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Abstract—Networks-on-Chip (NoC) was introduced to achieve 

maximum communication performance in on-chip systems. Local 

congestion caused by the queuing of data at input channel buffers 

constrains NoC latency and throughput performance. NoCs 

require a predictive approach to minimize the effects from local 

congestion problems. In this paper we proposed a novel fine-grain 

congestion prediction approach based on Spiking Neural Network 

(SNN), which predicts router congestion with 30 clock cycles look-

ahead capability. Two fine-grain prediction approaches including 

router and network models are proposed. The prediction 

performances of the models are evaluated and analyzed using both 

synthetic and real-time NoC traffic applications. Results show that 

the network model is more consistent in fine-grain local congestion 

prediction and requires 42% less hardware area than the router 

model.  

Keywords— Networks-on-Chip; congestion prediction; network 

traffic; Spiking Neural Networks 

I. INTRODUCTION 

      Multi-Processor SoC (MPSoC) are designed to execute 

complex applications in parallel to achieve high computational 

performance. SoCs require communication architectures to 

transmit data between logical components [1], [2]. 

Traditionally, shared-bus architectures are used in SoC for data 

transmission. With an increase in the number of logical 

elements on chips, shared-bus based architectures cause latency 

issues which restricts SoC in achieving desired performance 

[3].  

      Networks-on-Chip (NoC) were introduced as a potential 

remedy for poor scalability and latency issues caused by 

shared-bus based systems. Quality of Service (QoS) is an 

important parameter to ensure interconnect performance [4]. 

NoC offers concurrent communication paths for data 

transmission to enhance QoS and ensures maximum network 

throughput [5]. It also provides a number of interconnection 

topologies to accommodate over one thousand cores [6]. NoCs 

are equipped with additional data traffic management 

resources, i.e. routing algorithm, network topology, flow 

control etc., to enhance communication performance. Ideally, 

the NoC is designed to distribute traffic uniformly across the 

communication network. The ability to balance the distribution 

of traffic across a NoC is constrained due to non-optimized 

application mapping across network cores and the selection of 

inappropriate traffic management resources [7]. This non-

uniform traffic distribution pushes data packets to flow towards 

specific nodes which causes communication delays and 

ultimately leads to congestion. Congestion is an important 

factor in NoC performance degradation and needs to be 

addressed at an early stage to minimize its impact on NoC 

throughput [8]. 

Neural Networks (NNs) are mathematical counterparts of 

biological neurons. Since their evolution, NNs have shown an 

excellent performance in the field of data learning and 

classification [9], [10]. Biological neurons generate action 

potential (spikes) to transmit information towards connected 

neuron through dendrites (synapses). These biological neurons 

are connected together in the form of a complex neural network 

to encode (weighted) information, where task of classification 

and prediction has been demonstrated. Spiking Neural 

Networks (SNNs) are inspired from biological neurons to 

encode highly complex tasks in a spatial domain [1], [11], [12]. 

Contrary to Artificial Neural Network (ANNs), SNNs are 

multilayer network of connected spiking neurons to encode 

information in the form of synapses (temporal manner). Recent 

studies show that SNNs are computationally more powerful and 

hardware efficient when compared to ANNs[13]–[15]. NoC is 

a digital system that generates temporal communication 

patterns and SNN can use these temporal information to predict 

potential congestion hotspot in NoC [9]. In addition, a key 

motivation for using SNNs is the significantly reduced area 

overhead compared with ANNs [15]. This is a key scalability 

criterion for modern systems.  

NoC communication performance can be improved by 

predicting local congestion prior to its occurrence [8], [16], 

[17]. Existing NoC congestion prediction models classify on-

path network node as congested/non-congested based on its 

potential congestion status [13], [16], [18]. This bi-level 

congestion output is forwarded to adaptive routing 

algorithms/congestion handlers to make routing decisions. 

Problem arise when router is facing multiple congestion paths 

and routing algorithm is unable to analyses the depth of on-path 

node congestion in order to make routing decision. This work 

proposes a novel SNN based multi-level, fine-grain prediction 

strategy to predict fine-grain buffer utilization for each routing 

node within 30 clocks cycles in advance of any potential 

congestion. The predicted utilization output will aid congestion 

handling mechanism (adaptive routing) in finding an optimal 

routing path (minimal latency) under potential congestion 

conditions. This work proposed two SNN based prediction 

models: router-model and network-model to explore low-cost 

and high performance congestion prediction mechanism for 

NoCs. Models are evaluated in terms of fine-grain prediction 

accuracy on synthetic and real-time traffic applications. The 

primary objective of this work is to provide an optimal multi-



level fine-grain congestion prediction model that will predict 

level of local congestion to enhance NoC performance. 
Section II provides background on NoC congestion and 

existing congestion detection\prediction models. Section III 
presents the proposed prediction model. An experimental setup 
to analyse performance of proposed models are explained in 
section IV. Section V presents simulation results. Section VI 
provides a conclusion and outlines future work. 

II. BACKGROUND AND LITERATURE REVIEW 

In MPSoC networks, NoC latency and QoS depends on 

number of parameters: routing algorithms, application mapped, 

network topology etc. These parameters influence on-chip 

routing behavior that causes network congestion [8]. NoC 

congestion is not an instant phenomenon, it evolves in phases 

before it spreads throughout network. NoC congestion starts 

from switch contention inside routers and then spreads outside 

towards the neighboring nodes [19]. Switch contention queues 

incoming data packets at respective input channel buffers. 

Routers are equipped with limited buffers are soon run out of 

buffering space thus requesting neighboring nodes to stop 

sending data towards it. This queuing of data packets cause 

backpressure effect towards the neighboring nodes. Thus, a 

contention caused inside a router triggers global NoC 

congestion. Fig 1 shows the backpressure effect in the NoCs. 

Insertion of additional buffering spaces at input channels can 

minimize the effect of backpressure but cause huge 

communication delays. The likelihood is that backpressure still 

persists if these buffers are filled [19]. Therefore, the NoC 

requires a concrete solution for unbalance traffic load to avoid 

the creation of congestion.  

 
Fig.1. Effect of congestion and Backpressure. 

      NoC data traffic can be handled by adopting the appropriate 

data flow mechanisms to optimize traffic flow [20].  NoC is 

equipped with a Worm-hole Flow Control (WFC) mechanism 

to packetize data traffic into small chunks (flits). Routing 

channels are established as soon as the header flit is received by 

the next in-path router. This channel allocation queue other data 

packets at respective input buffers that adds into 

communication delays and congestion issues. Virtual channels 

(VC) can be employed as a remedy for delays caused by WFC 

[21]. Recent research highlights the devastating effects of local 

congestion on NoC performance [8]. Data encountered with in-

path congestion significantly effects network latency. Local 

congestion handled at early stage will improves overall NoC 

performance [8]. 

        In NoC systems, applications are mapped across all 

network nodes and data packets generated by each node is 

dependent on the routing algorithm to reach destination node. 

Routing algorithms are responsible for uniform distribution of 

data across network. Different routing algorithms i.e. XY, Odd-

Even etc. are designed for the NoC architecture [22]. These 

routing algorithms are static-natured and lacks capability to 

bypass an emerging congestion hazard. An adaptive routing 

algorithms are introduced with an ability to select the next hop 

towards destination based on current network condition. 

Dynamic XY (DyXY), Dynamic AD (DyAD) etc. are widely 

used adaptive routing algorithms [23], [24]. These routing 

algorithms requires local information to guarantee routing data 

transmission through minimal path. These algorithms incurs 

extra logical circuit costs to decide for the optimal path. 

Furthermore, these routing algorithms comes with the local 

visibility that lacks information of far-neighboring nodes and 

often forward data packets towards nodes which are already 

congested (misjudgment problem) or traverse data through 

additional hops thus effecting NoC latency [7], [25].  

Dedicated Congestion Aware Adopting Routing (CAAR) 

algorithms are designed to tackle misjudgment and latency 

issues caused by simplified adaptive routing algorithms. CAAR 

algorithms are equipped with complex selection functions to 

analyze the spread of NoC congestion. These selection function 

use local or global information to optimize data path [26].  

Some CAAR algorithms considers switch contention as a 

potential congestion identifier. An upgraded Odd-Even 

adaptive routing algorithm and Path-Congestion Aware 

Adaptive Routing (PCAR) algorithm used switch contention 

and free buffer slots information as a selection function to 

identify on-path congestion [19]. Other prominent solution 

includes dynamic run-time task mapping to enhance network 

throughput[27]. These complex algorithms improve network 

latency with cost of additional computational and hardware 

resources. 

All of above techniques are reactive to congestion and 

enforce precautionary measurements to avoid data packets from 

existing congestion. NoC performance i.e. latency, throughput, 

QoS can be improved by predicting on-path congestion[8], 

[13], [16]. NoC congestion prediction is an active research topic 

and recent studies reveal that congestion prediction can aid 

routing algorithms in making optimal routing decisions to 

bypass congested nodes. This precautionary-routing will reduce 

the impact of congestion on NoC performance by minimizing 

the possibility of potential local congestion. 

A. Congestion Prediction Models 

Congestion prediction is an on-going research topic and 

previous work utilized different indicators as a parameters to 

predict congestion in NoCs. These parameters includes buffer 

occupancy levels, traffic patterns, traffic tables, task mapping 

etc. Traffic-Based Routing Algorithm (TBRA) analyses routing 

data to predicts on-path congestion and routes the data packets  

through alternative paths by dynamically select suitable routing 

algorithms [7]. Advantages of congestion prediction are not 

limited to linearize network traffic distribution to optimize 

network performance (latency and throughput), it also helps in 

optimization of NoC resource utilization thus saving dynamic 

power. Application Driven Traffic Pattern Table (ATPT) with 

build-in traffic flow table predicts end-to-end network traffic 

patterns. ATPTs process incoming traffic flow patterns to 

predict router usage. Based on predicted router usage, ATPT 

optimizes the operating frequency/voltage of router to save 
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86% dynamic power with cost of 21%  NoC latency[28].  A 

predictive flow control mechanisms is proposed to ensure 

congestion free paths for routing data. This close-loop flow 

control mechanism avoids buffer overflowing by dropping 

random data packets at each router[29].  

Neural networks have achieved excellent performance in 

predicting NoC congestion. A multi layered Evolving Fuzzy 

Neural Network (EFuNN) predicts on-path congestion to 

provide congestion-free minimal paths [17]. An ANN based 

hotspot prediction mechanism was proposed for mesh based 

NoC system that utilizes buffer occupancy levels as a parameter 

for congestion prediction. The model achieved 65-92% 

congestion prediction accuracy on real-time and synthetic 

traffic patterns. Recent research on analyzing SNN based 

congestion prediction models has achieved up to 88%-96.59% 

prediction accuracy on synthetic and real-time applications, 

with 9 times less hardware overhead as compared to ANN [13]. 

B. Motivation:  

      Existing congestion prediction models classify router 

accessibility based on congestion and non-congestion status. 

Typically, a threshold is set on prediction parameter to classify 

router as congested or non-congested. Predicted congested/non-

congested output are then forwarded to routing algorithms to 

route data through alternative paths.  

      Consider a situation shown in Fig. 2 where the data packet 

is forwarded from R11 to R12 while coursed towards R23. 

Depending on the routing definition, data arrived at R12 can be 

forwarded through R22, R13 and R02 towards destination node 

(as shown in Fig. 2(a)). Adaptive routing algorithms have 

congestion criteria/definition to look at on-path congestion and 

to make optimal decision for routing of the data traffic towards 

least congested node. CAAR and existing congestion prediction 

models sets the threshold condition on input buffer levels to 

define congestion and predict router status as congested or non-

congested. These predictive outputs are then fed into the routing 

algorithm to make precautionary measurements i.e. establish an 

alternative path for data to avoid potential congestion. 

According to congestion definition in [13], [16], all neighboring 

routers (R22, R13 and R23) are congested and routing 

algorithms have no visibility to the actual router utilization 

values (as shown in Fig. 2(b)). Thus, the data packet received 

by R12 will be queued at its input buffer until one of the on-

path nodes gets freed from congested status. Queuing of 

incoming data will soon occupy all available buffering space 

and starts causing backpressure on neighboring nodes. Other 

possible solutions by the routing algorithm is the reverting of 

data packet towards R11. Thus, allowing R11 to find alternative 

non-congested path for routing data packet. This process will 

add additional hops in data transmission which will cause 

communications delays and NoC latency issues.  

      This sparks the motivation of our research to evaluate 

prediction performance for multi-level fine-grain utilization 

level that will provide a clear visibility of router congestion. In 

said situation where on-path routers were labelled as congested 

are now classified according to their actual fine-grain predicted 

utilization. The predicted output from proposed model will 

helps routing algorithm or congestion handlers to route data 

packets through least congestion node, thus suppressing the 

effect and spread of potential congestion hotspot in NoC. The 

scope of this work is limited to explore high performing SNN 

based fine-grain congestion prediction model for NoC 

architecture that will be able to integrate with routing 

algorithm/ congestion handlers to minimize impact of 

congestion and thus improves network throughput and latency.  

III. FINE-GRAIN CONGESTION PREDICTION MODELS 

Routers are equipped with input buffers to provide space for 
incoming data packets. Switch contention happens inside a 
router which permits incoming data to queue at input channel 
buffers. Queuing of data at input buffers is the foremost reason 
for local congestion [8], [16], [19], [30], [31]. These buffers 
utilization values provide early indication of possible local 
congestion. Research suggests that Buffer Occupancy Level 
(BOL) is a key indicator in identifying potential local 
congestion. Congestion handled at local level will reduce impact 
of back-pressure across NoC. Bio-inspired spiking neural 
network provides low hardware and high performance solution 
for learning and classification of temporal patterns. This work 
proposed SNN based NoC congestion prediction model that 
utilize buffer occupancy information as a parameter for 
prediction of multi-level local congestion. Inspired from 
previous work [13], this work considered two prediction models 
1) Network model and 2) Router model to explore optimal low-
cost model for multi-layer congestion prediction. Performance 
of both models are evaluated based on multi-level fine-grain 
prediction accuracy and additional resource costs. 

A. Neural Model 

SNNs are inspired from biological neurons to encode 

information in the form of spikes. Neurons in SNNs are 

connected though weighted synapses. Depending on level of 

abstraction, number of neural models and spiking learning 

algorithms are proposed for learning of temporal SNNs. This 

work proposed Leaky-integrate and Fire (LIF) model neurons 

with Spikeprop as a learning algorithm for training of NoC 

temporal utilization patterns. LIF model is an efficient spiking 

model and provides a true balance between neural behaviour 

and computational complexity [32]. In SNN, Ὥth LIF neuron 

with membrane potential ό ὸ at time ὸ with leaking potential 

in the absence of an input current is described by  

 † όὸ ὙὍ ὸ, (1) 

      where †  describes the membrane time constant of the 

neuron, Ὑ is the membrane resistance and Ὅ ὸ is synaptic 

current of Ὥth neuron. 

Spikeprop is SNN counterpart of the back-propagation in ANN 

which learns to updates the cost function by minimizing the 

(error) squared difference Ὁ  between actual firing times ὸ at 

output neuron j and desired firing time ὸ at output neuron j by 

 Ὁ
ρ

ς
 ὸ ὸ

ᶰ
Ȣ    (2) 

B. Proposed Prediction models 

The proposed SNN based fine-grain utilization prediction 

model connects directly with the NoC architecture and forwards 



data towards the routing algorithm to make routing decisions. 

The ultimate goal of the proposed models is to compare and 

contrast prediction performance and hardware area. This work 

considered two prediction models based on the level of 

abstraction: (1) router-model and (2) network-model. In router 

model, each router is connected with its individual SNN and 

reads BOL data from each input channel to predict fine-grain 

router congestion levels (shown in Fig 3(a)). The BOL can be 

accumulated as a unified value to show the Router Occupancy 

Level (ROL).  The network model comes with a singular SNN 

for whole NoC architecture and reads ROL of each router in the 

NoC to predict a congestion level for each router (as shown in 

Fig 3(b)).The proposed models are designed to predict fine-

grain utilization levels of each router 30 clocks ahead and 

informs the routing algorithm to take appropriate action to 

avoid potential congestion. 

C. Neural Encoding 

The NoC architecture transmits packetized data between source 

and destination nodes through communication channels. 

Routers at every node establish these channel towards 

neighboring nodes. Depending on location in NoC (inner or 

corner), router can link through 3-5 neighboring channels. Each 

channel exhibit input buffers to accommodate incoming data 

packets towards node.  The congestion level of the router 

depends on the total input buffer occupancy at connected 

channels. Fig 4 shows buffering information of the router-X and 

the router-Y in NoC network. It is evident from Fig 4 that both 

routers are connected to the neighboring routers and the 

processing core through 5 channels (north, west, south, east and 

core). The input buffer occupancy values for the router-X and 

the router-Y are σȟςȟςȟσȟρ  and τȟςȟσȟςȟσ  respectively. 

The ROL values of the router-X and the router-Y are 11 and 14 

respectively. These buffer utilization values (BOL and ROL) 

are temporal in nature and can be fed directly into LIF-based 

SNN network for encoding of multi-level prediction. Fig.5 

shows timing diagram for proposed SNN model where  ͼὝὭͼ is 

input spike time carrying BOL/ROL values (ὸȟὸȣὸ) as input 

spike train, ͼὝὴͼ  is neural processing time to generate output 

(predicted utilization values as spike (ὸȟὸ ȣὸ )) in 

time ͼὝέͼ.  For any input buffer pattern, the proposed SNN 

models will predict fine-grain congestion with 30 clocks in 

advance. This will provide enough time to routing mechanism 

to make decision for routing data through least congested path.  

      Referring to Fig.2(c), our proposed fine-grain models 

predicts actual router utilization and provides more visibility by 

determining future router utilization values based on current 

utilization status to the routing algorithm /congestion handlers 

to forwards routing data from R12 towards destination node. 

The proposed router and network models read real-time BOL 

and ROL values of R22, R13 and R02 to predict multi-level 

fine-grain utilization values (for reference let us assume 11, 14 

and 12) for R22, R13 and R02 respectively. These fine-grain 

multi-level congestion values are shared with neighboring 

nodes and used by congestion handler/adaptive routing 

algorithms of to avoid potential hazard by routing data towards 

potentially least congested node R22 (as shown in Fig 2(b)). 
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Fig 2.  (a) available routing paths, (b) path prediction using bi-level congestion definition (c) path prediction using fine-grain congestion definition 
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Fig. 4. Buffer Utilization model with 4-buffer slots for each input (Green 

are free slots; Red are occupied slots) 
 

 
Fig. 5. Timing diagram of SNN. 
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Forwarding of data towards R22 using fine-grain prediction 

model will not only prevent NoCs from the effect of 

backpressure but also help to reduce delays and NoC latency. 

The scope of this paper is limited to exploring the feasibility of 

fine-grain multi-level congestion prediction with high accuracy 

and low hardware area overheads. 

IV. EXPERIMENTAL SETUP 

This section explains the experimental setup established to 

implement the proposed SNN based fine-grain level congestion 

prediction models. The prediction models are tested on traced 

based synthetic and real-time multimedia application data for 

performance evaluation. These applications are mapped on 

Noxim, a cycle accurate NoC simulator to generate utilization 

patterns for each input buffer of NoC router [33]. In the router 

model, temporal utilization patterns are generated from Noxim 

are fed into SNN to predict local fine-grain level congestion for 

each network node. In the network prediction model these 

temporal buffer utilization packets are passed through 

accumulator to generate unified temporal ROL values for each 

NoC router before forwarding it to network-model SNN.  

A. Traffic Scenarios  

We considered traced-based synthetic and real-time Multi-

media applications to analyze accuracy of fine-grain prediction 

models. All these applications are mapped on Noxim simulator 

to generate traffic patterns.    

Noxim comes with preinstalled synthetic applications 

which are readily available for performance evaluation i.e. 

transpose1, transpose2 Butterfly and Shuffle traffic 

patterns[33]. Two multimedia applications, MMS and MPEG-

4 applications are anticipated as benchmarks for real-time traffic 

scenarios in NoC architecture. MMS is a heterogeneous 

architecture comprising up of 40 tasks to be mapped on defined 

NoC Intellectual Property (IP) cores [34]. MPEG-4 is a video 

decoder distributed traffic traces mapped across 12 IPs which 

communicates through shared SDRAM [35].  

B. Simulation Setup 

The simulation environment considered a 4x4 NoC with 

standard 2-D XY routing algorithm for transmission of data in 

a mesh-based NoC. NoC throughput depends on the Packet 

Injection Rate (PIR). PIR is increased (PIR=0.5) to saturate 

network traffic to generate network congestion. Synthetic and 

real-time multimedia applications are mapped on Noxim and 

simulations are run for 2,000 clocks cycles to generate BOL and 

ROL of each router. Extracted data is then split into 60:40 for 

training and testing of the SNN. 

Work proposed LIF based SNNs prediction model with 

SpikeProp as learning algorithm. Both prediction model SNNs 

are designed and simulated in MATLAB for training and 

testing. In router model, every router has its own SNN where 

input layer neurons are connected directly to input channel 

buffers. Size of SNN in router level depends on location of 

router in NoC architecture and requires 3-5 input neurons. 

Router level SNN comes with fully connected 3-layer [(3-5) x 

15 x 1] sized SNN with (3-5), 15 and 1 neurons in input, hidden 

and output layer respectively are used for prediction of fine-

grain router congestion. Contrary to the router model, network 

model requires single SNN to predict fine-grain congestion 

level for whole network node. A (16x30x16) network level 

neural predictor with 16 neurons at the input layer, 30 in the 

hidden and 16 in the output layers for a 4x4 NoC. Each input is 

connected with a NoC router to read ROL. The output layer 

produces a predicted congestion level for the respective router 

with 30 clocks in advance.  

V. RESULTS AND ANALYSIS 

A. Performance Parameter 

To analyses performance of proposed SNN based 

congestion prediction models, fully-connected LIF-spikeprop 

is developed in MATLAB. During training sessions, 60% of the 

utilization data is simulated by the SNN to achieve a learning 

accuracy of less than 5% Mean Square Error (MSE). Once 

training accuracy is achieved, the trained SNN models are then 

fed with unseen (40% of the dataset) to predict fine-grain 

congestion 30 clocks in advance. A prediction accuracy 

 ὖ
ὥ
 parameter is used for the evaluation of multi-level fine-

grain prediction results of each traffic application generated by 

SNN. It is defined by  

ὖ
ВὝὖ ВὝὔ

Вὖ ὔ
 (3) 

    where congestion patterns are termed as positive ὖ  and 

non-congestion patterns are labelled as negative ὔ . Ὕὖ and 

Ὕὔ defines correct prediction of patterns ὖ  and ὔ  

respectively.  

Overall performance of the fine-grain prediction models are 

evaluated on average NoC prediction performance and 

estimated hardware area overhead.   

B. Simulation Analysis 

Results generated by the SNNs are analyzed by the 

prediction accuracy of each router as well as an average NoC 

prediction accuracy under varying synthetic and real-time 

traffic patterns. Fig 6 shows prediction accuracy of each node 

using router-model and network-model. Fig 7 shows the 
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Fig 6. Prediction accuracy for each router using (a) Router model and (b) 

Network model 
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average prediction accuracy of the router and network models 

under varying traffic conditions. For the synthetic traffic 

application, the router-model predicted fine-grain BOL with 

74.69%-87.64% average accuracy as compared to 83.32% - 

88.32% accuracy with the network-model. The router-model 

prediction accuracy in real-time traffic applications marked 

between 86.30%-93.27% as compared to 81-38%-82.65% in 

the network-model. In general, the router-model has shown 

prediction accuracy between 74.69% and 93.27% when 

compared with the network-model which predicted multi-level 

congestion accuracy between 81.38% and 88.81%.  

The router model showed better average accuracy of 

85.42% across all traffic applications as compared to 84.89% 

of network-model accuracy. Despite the slightly lower average 

prediction performance, the network-model showed more 

consistency in performance by keeping fine-grain congestion 

perdition accuracy above 80% across all traffic scenarios. 

Furthermore router-level shows the least prediction accuracy 

for multi-level congestion with 74.69% as compared to 81.23% 

in the network-model. Therefore, analysis suggests network-

model equipped with a global SNN as a suitable solution for 

fine-grain congestion prediction in NoCs.       

C. Hardware analysis: 

The estimated hardware area overhead of the proposed fine-

grain level congestion prediction models can be computed by 

using synaptic LIF neuron CMOS area calculated from [1], 

[36]. The router model requires an SNN for each node to predict 

congestion levels whereas the network router requires a single 

SNN to forecast congestion at each node. A typical CMOS 

based LIF neuron utilize ω ρπ άά  and a synaptic neural 

interconnection costs ςτρπ άά  CMOS area.  Estimated 

hardware cost of the router and the network model predictors 

for a 4x4 NoC is shown in table 1.  
      TABLE 1                  HARDWARE OVERHEAD  

Simulator 
Synaptic 

Area (άά2) 
Neural Area 

(άά2) 
Total Area 

(άά2) 
Predictor to Router 
Area Overhead (%) 

Router 
model 

1.92×10-3 2.16×10-3 4.08×10-3 0.46 

Network 
model 

2.30×10-3 5.58×10-4 2.86×10-3 0.32 

It is illustrated that the router model requires τȢπψ

ρπ άά  CMOS area as compared to network model of  

ςȢψφρπ άά . When compared with the congestion aware 

adaptive router area [37], both models require  fraction of area 

resources to add predictive capability to routing algorithm.  

D. Discussion 

Congestion prediction techniques requires complex 

algorithms to provide data transmission solution for scalable 

on-chip technology. Previous prediction models classify and 

labelled router congestion status as (1) congested (2) non-

congested[13], [16], [20]. This classification pushes burden on 

the routing algorithms to decide for the next packet hop. 

Routing algorithms may require additional information in a 

condition where the next on-path routers are labelled as 

congested. The proposed prediction technique in this paper is 

multi-level congestion prediction which predicts the actual 

buffer occupancy for each NoC router with a 30 clock cycle 

look-ahead capability. The proposed SNN based models 

predicts congestion with 11% more accuracy and requires 9 

times less hardware area when compared to the ANN based 

prediction model [16]. Previous SNN work based on bi-level 

congestion prediction has showed 92.83%-93.29% prediction 

accuracy for router and network congestion prediction models 

[13]. Although the proposed fine-grain prediction has reduced 

average prediction accuracy to 84.89%-85.42%, but it does 

provide in-depth router utilization prediction, which shifts 

anonymous routing decisions from the routing algorithm to 

allow sustained data distribution to enhance NoC throughput.    

VI. CONCLUSION  

This work proposed two SNN based fine-grain congestion 

prediction models for NoCs with a 30 clock cycle look ahead 

capability. The proposed models employed the LIF neural 

model with spikeprop as a learning algorithm to train the neural 

congestion prediction. The fine-grain prediction requires BOL 

for the router-model which reads input from each channel and 

ROL for the network-model which requires total occupancy for 

each node. Both models read inputs to predict multi-level fine-

grain occupancy levels for each router. The output of the 

proposed model can be forwarded towards the congestion 

handlers i.e., adaptive routing algorithms to make routing 

decisions. The proposed models are trained and tested under 

synthetic and real-time traffic applications. Simulation results 

showed that the router-model predicted fine-grain congestion 

with an average accuracy of 85.42% as compare to 84.89% with 

the network-model. However, network model deliver 

consistency in prediction accuracy (more than 80% across all 

traffic scenarios) and requires 42% less hardware area than the 

network-model. Analysis suggests the network-model as more 

suitable approach for fine-grain congestion prediction in 

synthetic/real-time applications.  

The proposed work is part of on-going research of exploring 

low-cost congestion prediction model to enhance NoC 

performance[13]. This work is limited to exploring suitable 

fine-grain prediction model which provides a trade-off between 

performance and hardware area. Future work includes analysis 

on Rentian traffic and the integration of the SNN based fine-

grain congestion prediction model with an adaptive routing 

algorithm i.e. i.e., DyXY, DyAD, NoP and [4], [37] to improve 

NoC latency and throughput. 
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