neural 
network. There has been further development of EEGNet [6] 
which has been used for depth-wise and separable 
convolutional layers to construct EEG-specific model for 
classification. 

The architectures discussed so far have mainly been 
generalised for individual subjects and rarely been used for 
cross-subject transfer learning and the performance drops over 
different sessions or on different participants. It is a well-
known fact that hyper parameters and optimisers play a crucial 
role in deep learning based classification, but there has been 
no study on the method of optimiser selection towards training 
CNN models for better accuracy, whereas hyperparameters are 
finalised either by grid search or by hit and trial.  For effective 
cross-subject transfer learning, there is a need to find a 
common CNN architecture trainable across multiple subjects. 
To this end, a study has been undertaken involving two 
optimisation methods, i.e. SGD [9] and Adam [10], which 
have significant effect on CNN learning rate and classification 
performance.  

II. MATERIAL AND METHODS 

A. EEG Dataset 

To conduct this study, we have used dataset 2b from BCI 
competition IV [16]. The dataset includes a motor imagery 
paradigm for left and right hand movement. The dataset 
includes 3 sessions of training data and 2 sessions of 
evaluation data. The imagery task is of 4 s, where participants 
have to imagine specific movement of left/right hand when the 
cue appears at t = 3 s, as shown in Figure 1. 

Figure 1.   BCI comp IV 2b data set protocol timing 

B. Deep Neural Network Designing 

CNNs are deep neural networks with several convolutional-
pooling layer pairs along with fully connected layer(s) at the 
output. CNN are good at identifying shapes in the form of 
images. Input image is convolved with several 2-D filters in 
the convolutional layer. Weights and biases in the CNN layers 
are learned through back-propagation algorithm to reduce the 
classification error. Designing an optimal deep neural 
network capable of automatically extracting features is still a 
big challenge. Deep network design is majorly based on 
intuition along with experience of designer and data type. 
There are various deep neural network architectures such as 
Alexnet [18], Deep Belief Networks (DBN) [19], VGG19 
[14], etc., which are being used in various domains like image, 
speech or natural language processing. In this study, two deep 
network architectures based on CNN have been designed with 
two different optimisers. This was done with the objective of 
enhancing classification accuracy while ensuring faster 
convergence to error tolerance. Faster convergence can help 
in saving computational time and cost. It is observed in the 

study that hyperparameters along with optimisers 
substantially influence the classification performance of 
trained DNN. Details of the CNN architecture are discussed 
further. 
 

B.1.  Architecture-1 
Input Layer: To create the input image for the CNN, a short 

time Fourier transform (STFT) was applied on the 2-sec-long 
motor imagery trial (4 s -6 s). The frequency bands considered 
for the input are theta band (4–8 Hz), mu band (8–12 Hz) and 
beta band (12–32 Hz). Data from 3 channels were available, 
i.e. C3, C4, and Cz and sampling frequency was 250 Hz. To 
create an input image from a channel we extracted theta, mu, 
and beta frequency bands from the STFT, i.e. broad band (4–
32 Hz) EEG. 

The extracted image size was 20 × 32 for the theta and mu 
bands (4–13 Hz) and 41 × 32 for the beta band (13–32 Hz). 
Using cubic interpolation, size of beta band (41 × 32) was 
reduced to 20 × 32. The same approach was applied for all the 
3 channels. For the final input to the CNN the image was 
concatenated vertically, hence the resulting input size for one 
electrode will be 40 × 32 and similarly using all 3 channels it 
will be 120 × 32 (Figure 2). 

Total of 30 filters were trained with size of 120 × 3 via this 
network. At convolutional layer, input is convolved with 
trainable filters and put through output function to form the 
output map [8]. 

Figure 2.   Input image fed to CNN using all three electrodes for right hand 
activity by subject number 4 including 3 frequency bands. 

The kth feature map at a given layer can be represented as 

h୧୨
୩ ൌ fሺaሻ ൌ f((wk × x)ij + bk )  (1) 

where x is the input image, wk
 is the weight matrix and bk is 

the bias value for k= (1, 2,…,30). The output function f is 
selected as rectified linear unit (Relu) function. 
 
At max pooling layer sampling factor of 10 was applied with 
zero padding. Max poling is connected to fully connected 
layer having two outputs, which is for left hand imagery and 
right hand imagery. Parameters of the CNN are learned by 
using Stochastic gradient descent method.  
Gradient descent is a method to minimize an objective 
function J(θ) parametrized by model’s parameter θ ∈ ℝd by 
updating the parameters in the opposite direction of gradient 



  

of the objective function ∇஘Jሺθሻ with respect to parameters. 
The learning rate is defined by the number of steps to reach 
local minimum.  

However, at each step, gradient descent requires evaluation 
of n derivatives, which is expensive. A popular modification is 
stochastic gradient descent (SGD) [17], where at each iteration 
t = 1, 2, … 

w୲ ൌ wሺ୲ିଵሻ െ η∇ψ൫wሺ୲ିଵሻ൯  (2) 
 

where, η is the learning rate and 𝜓 represents the loss 
function. In a simpler way, learning of the model parameters 
can be expressed as Eq 3, where parameters perform update 
for each training example x(i) and label y(i). 

θ = θ −η⋅∇θ J (θ; x (i); y(i))  (3) 
The advantage of SGD is that computation time is 1/n of 

standard gradient descent, because every step depends upon 
single derivative ∇ψi(ꞏ). Table 1 contains the parameters used 
to train the model using participants data by Architecture-1 
method.  

The Architecture-1 (Table 1), has one convolutional 2-D 
layer with l2 regularisation and ReLU-activation. The details 
of parameters are shown in Table 1. Batch normalisation was 
done and the model was trained for 300 epochs with the batch 
size of 40. For validation, 33% of the data was randomly 
extracted. The learning rate for the model was 0.0001 and the 
initial momentum was 0.9. The dropout rate was 0.6. 

 

Table 1.  Architecture-1: CNN-SGD Parameters 

Layer Filters Size Output Options 

Input  [120, 32, 1]   

Conv2d 30 [120, 3] [1,30,30]  

MaxPooling2D   [1,3,30]  

Flatten   90  

Dense   2 Activation = 
sigmoid 

 

B.2. Architecture -2 
After implementing Architecture 1 on Comp IV 2b dataset, 

it was observed that the classification accuracy of participant 
2 and 3 was not good. To improve performance of the specified 
subjects, it was decided to increase the layers. However, even 
on changing hyperparameters or numbers of layer, there was 
not much effect on classification accuracy observed. Since the 
participants’ data were noisy compared to other participant, 
and SGD converges slowly over the data, it was decided to 
change the optimiser to Adam to converge faster using a large 
learning rate. 

Input layer was kept exactly same as architecture-1 and 
30 trainable filters were used with the size of   120 × 3. At 

convolutional layer input is convolved with trainable filter 
with linear activation. Batch normalization was performed 
keeping the learning rate as 0.01. Batch normalisation reduces 
the amount by what the hidden unit values shift around 
(covariance shift). The performance improved but still issue 
related to convergence was observed. Then, 2nd convolution 
layer was added with trainable 2-D filters of size 3 × 3 with a 
stride of [2, 2]. Total number of filters were 40. Stride controls 
how the filter convolve around the input volume. Again batch 
normalisation and Relu activation were used. To further 
improve the performance and convergence 3rd convolution 
layer was added keeping the same parameters and stride was 
reduced to [1,1]. Parameters of CNN are learned by adaptive 
moment estimation (Adam). 

Adam can be explained as a combination of SGD with 
momentum and Root Mean Square Error Propagation 
(RMSprop). It is an adaptive learning rate method, where the 
learning rate is computed from different parameters. Adam 
keeps exponentially decaying average of past gradients mt 

similar to momentum. 

Adam uses an exponentially moving average which is 
computed on the current mini-batch gradient: 

m୲ ൌ βଵm୲ିଵ ൅ ሺ1 െ βଵሻg୲    (4) 
v୲ ൌ βଶv୲ିଵ ൅ ሺ1 െ βଶሻg୲2 (5) 
 

where m୲ and v୲ are an estimation of the mean and 
uncentred variance of  gradient (g) and β is a new hyper 
parameter. 

The update rule for Adam is  

θ୲ାଵ ൌ θ୲ െ
୬

√୴ෝ୲శ಍ mෝ ୲   (6) 

where θ  is the model parameter,  θ ∈ ℝd. 

Table 2. Architecture-2: CNN-Adam Parameters 
Layer Filters  Size Activation Options 

Input  [120,32,1]   

Conv2d 30 [120,3] Linear stride = [1,1] 

BatchNorm    epsilon= e-5 
momentum  =  
0.01 

Activation   Relu  

Conv2d 40 [3,3] Linear stride = [2,2] 

BatchNorm    epsilon= e-5 

Activation   Relu  

Conv2d 40 [3,3] Linear stride = [1,1] 

BatchNorm    epsilon= e-5 
momentum  =  
0.01 

Activation   Relu  

Average 
pooling2D 

 [2,2]   

Fully 
connected  

   Output size 2 



  

The proposed default values were 0.9 for β1, 0.999 for β2, 
and 10−8 for ϵ [10]. It was shown empirically that Adam works 
well in practice and compares favourably to other adaptive 
learning-method algorithms. 

The Architecture-2 (Table 2), which is the Adam-based CNN, 
has 3 convolutional 2-D layers with l2 regularisation. The 
input remains the same and details of the parameter are shown 
in Table 2. Initial learning rate was 0.01 and batch size was 50 
and the model was trained for 15 epochs. 

III. RESULTS 

Python with MNE and MATLAB 2018b were used for 
creating scripts for building learning models and evaluating 
their performance. The system had Windows 10 with an i7 8th 
gen processor. Nvidia RTX2080 Ti was used as GPU. 

For building models, first 3 sessions from the BCI 
competition IV 2b dataset were used and ten-fold cross 
validation was used for evaluation. 

 

Figure 3.  Model decoding error (loss) of Architecture 1 for partcipant 4 
using 33% as validation set. 

Figure 3 displays the model decoding error for the 
participant 4 using architecture 1. To analyse number of 
epochs and learning rate for all the participants, data of 
participant 4, session 1,2 and 3 were trained, keeping 33% of 
the cumulative data as validation set. The plot clearly shows 
that the model does not overfit or underfit as the test errors are 
converging. For this specific subject a clear stagnation of 
validation loss can be seen at nearly 175-200 epochs. 
However, the plot clearly indicates fluctuation which may be 
due to the low amount of data to train and validate. The 
participants’ data was almost linearly separable, so we can see 
early convergence. For other participant the number of epochs 
was not exactly same rather was in range of 250-300. Keeping 
batch size of 40 and training up to 300 epochs, model was not 
overfitting or there was no issue of overlearning, thus it was 
decided to train the model up to 300 epochs keeping it same 
for multiple subjects. However, if independent model is being 
trained for a subject then the learning can be stopped at 200 
epochs, keeping other parameters same. 

Figure 4 shows the ten-fold classification accuracy for left 
hand vs right hand imagery task using architecture 1 and 
architecture 2. It can be observed that for some participants i.e. 
S01, S02, S03, S07 and S09 architecture 2 has performed 

better than architecture 1. But for S04, S05, S06 and S08 
architecture 1 has performed better than architecture 2. Hence, 
it would not be possible to generalize one architecture for all 
participants without compromising on classification 
performance.  

Figure 4.  Ten fold Classification accuracy of CNN with SGD as optimiser 
and adam as optimiser for 9 participants. 

Figure 5.  Ten-fold cross-validation classification accuracy and std. 
deviation results for CNN, CNN-SAE methods published by Tabar et.al. [5] 

and CNN models based on the Architecture-1 and -2. 

 The results obtained have been compared with results 
published by Tabar et al. [5] wherein a different model was 
created for every participant. Figure 5 shows the classification 
accuracy of left hand vs. right hand per participant for the BCI 
comp. IV 2b dataset obtained using 10-fold cross validation. 
The results of CNN Architecture-1 and -2 are compared with 
CNN and CNN-SAE architecture accuracies published by 
Taber et al. [5]. A clear increase in classification accuracy in 
all participants except s03, s04 and s06 can be seen. However, 
for s06 architecture-1 provided better result than independent 
CNN model accuracy published by [5]. Mean classification 
accuracy across subjects obtained using Architecture-1 and 2 
is 80.32% (±2.25), which is 5.56% significantly higher 
(p<0.05) than the CNN model and 2.77% higher than CNN-
SAE model proposed by Tabar et al. [5]. 

 

IV. CONCLUSION AND DISCUSSION 

The paper has discussed two different CNN architectures, 
found to provide best classification accuracies on the BCI 
competition IV 2b data-sets from a specific group of subjects. 



  

It has been observed, when a participant’s data are noisy, SGD 
performs worse, which might be due to a low learning rate   
(10-04) and too many training epochs; while Adam is able to 
converge quickly in just 15 epochs with less learning rate     
(10-02) than SGD. 

Especially in the case of time-series data, there is no 
justification to assume that one model is going to fit every 
subject without the need for adaptation to subject-specific 
temporal changes. For electromagnetic brain signals, such as 
EEG and MEG which provide information related to temporal 
changes at millisecond level, creating a single model is not 
going to provide enough information for classification. 

However, we can divide the participants into categories by 
single session test on the basis of their BCI performance. If the 
participant is poorly performing with BCI then Architecture-2 
can be used, otherwise Architecture-1 may be better suited. It 
is not being claimed that this is the best possible accuracy a 
model can provide; further tuning of parameters may provide 
with better accuracy. It can be thus concluded from the study 
that for implementing a single deep learning architecture to 
train a cross-subject single model, we may have to 
compromise on accuracy. In order to achieve that model, we 
will require adaptive optimization by the model which can 
work with variable time-series data. 

Development of single generalised classification model 
and transfer learning across subjects are major issues for BCI 
systems to work smoothly. Further study will be carried out 
by training the model to combine different participants’ data. 
Empirically, if different participants’ data can be combined 
along with the sensor information the input map will become 
3D i.e. [frequency, time, location]. Then model would be able 
to learn the features across subjects from different channels, 
considering it to be the time series information from a single 
subject. Also, the tuning of the network will be based on 
cumulative performance of participants. Then the variation 
due to new participant’s features can be accounted for. 

 

Code for replicating the experiment will be made available 
at the following link: https://github.com/thesujitroy/Deep-
neural-network-Transfer-learning-EEG-MEG- 

 

REFERENCES 

[1] Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., 
Caplan, A.H., Branner, A., Chen, D., Penn, R.D. and Donoghue, J.P., 
2006. Neuronal ensemble control of prosthetic devices by a human with 
tetraplegia. Nature, 442(7099), p.164. 

[2] Prasad, G., Herman, P., Coyle, D., McDonough, S. and Crosbie, J., 
2010. Applying a brain-computer interface to support motor imagery 
practice in people with stroke for upper limb recovery: a feasibility 
study. Journal of neuroengineering and rehabilitation, 7(1), p.60.  

[3] Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., 
Rakotomamonjy, A. and Yger, F., 2018. A review of classification 
algorithms for EEG-based brain–computer interfaces: a 10 year update. 
Journal of neural engineering, 15(3), p.031005. 

[4] Zubarev, I., Zetter, R., Halme, H.L. and Parkkonen, L., 2018. Robust 
and highly adaptable brain-computer interface with convolutional net 
architecture based on a generative model of neuromagnetic 
measurements. arXiv preprint arXiv:1805.10981. 

[5] Tabar, Y.R. and Halici, U., 2016. A novel deep learning approach for 
classification of EEG motor imagery signals. Journal of neural 
engineering, 14(1), p.016003. 

[6] Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, 
C.P. and Lance, B.J., 2018. EEGNet: a compact convolutional neural 
network for EEG-based brain–computer interfaces. Journal of neural 
engineering, 15(5), p.056013. 

[7] A. Chowdhury, H. Raza, Y. K. Meena, A. Dutta, and G. Prasad, “Online 
covariate shift detection-based adaptive braincomputer interface to 
trigger hand exoskeleton feedback for neuro-rehabilitation,” IEEE 
Transactions on Cognitive and Developmental Systems, vol. 10, no. 4, 
pp. 1070–1080, Dec 2018.  

[8] Le Cun B B, Denker J S, Henderson D, Howard R E, Hubbard W and 
Jackel L D 1990 Handwritten digit recognition with a back-propagation 
network Advances in Neural Information Processing Systems (San 
Francisco, CA: Morgan Kaufmann Publishers Inc.) 

[9] Zhang, T., 2004, July. Solving large scale linear prediction problems 
using stochastic gradient descent algorithms. In Proceedings of the 
twenty-first international conference on Machine learning (p. 116). 
ACM. 

[10] Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic 
optimization. arXiv preprint arXiv:1412.6980. 

[11] Jolliffe I 2002 Principal Component Analysis (New York: Wiley) (doi: 
10.1002/9781118445112.stat06472). 

[12] Pfurtscheller, G., Neuper, C., Schlogl, A. and Lugger, K., 1998. 
Separability of EEG signals recorded during right and left motor 
imagery using adaptive autoregressive parameters. IEEE transactions 
on Rehabilitation Engineering, 6(3), pp.316-325. 

[13] Comon P 1994 Independent component analysis, a new concept? Signal 
Process. 36 287–314. 

[14] Simonyan, K. and Zisserman, A., 2014. Very deep convolutional 
networks for large-scale image recognition. arXiv preprint 
arXiv:1409.1556. 

[15] A. Chowdhury, Y. K. Meena, H. Raza, B. Bhushan, A. K. Uttam, N. 
Pandey, A. A. Hashmi, A. Bajpai, A. Dutta, and G. Prasad, “Active 
physical practice followed by mental practice using bci-driven hand 
exoskeleton: A pilot trial for clinical effectiveness and usability,” IEEE 
Journal of Biomedical and Health Informatics, vol. 22, no. 6, pp. 1786–
1795, Nov 2018. 

[16] Schlögl A 2003 Outcome of the BCI-Competition 2003 on the Graz 
Data Set (Berlin: Graz University of Technology. 

[17] Johnson, R. and Zhang, T., 2013. Accelerating stochastic gradient 
descent using predictive variance reduction. In Advances in neural 
information processing systems (pp. 315-323). 

[18] Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J. and 
Keutzer, K., 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer 
parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360. 

[19] Lee, H., Grosse, R., Ranganath, R. and Ng, A.Y., 2009, June. 
Convolutional deep belief networks for scalable unsupervised learning 
of hierarchical representations. In Proceedings of the 26th annual 
international conference on machine learning (pp. 609-616). ACM. 

[20] Roy, S., Rathee, D., McCreadie, K. and Prasad, G., 2019, March. 
Channel Selection Improves MEG-based Brain-Computer Interface. In 
2019 9th International IEEE/EMBS Conference on Neural Engineering 
(NER) (pp. 295-298). IEEE. 
 


