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Abstract 

Systems Medicine has emerged as a powerful tool for studying the human body at the systems 

level with the aim of improving our understanding, prevention, and treatment of complex 

diseases. Being able to automatically extract relevant features needed for a given task from 

high-dimensional, heterogeneous data, Deep Learning holds great promise in this endeavour. 

This review paper addressed the main developments of Deep Learning algorithms and a set of 

general topics where Deep Learning is decisive; namely, within the Systems Medicine 

landscape. It discusses how Deep Learning can be applied to Systems Medicine with an 

emphasis on the applications to predictive, preventive, and precision medicine. Several key 

challenges have been highlighted including delivering clinical impact and improving 

interpretability. We used some prototypical examples to highlight the relevance and 

significance of the adoption of Deep Learning in Systems Medicine, one of them is involving 

the creation of a model for personalised Parkinson's disease. The review offers valuable 

insights and informs the research in Deep Learning and Systems Medicine. 

 

KEYWORDS – Deep Learning (DL); Systems Medicine (SM); Data integration, biomarker 

discovery, disease classification. 

  



1 Introduction 

Systems medicine (SM) has emerged as an interdisciplinary field, which promotes an 

integrative and holistic approach to studying the human body at the systems level with the aim 

of improving our understanding, prevention, and treatment of complex diseases [1, 2]. The 

ultimate challenge and vision is a radical shift from a reductionist paradigm to multiscale SM 

[3] and its real-world validation and patient-relevant application. 

As a multiscale, multidisciplinary approach to medicine, SM is characterised by the 

presence of large amounts of high-dimensional, heterogeneous data ranging from electronic 

health records (EHRs) to sequencing and multi-omics technologies across levels in tissues and 

organs [2-4]. It has been suggested that in order to tackle complicated tasks such as the 

discovery of complex disease patterns with multiple facets from data and realize the full 

potential of machine learning (ML) in the era of big data, learning models need to go deep and 

various Deep Learning (DL) architectures hold great promise in this endeavour [5-7]. 

Here we tackle the applications in SM. Other DL reviews are being published under various 

approaches; some reviews are addressing models and/or methodologies [8, 9, 10], others are 

focussing either general applications [11], or specific tools (e.g., embedding graphs [12, 13]) 

or even DL works targeting a certain field (e.g.,  pharmaceutical research and drug 

design/discovery [14, 15, 16]). 

 

1.1 Introduction to Deep Learning  

Deep learning is a branch of ML and artificial intelligence (AI) that employs a layered structure 

of computation to learn data representation with multiple levels of abstraction [17]. The word 

deep in DL implies the number of processing layers through which the raw data are transformed. 

The ability to progressively build up abstract representation through layer-wise learning and 



automatically extract relevant features needed for a given task such as image classification and 

biomarker identification is one of the key advantages of DL [17-18]. Since the term was first 

coined and introduced in 1986, DL has brought tremendous performance and remarkable 

results in numerous domains including image classification [19], signal processing [20], and 

computational biology and bioinformatics [21, 22], to name a few.  

1.2 Multidimensional data in Systems Medicine  

Progress in molecular and medical sciences has led to the accumulation of massive amount of 

high-dimensional heterogeneous data in SM, which can be structured and unstructured and may 

come in a variety of fuzzy and noisy forms.  

1.2.1 Lifestyle data 

One major challenge in healthcare systems is to better understand how environmental and 

lifestyle factors affect health. In particular, the modifiable lifestyle factors are of special interest, 

especially in non-communicable diseases (NCDs) in which the concept of lifestyle medicine 

was proposed [23]. In humans, because of the ethical and practical constraints, the capacity of 

experimentations is limited and therefore research studies are using observational data, without 

controlled conditions to analyse links between health status and environmental factors [24]. 

For a long time, conceptual frameworks were proposed to structure categories of health 

determinants [25]. More recently, the nutritional epidemiology community has successfully 

implemented data integration platforms (e.g. the Nutritional Phenotype database 

(www.dbnp.org)) in order to allow joint data analyses at the individual level from multiple 

nutrition studies. Within the context of the European Nutritional Phenotype Assessment and 

Data Sharing Initiative (ENPADASI), a metadata was built including the minimal information 

to connect existing and future studies and increase data sharing [26]. All the efforts will 

facilitate the integration of data from different sources in order to identify lifestyle determinants 

at multiple levels in the context of SM 



1.2.2 Multi-omics data  
 

The development of omics approaches (e.g., genomics, transcriptomics, proteomics, and 

metabolomics) allowed getting a better understanding of organisms and systems that is the key 

component of systems biology. However, such analytical platforms generate large and complex 

data including high analytical variance, intrinsic collinearity, and noise presence. Despite large 

inter-individual variabilities, sample sizes are usually limited by experimental design in 

comparison to the huge number of collected variables. In this context, dedicated algorithms 

and tools have been applied to extract the relevant biological knowledge, particularly in the 

field of machine learning methods. This challenging task requires minimal reporting 

guidelines, formats and standards for data management that have been set up in an open science 

research perspective [27, 28]. At present, large scale omics data are becoming more available 

and multi-scale studies requiring multi-omic integration are generalizing because such 

approaches are of major interest to characterize phenotypes complexity [29]. In this context, 

DL has emerged as a powerful methodology to both process omic datasets and integrate them 

for SM [30]. 

1.2.3 Electronic health records 

Electronic health records generally describe an extremely secure healthcare database 

comprising patient personal information, health-service encounter information, medical 

histories and diagnoses, management/treatment details, copies of clinical correspondence (such 

as referral and discharge letters), lab test results, imaging and other specialist investigation data. 

They are notoriously heterogeneous in their representations and include numerical and 

categorical values, datetime objects and natural language free-text. The wealth of information 

contained within free-text sections is especially unstructured and prone to individual clinician 

writing styles and abbreviations. 



Current progress towards integrating ECRs with the demands of data analysis is still at the 

developmental stage.  OpenEHR [31] offers a series of data architectures and standards that 

have been developed to maximise interoperability and is under consideration for adoption (at 

least partially) in the future planning of a number of healthcare providers.  FHIR (Fast 

Healthcare Interoperability Resources) proposes data storage standards; but also standards for 

the accompanying application programming interfaces (APIs) through which the data can be 

accessed [32]. Commercial vendors are also beginning to recognise this opportunity, proposing 

proprietary EHCR systems such as Encompass (Epic Systems Inc.) and propriety infrastructure 

(e.g. Dell EMC Healthcare).  Initiatives like NHS Digital have been created to curate the digital 

offering of the UK’s National Health Service (NHS) (https://digital.nhs.uk), including the 

management of secure access to restricted data sets.  Academic units have also emerged as 

organisations that can curate data to support analysis, such as the OpenPrescribing data set that 

contains historical prescription data [33] and the Connected Health Cities Initiative, which has 

sought to build an interoperable system with patient engagement on top of existing NHS 

infrastructure [34]. 

1.3 Deep Learning and Systems Medicine  

Given the numerous applications of classical statistics and data mining in medicine over the 

past decade [2, 4], one may argue why a new paradigm, i.e. the DL one, is required. To tackle 

this question, we here consider a prototypical example, involving the creation of a model for 

personalised Parkinson's disease (PD) risk estimation. PD is the second most common age-

related neurodegenerative disease after Alzheimer's disease (AD), with an average onset at 55 

years, and with symptoms including tremor at rest, rigidity, slowness, or absence of voluntary 

movement, postural instability, and freezing episodes [35, 36]. A key question is still to be 

answered: can the risk of developing PD be assessed on a personal basis? In other words, given 

all data that can be collected from a person, can a personalised risk probability be synthesised? 



As we will here see, the complexity of the problem implies that no simple answer can be 

manually created, and the nature and structure of the data encoding such answer prevent a 

solution based on classical data mining algorithms. 

One of key components in SM is to use advanced mathematical modelling to integrate 

multidimensional and multiscale data including both biological and medical data. Recent 

development and implementation of SM and DL have been possible thanks to the emergence 

of new tools for multidimensional data generation and integration. 

It is now well-known that many cases of PD have a genetic origin, with mutations in the 

genes encoding the lysosomal enzyme beta-glucocerebrosidase (GBA) and the α-synuclein 

being associated with respectively a 13.6- and 1.23-fold change in the risk of developing PD 

[37, 38]; strong associations have also been observed for loci GAK-DGKQ, SNCA, and the 

HLA region [39]. Still, a large share of cases is associated with specific behavioural and 

lifestyle aspects. During the last two decades, it has been shown that exposure (environment, 

nutrition, etc) multiplies the risk of PD [40-47]. Most interestingly, various negatively 

correlated associations are observed with heavy smoking [41-43], alcohol consumption [48], 

milk and carbohydrates intake [47], and polyunsaturated fat intake [42, 47]. 

Looking back at the clinical trajectory of each subject, it has been shown that the 

concomitance of pesticide use, family history of neurologic disease, and depression lead to a 

probability of developing PD of  92% [40]. Olfaction dysfunctions can predate clinical PD in 

men by at least 4 years, and can thus be a powerful predictor of the disease [49]. Hazard ratios 

among people with type 2 diabetes, compared with those without it, were around 1.9 [50]. 

Similarly, prior head injuries with amnesia or loss of consciousness are associated with an 

increased risk for PD [52], while the use of ibuprofen is associated with a marked decreased 

risk [53]. 



Several medical tests can be used to refine PD risk. For instance, PD incidence is higher 

in the presence of alterations in the human microbiome, due to the relationship between PD, 

brain, and gut [54]. Prodromal stages of PD can manifest as alterations of brain dynamics, as 

measured by an electro-encephalogram; the risk of developing dementia is then 13 times higher 

in subjects with low background rhythm frequency [55]. Additionally, a simple blood test can 

measure levels of interleukin-6, which are positively correlated with PD [53]; and of urate and 

cholesterol, which are negatively correlated [56, 57]. To conclude, some additional symptoms 

of early onset of PD have been identified, although being more difficult to measure and, in 

many cases, only of a subjective nature. These include sleep disturbances, behavioural and 

emotional dysfunction like changes of personality, constipation, urinary dysfunction, 

depressive symptoms, and chronic pain in joint and muscle [58, 59]. 

As clearly appears from even this simple review, creating an automated model for 

forecasting the risk of developing PD is far from being a trivial task, and one not easily 

accomplishable with standard statistical and data mining techniques. Large quantities of data 

have to be collected for each individual; and highly heterogeneous sources processed, like 

blood sample analysis, free texts in large collections of EHRs, genetic data, and personal 

interviews. Afterward, all these elements have to be combined into a single model, where 

relationships may be highly non-linear, and may be masked or enhanced by confounding 

effects. By overpassing these issues, the solution may be at hand thanks to DL. 

The purpose of this paper is thus to review DL algorithms and applications in SM, namely: 

in Section 2, the fundamentals of DL models are presented, followed by key contributions of 

DL to data analytics in medicine; in Section 4, applications of DL in SM are revisited; in 

Section 5, the main challenges and future trends are summarized; and finally, in Section 6, the 

conclusions and future developments on DL are discussed. 



2 Fundamentals of Deep Learning models 

While various DL models have been proposed and developed each exhibiting unique features 

in its implementation, the core concept behind their success [17, 60] is their ability to perform 

feature transformation layer by layer. A DL network can be considered as a multi-layer 

perceptron (MLP), i.e. a computer model conceived to represent or simulate the ability of the 

brain to recognize and discriminate, which follows specified rules in the choice of the number 

of neurons in each layer and in the wiring between layers to enact different representation layers 

corresponding to conceptual characteristics whose higher layers concepts are defined on the 

basis of the lower ones. 

As illustrated in Figure 1, regardless of its architecture, a DL model always works in layers 

typically consisting of an input layer, multiple hidden layers, and an output layer. Each layer 

contains a certain number of computational units carrying out the transformation of the data 

received from the previous layer and then passing the results to the next layer as depicted in 

Equation 1. 

𝑦𝑘,𝑡 = 𝑓(𝑥1,𝑡−1, ⋯ , 𝑥𝑛,𝑡−1) (1) 

Where n is the number of computational units in the  (t - 1)th layer; and  yk,t and  xi,t stand for 

the output from the kth unit in the tth layer and the input from the ith unit in the (t - 1)th layer 

respectively. 

[Insert Figure 1 here] 

With the layer-wise data transformation, deep models are capable of progressively 

abstracting data representation layer by layer, leading to automatic feature engineering from 

low-level features such as edges to higher, more abstract features like face [17, 61]. In an image 

classification application in which a raw image is encoded using an array of pixels, the first 



hidden layer typically detects the presence of various oriented edges at particular locations in 

the image. The extracted edges are then passed to the next layer which is involved in the 

detection of some simple shapes like corners, and subsequent layers would extract more 

abstract and composite representation such as facial shapes (Figure 1). This represents a huge 

advantage over traditional shallow ML models in which features need to be extracted and 

prepared in advance [62, 63]. In particular, the transformation taking place in each layer is 

performed usually with non-linear functions, generating a set of new features not found in the 

raw feature space. For example, most current deep models are derived from the artificial neural 

network and are models using layers of artificial neurons [2]. Each neuron is fully connected 

to nodes in the previous layer in a manner analogous to biological synaptic connections [64]. 

To model the behaviour of a biological neuron, a weight representing the strength of each 

connection to the previous layer is introduced and an activation function is applied on the 

weighted sum to determine its output to the next level as shown in Figure 2. 

[Insert Figure 2 here] 

Hereinafter, several widely utilized models in DL literature along with their applications in 

SM are reviewed. 

2.1 Recurrent neural networks  

A recurrent neural network (RNN) is a DL model designed to make use of sequential 

information. It has a basic structure with cyclic connection and recurrent units as illustrated in 

Figure 3, in which the structure is unrolled forward through time.  

[Insert Figure 3 here] 

One of the key features of an RNN is its hidden state which works as the memory of the 

network by storing the past information in the hidden units. The state at each time step t is 



estimated based on the previous hidden state and the current input as defined in Equation 2, 

allowing the network to integrate the states previously learnt through a recurrent approach [22]. 

ℎ𝑡 = 𝑓(𝑊𝑅ℎ𝑡−1 + 𝑊𝑋𝑋𝑡) (2) 

The structure of an RNN lends itself naturally to the analysis of omics data and biomedical 

signals which are typically sequential and to modelling temporal dynamic behaviour exhibited 

by biological processes [30]. For example, a novel RNN approach was introduced to modelling 

temporal dynamics and dependencies in brain networks observed based on functional magnetic 

resonance imaging (fMRI) [65]. It has been shown that temporal dynamics can be predicted 

directly from the recurrent states of the RNN in both task and resting state fMRI. However, 

due to its recurrent nature, RNN suffers from high computational cost and the problem of 

gradient vanishing and exploding [66]. 

2.2 Convolutional neural networks 

Inspired by the biological structure and function of the visual cortex, convolutional neural 

networks (CNNs) have been extensively studied and have become one of the most successful 

DL models especially in the area of image classification [17]. Pioneering works include the 

seminal studies published by LeCun et al. [67, 68] which established the modern framework 

of CNNs.   

A typical CNN architecture includes the following 4 building blocks as illustrated in Figure 

4, in which multiple convolutional and pooling layers are stacked in an alternating fashion in 

an attempt to learn data with different levels of abstraction. 

● Convolution which is central to any CNN models and is used to extract features from 

data that the spatial arrangement of pixels is preserved. It is a linear operation that 

involves combining an input matrix with a kernel to produce a feature map whose size 

is determined by 3 parameters, i.e. depth (the number of kernels), stride (the number of 



pixels shifted over the input matrix each time) and padding (the amount of additional 

pixels added to the edge of an image). 

● Rectified linear units (ReLU) which is a non-linear operation applied to convolved 

feature maps with the purpose of introducing non-linearities in the network.  

● Pooling which is a downsampling operation on a rectified feature map aiming to reduce 

the dimensionality of each map while retaining the most salient features. It involves 

sliding a 2d filter across a map and summarising the features selected by the filter. 

Popular pooling operations include max, average and sum functions with max pooling 

being the most widely used. 

● Classification which is performed based on the output from the convolutional and 

pooling layers using a fully connected network.  

[Insert Figure 4 here] 

While CNNs require a large amount of annotated data for its proper learning and 

interpretation of features constructed proves challenging due to its black box nature [69], they 

have revolutionized the field of computer vision and have been applied to a wide variety of 

tasks such as medical image segmentation and diagnosis each achieving remarkable 

performance [70, 71]. Examples include a CNN-based computer-aided detection system 

developed for detection and classification of lesions in mammograms without any human 

intervention [72]. The proposed method achieved the state-of-the-art performance on the public 

INbreast database with AUC = 0.95 and the 2nd place in the Digital Mammography DREAM 

Challenge with AUC = 0.85. 

It is worth noting that while CNNs have been primarily applied to image processing, much 

effort has been made to apply them to non-image data, which need to be carefully transformed 

to a well-organized image form [73]. The key component in such applications is to define 

neighbourhood information ensuring that similar elements are positioned close to each other 



and dissimilar ones further apart. By converting genomic sequences into 2D image-like data, 

DeepBind [74] has been successfully applied CNN models to predict the sequence specificities 

of DNA- and RNA-binding proteins.  

2.3 Autoencoders 

Autoencoders [75] are a typical DL model designed to learn efficient data representation in an 

unsupervised fashion. The simplest autoencoder is a feed-forward neural network with an 

hourglass architecture/shape. The central bottleneck layer separates the neural network into 

encoding and decoding parts (encoder and decoder). The central layer contains very few 

neurons, precisely the number of neurons is equal to the desired dimension of dimensionality-

reduced data. The autoencoder is trained to provide a maximum agreement between the signal 

going into and the signal going out from the autoencoder. A good agreement between the input 

and output signal reached by the training process implies that high-dimensional data can be 

dimensionally reduced by an encoder and expanded back by decoder without significant loss 

of information. Signals in the central bottleneck layer can be used as low-dimensional 

embeddings of the input data. Autoencoders can be simple (not “deep”) neural networks, but 

they can be deepened by using multiple hidden layers, convolutional and deconvolutional 

layers, using advanced training methods or other extensions. Autoencoders, however, are data-

specific and thus their utility is restricted to applications in which data are considerably similar 

to the ones used to train the models. In addition, when applied as a data compression algorithm, 

autoencoders tend to produce a lossy output [76]. 

Common applications of autoencoders include image denoising [77] and dimension 

reduction [78]. Since it was introduced in the 1980s [79], a variety of deep autoencoder 

architectures have been proposed each showing great potential in Bioinformatics and SM.  

Based on a DL strategy, Xu et al. [80] introduced a Stacked Sparse Autoencoder (SSAE) to 

identify distinguishing features of nuclei on high-resolution breast cancer histopathology 



images. An improved F-measure 84.49% and an average area under Precision-Recall curve 

78.83% have been achieved. A three-layer of denoising autoencoder was implemented within 

a novel framework called “deep patient” used to infer a set of generate features from a large-

scale EHR database to facilitate clinical predictive modelling [81].  

2.4 Deep generative models 

Variational autoencoders [82] and Generative Adversarial Networks [83] belong to a group of 

deep generative methods. The term generative indicates that these models can generate 

something. In standard autoencoders, it is possible to point a finger into a random point in the 

low-dimensional space in the central bottleneck layer. Next, it is possible to decode this signal 

into the output layer. However, this output signal usually does not have any meaning, especially 

if the random point lies outside low-dimensional embeddings of the input data. Unlike standard 

autoencoders, variational autoencoders can generate meaningful output from a random point 

in the low-dimensional space in the central bottleneck layer. Therefore, they can interpolate 

and extrapolate high-dimensional training sets. This feature of deep generative models also 

addresses the fact that dimensionality reduction by standard autoencoders is arbitrary.  

As a probabilistic generative model, a deep belief network (DBN) pre-trained using the 

greedy layer-by-layer learning algorithm was introduced in 2006 [84] which can provide joint 

probability distributions between input data and labels. It is composed of multiple non-linear 

layers of latent variables with the connection between top two layers being undirected. One of 

key advantages exhibited by DBNs is the model can be pre trained in a completely 

unsupervised fashion using a large set of unlabelled data [85]. However it has been highlighted 

that DBNs do not take the spatial structure of an image into account which may significantly 

affect their performance in some applications [86]. 

Deep generative models are behind popular applications such as FaceApp 

(https://www.faceapp.com/), which can modify (extrapolate) an image of a person according 



to age, visage or gender. Beside such popular applications, deep generative models have a great 

potential in bioinformatics and SM. Aghdam et al. [87] applied DBNs to automatically learn 

complex mapping from both fMRI and structural magnetic resonance imaging (sMRI) for 

discrimination of autism spectrum disorders in young children. Abstract high-level features 

encoded in fMRI and sMRI were extracted and the best performance was achieved with a DBN 

of depth 3 outperforming the results previously published using Autism Brain Imaging Data 

Exchange I data. 

2.5 Hyperparameters in Deep Learning  

While each DL model exhibits unique features as summarized in Table 1, there are two types 

of hyperparameters used in all DL models [88]. The first type is related to model design such 

as the number of hidden layers in a model, the number of hidden units in a layer, and the number 

of filters in a DNN. The second type is those associated with a learning algorithm including 

learning rates, activation functions and the number of epochs. The selection of hyperparameters 

may have a significant impact on the complexity of a DL model and its performance. It has 

been shown that, in order to realize the full potential of DL, these hyperparameters need to be 

careful designed [88]. Fortunately, many online DL libraries written in different languages 

have been made publicly available which greatly facilitate experimentation. Examples include 

python-based Keras [89], C++based Caffe [90] and TensorFlow [91], and Deeplearning4j in 

Java (https://deeplearning4j.org/).  

One of potentially serious problems when applying DL is overfitting especially when 

sufficient amount of adequate training is not available. Common techniques to reduce 

overfitting include the use of regularization [92]. Examples include weight regularization and 

the dropout approach introduced in 2014 [93]. Parameter sharing in which a set of parameters 

are shared across layers is another approach for controlling the complexity of a DL model [94]. 

[Insert Table 1 here] 

https://deeplearning4j.org/


 

3 Enhancing data analytics in medicine with Deep Learning 

3.1 Multidimensional and multiscale data analysis and integration 

The amount of heterogeneous biological and medical data that are collected and stored on a 

daily basis is immense and rapidly expanding. However, vast collections of raw data are not in 

themselves useful. To be meaningful, data must be analysed and converted into information, 

or even better, into knowledge. Metabolomics, for example, generates large amounts of 

complex data reflecting the integration of multilevel regulations. Therefore, modelling 

approaches adopted in SM are increasingly multiscale [95] and the data processing workflows 

consist of a multi-step strategy involving various chemometrics and bioinformatics tools [96] 

in which DL has recently brought new horizons. As an example, DNN has been used for 

spectral peak classification in the development of several tools that improve data extraction 

[97, 98]. A DNN-MDA approach has also been shown of interest in determining important 

variables in complex datasets, in the context of biomarker discovery [99]. Then, DL has shown 

its powerfulness to explore structural relations between annotated metabolites or proteins, 

using structural-similarity scoring [100-102]. Finally, Hierarchical Multi-Label DL was 

applied to predict enzyme function that can be of great interest for new enzyme design or 

enzyme-related disease diagnosis [102]. 

Multidimensional and multiscale data integration is of major interest to model complex 

biological systems. Using either statistical methods (e.g., correlations), functional analyses or 

meta-analyses from different studies, they are generally performed to investigate multiscale 

relations within systems or validity of links between multi datasets across various health status 

conditions [103]. In this context, DL methodologies were more recently applied to integrate 

these data. Indeed, such methods have been shown as powerful approaches in their capacity to 



learn and fit data through representation at multiple levels of abstraction or hidden layer. In 

fact, Grapov et al. [30] reviewed the different DL architectures and their omics applications. 

One advantage of DL is its capacity to integrate heterogeneous data from different origins, such 

as clinical data, medical images, molecular multiscale data, and even epidemiological ones or 

parameters from EHR devices. 

Inspired by recent successes of DL in computer vision and speech recognition, a promising 

relatively-recent methodology has been proposed to encode time series data as images and to 

classify them using techniques from computer vision, which can be used to apply DL models 

to analyse various physiological signals such as heart rate, electrocardiogram (ECG), 

electroencephalogram, electromyography and so forth [104, 105]. As illustrated in Figure 5, 

this method transforms a time series into polar coordinates and then into Gramian Angular 

Fields (GAF) images [105], i.e., the visual representation of the Gramian matrix, a linear 

algebra structure used to compute linear independence. 

[Insert Figure 5 here] 

3.2 Biomarker identification 

Deep learning has been widely applied in medical image analysis [106] in particular to replace 

known classifiers and identify new biomarkers [107]. Also, DL algorithms have been used to 

develop an accurate biomarker of chronological age using eye cornea images [108] and also 

applied in neuroimaging to identify biomarkers of brain aging using CNNs [109]. 

In addition, DL methodologies can help tease out correct combinations of 

proteins/genetic signatures that can differentiate between different patient groups from large 

datasets (Figure 6).  

[Insert Figure 6 here] 

Although the field is still in its infancy, some studies have started to apply the framework. 

For example, a recent study on atrial fibrillation (AF) integrated genomic, epigenomic and 



transcriptomic datasets to identify AF related genes [110]. This study was able to explain the 

AF variance much better than GWAS alone [110]. Another AF study combined biomarker 

levels with known clinical risk factors and imaging parameters to differentiate various AF sub-

groups [111]. ML algorithms were combined with logistic regression. Results not only 

confirmed previously published findings such as BNP elevation but also identified FGF-23 as 

a robust biomarker for AF [111]. AF is an age-associated disease. Traditionally, ageing is 

viewed as a normal physiological progression towards the death of an organism. However, 

ageing is the single biggest risk factor for many chronic diseases. One way to address this issue 

is to radically view ageing as a disease, paving the way to interventions for treating ageing and 

ageing associated diseases. DL methodologies will be the key to advancement of these ideas. 

Indeed, a recent study identified undulating changes in the human ageing process [112]. Using 

deep mining approaches, the authors suggest these changes as hard coding factors (genomic) 

to soft coding factors (disease causing) [112]. Similarly, extending such observations to deep 

multiomics, Ahadi et al. [113] showed personal ageing markers change over a short window 

of 2-3 years. Further, the authors identified what they term “ageotypes” that can reflect ageing, 

lifestyle and medical history. Ultimately, such discoveries will help in targeting the ageing 

process [113]. 

3.3 Disease classification  

Deep learning has been extensively applied for disease classification, particularly in cancer 

research. Tran et al. applied DL to identify subtypes from breast cancer gene expression data 

but also the activity of key transcription factors [102]. Interestingly, this study showed that the 

deep architecture trained on one dataset could extract the same biological features in other 

datasets acquired with different technology. DL models also allowed multi-omics integration 

for identifying survival subgroups of hepatocellular carcinoma [114]. More recently, the DL 

approach was applied with the same objective to metabolomics data, as an alternative to ML 



methods. Alakwaa et al. [115] showed the higher accuracy of the DL model to predict oestrogen 

receptor status in breast cancer using a public dataset than when using SVM and RF methods. 

Moreover, the interpretation of hidden layers allowed identifying 8 underlying pathways. In all 

these publications, DL was undoubtedly of major interest both, for an integrative classification 

of disease subtypes from omics data, but also in terms of interpretation. 

The increasing availability of large clinical datasets and medical insurance data with 

diagnosis and treatment details opened the opportunity to map diseases comorbidities [116]. 

One of the most interesting papers which are a motivation behind this work is the human 

disease network [117] in which a scalable DL approach was adopted to forecasting disease 

trajectories over time. The human disease network consists of disorders and diseases linked by 

the known disorder–gene associations, which offers a platform to explore in a single graph-

theoretic framework all known phenotype and disease-gene associations. An RNN containing 

a memory state was used to integrate medical history into a forecast. Zhang et al. [118] 

proposed a novel CNN for risk prediction of multiple comorbid diseases from EHRs in which 

heterogeneous attributes e.g. diagnoses, procedures, and medication were represented by a 

graph. 

4 Deep Learning applications in Systems Medicine 
 

One of the clinical and societal drivers of SM is predictive, preventive, personalized and 

participatory medicine (P4 medicine) [119]. The vision of P4 medicine has long been 

advocated by the pioneers of SM [120]. In this section we describe some successful and 

promising fields of application for DL in SM with a focus on applications on predictive, 

preventive and personalized medicine. 

 



4.1 Personalized medicine 

Personalized medicine is an overarching approach to medicine where diagnostics, prognostics 

and prediction of treatment response considers individual-specific factors, rather than those 

derived from patient populations. Its future role in clinical practice is widely accepted, where 

it has the potential to streamline and enhance the quality of patient management by improving 

on the “one-size fits all/average patient” philosophy.  The focus is on the individual patient: 

considering their genotype, phenotype, epigenetics, lifestyle, environmental exposures, etc. 

With the expanding volume and complexity of medical databases that characterize patients, 

their diseases and responses; precision medicine is becoming an increasingly viable premise to 

augment traditional methods [121]. 

Personized medicine requires a large amount of regularly updated patient-specific data: 

sociodemographic parameters (e.g. age and gender); medical history; genomics, proteomics 

and epigenomics; microbiome and infecting pathogens; environmental monitoring, diet and 

nutrition tracking; metabolomics, physiological signals and medical imaging [119, 122]. The 

data are not only of high dimensionality; but also, unstructured and heterogeneous [123].  

Extracting clinical meaning from these data is the first challenge; making robust AI systems 

crucial. Traditional ML techniques can deal with large amounts of data and can discover hidden 

patterns and relationships. However, they are ineffective as data dimensionality becomes too 

large. Deep learning solves this problem as it can deal with a high level of complexity and 

multi-dimensionality [119]. In medical imaging, it has already demonstrated high potential, 

powered by the availability of networked architectures and comprehensive labelled datasets 

[124]. 

State-of-the-art applications of DL models in SM include tailored treatment plans, drug 

discovery and development, and accurate disease characteristic identification [119], [124]. For 

example, Liu et al. [125] developed a CNN-based pipeline for MR-based treatment planning 



in radiation therapy on brain tumor patients, which can produce comparable plans relative to 

CT‐based methods. Suresh et al. [126] proposed a CNN model for prediction of clinical 

intervention within intensive care units. Coupled with patient’s clinical risk factors, an image-

based DL framework named Deep Profiler which is capable of individualising radiation dose 

has been developed to deliver personalized radiation therapy to patients [127]. Based on a 

multimodal DL approach, an integrative framework [128] was developed for the identification 

of cancer subtypes from multi-platform genomic data e.g. gene expression, miRNA expression 

and DNA methylation. By linking to clinical data including patient survival time, time to 

recurrence, and response to drug, it has been demonstrated that the proposed DL-based 

approach holds promises for understanding subtype-specific transcription programs that 

controls cancer pathogenesis and tailoring cancer treatment to genetic profiles. To support the 

development of individualized drug response prediction, Rampasek et al. [129] utilized a deep 

generative model based on variational Autoencoders to predict drug response from 

transcriptomic perturbation signatures. The significant improvement has been achieved 

demonstrating that the low dimensional latent space derived from the DL model has the 

potential to encode the essential characteristics of the observed transcriptomic profiles. Thanks 

to the plethora of the available data and the flexible architecture of DL-based systems, the 

application of DL in drug discovery for the personalization of therapy has gone beyond 

compound property and bioactivity prediction [124, 130]. Recent years have seen the rapid 

development of DL models to address diverse problems in drug discovery such as de novo 

molecular design. Based on a trained deep neural network (DNN), Gómez-Bombarelli et al. 

[131] proposed a novel method to generate chemical structures with desirable properties. Using 

the deep generative models, Kadurin et al. [132] introduced a system which could help develop 

new molecules with specific anticancer properties.  



Accurate disease diagnosis is one of the key milestones for the realization of personalized 

medicine [124]. Over the past decade, DL-based approaches have achieved remarkable success 

in diagnosing various diseases thanks to their outstanding performance in biomedical image 

processing and the ability to incorporate a wide range of individualised features such as 

genomics, clinical data and lifestyle information. Examples include deep echocardiography 

representing a DL-based automated diagnosis of cardiac disease [133] and advanced DL 

models for diagnosis of AD [134] and breast cancer [135]. More recently, a deep representation 

learning framework namely DeepMicro has been developed for disease prediction based on 

microbiome data [136], whose role in precision diagnosis and precision medicine has been well 

recognized [137]. 

It is anticipated that the incorporation of EHR into predictive modelling could drive 

personalized medicine. Indeed, several EHR-based DL systems have been developed [138]. 

Using raw EHR data including free-text notes which formed the patient’s personalized input in 

temporal order, Rajkomar et al. [139] developed DL approaches for the extraction of curated 

predictor variables from normalized EHR data, and they were capable of accurately producing 

predictions for a variety of clinical problems (in-hospital mortality, 30-day unplanned 

readmission, prolonged length of stay, and patient’s final discharge diagnoses). In an attempt 

to improve the characterization of a patient’s clinical phenotype, Rashidian et al. [140] applied 

DL methods to analyse a range of data extracted from EHR (e.g., demographic, laboratory and 

medication data plus past diagnoses), and to predict ICD (International Classification of 

Disease) codes with high accuracy for three test cases (diabetes, acute renal failure, and chronic 

kidney disease). These set of studies contributed to show the importance of DL methods for 

precision medicine; in addition, they were associated in a good manner with clinical approaches. 

Nevertheless, it is important to be stated that despite substantial progress has been made in the 

development of DL-based diagnosis tools, they are mainly used to augment and assist clinicians 



for relevant tasks [133]. To be adopted for routine use by clinicians, more comprehensive and 

independent validation is required [127]  

4.2 Predictive and preventive medicine 
 

Predictive and preventive medicine is an exciting new approach aiming to predict the 

probability of a patient developing a disease, thereby enabling either prevention or early 

diagnosis and treatment of that disease. It has been argued that the future of medicine will move 

towards predictive and preventive modes [141]. With predictive analytics, both can go hand in 

hand with the aim of diagnosing disease in its earliest state and preventing its progression 

further [142].  

Deep learning models have been intensively explored in this changeling endeavour. 

Examples include the recent work by Lu et al [143] which used a CNN to predict long-term 

mortality from chest radiograph findings and identify persons with an increased risk of 

mortality at 6 and 12 years, highlighting the prospect of using DL to identify subjects at high 

risk for adverse outcomes who could benefit from prevention, screening and lifestyle 

interventions. A deep neural network was applied to predict multiple cardiovascular risk factors 

including age, gender, smoking status and systolic blood pressure from fundoscopic eye images 

that will allow for better cardiovascular risk stratification [144]. Tested in 11835 UK Biobank 

participants, the system demonstrates its ability to predict the onset of major adverse 

cardiovascular events within 5 years. 

Deep learning has also been applied to disease staging and outcome prediction. Using chest 

computed tomography images, Gonzalez et al. [145] developed a CNN to identify those 

individuals with chronic obstructive pulmonary disease (COPD), characterize disease severity, 

and predict clinical outcomes including acute respiratory disease events and mortality, which 

could be used as a powerful tool for risk assessment at a population level.  



It has been shown that DL approaches could support the clinician’s decision during each 

stage of hospitalization, leading to the delivery of better care [146]. Kim et al. developed and 

validated a CNN-based model for real-time prediction of all-cause mortality in critically ill 

children [147], which may be used for the timely recognition of patients at increased risk of 

deterioration. 

Clinical outcome prediction can be improved by the integration of data contained within 

patient EHR. The “Deep Patient” prediction system derived a generalizable patient 

representation [81], using an unsupervised deep feature learning method. It was trained on 

700,000 EHCRs and used a 3-level noise reduction autoencoder to capture hierarchical 

regularities within the heterogeneous data. It outperformed raw EHCR data in prediction of the 

development of severe diabetes, schizophrenia and various malignancies. 

Beyond the applications for early diagnosis of a disease, DL has shown the potential to 

improve palliative care. Avati et al [148] applied a fully connected DNN to evaluate all EHR 

data of all admitted patients and identify those at risk for death within the next 3 to 12-month 

period. Thus, a proactive approach could be taken to reach out to those who may benefit from 

palliative care consultation and engage patients and their families in informed decision making.  

4.3 Deep Learning in action: a case study on Parkinson's disease 

As previously introduced in Section 1.3, PD is a good use case for DL, due to the complexity 

of the disease and its manifestation, with symptoms usually appearing late and hence 

preventing an early intervention; and due to the vast array of data that could be used for its 

study. To conclude this review, we here show some examples of how the previously described 

DL techniques have been put into action in this disease. 

The first natural step towards a better treatment of PD is improving its diagnosis, especially 

in the case of atypical manifestations, and with the objective of reducing the subjectivity of the 

process. One of the most characteristic features of PD is that it modifies movement control, 



and hence initially affects gestures like writing or drawing spirals. This aspect has been 

explored by several works, for instance by using CNN [149, 150] and deep Echo State 

Networks [151], reaching classification scores up to 98% accuracy. Similar classification 

results have been obtained with features extracted from speech recordings and CNN [152]. The 

same type of neural networks has further been used to analyse other data, including brain 

activity [153] and dopamine transporter imaging [154], reaching respectively 88.25% and 98.8% 

accuracy. Beyond the raw classification score, it is important to highlight that these results 

open the door to the use of data that have previously been disregarded, for being too complex 

or too subjective in their evaluation, thus expanding the array of tools for diagnosis. 

As a second step, DL is expected to trigger a revolution in the way patients are followed, 

especially in conjunction with the Internet Of Things (IOT) concept. To illustrate, data were 

recorded with inertial measurement units [155], and it has been shown that the precision in 

detecting events of bradykinesia, i.e. of the slowness of movement, with DL algorithms was at 

least 4.6% higher with respect to other state-of-the-art ML techniques. In a similar fashion, DL 

models have been shown to achieve a 90% precision, as opposed to the 83% of classical 

classification methods, in the problem of detecting events of freezing of gait. Other examples 

of the use of wearable sensors, and most notably of motion sensors included in standard 

smartphones are presented by several research teams [156-158]. ‘DL will thus allow patients to 

be followed in their daily life, to analyse data provided by commonly available sensors, and to 

promptly detect adverse episodes and inform the physician about the real course of the disease. 

Finally, the ultimate goal of any analysis is to detect ways for slowing down, or ideally 

stop the progression of the condition. In this sense, a promising line is yielded by drug 

repurposing. For example, Zeng et al. [159] reported a methodology for in silico drug 

repurposing, based on a network deep-learning approach, which integrates known relationships 

between drugs, diseases, side effects and targets. When results were validated against the 



ClinicalTrials.gov database, these included previously-approved drugs for PD (i.e. 

methylphenidate and pergolide). 

5 Challenges and future trends 

While massive successes have been achieved in applying DL in SM over the past decade, DL 

approaches are not without their own limitations [21, 146]. For example, Chen et al. argued 

that traditional ML approaches may produce more interpretable models in some clinical 

applications [6]. One of the main criticisms against DL is a general lack of interpretability due 

to its black-box nature [21, 160]. Nevertheless, progress has been made in improving the 

interpretability of DL in healthcare [115, 161, 162]. For example, by highlighting patient 

trajectories that maximally activate CNN predictions, Suresh et al. [126] improved the 

interpretability when applying the CNN to predict clinical intervention  

In contrast to traditional ML models, DNNs contain far more learning parameters that need 

to be determined. One may argue that the large number of hyperparameters shared by DNNs 

makes them an appropriate model of the brain [163]. It, however, poses two great challenges 

[21]. Most DL algorithms have assumed sufficient and balanced training data, which may not 

be the case in some SM applications. Chen et al. compared 5 ML methods with 2 DL models 

using 5 clinical datasets and found that conventional ML methods generated better performance 

when compared to the DL alternatives in most of cases when training data are relatively small.   

For instance, when applied to the prediction of time to first treatment or patients diagnosed 

with chronic lymphocytic leukemia, the highest AUC value (0.924) was obtained by Random 

Forest and the DL model only achieved an AUC of 0.802. In addition, having many parameters 

tends to make a model adapt to the data too much, though the risk of overfitting could be 

reduced through various regularization approaches such as dropout [17, 164]. To address these 

challenges, Zhou and Feng [5, 60] proposed a new DL method named Deep Forest (gcForest) 



which is realized by non-differentiable units. It has been shown that gcForest has much fewer 

parameters in comparison to DNN and can work well even when there are only small-scale 

data available. A multi-weighted gcForest has been proposed and developed as a staging model 

of lung adenocarcinoma based on multi- modal genetic data which could be used for the 

diagnosis and personalized treatment of lung cancer [165]. 

It has been suggested that the promise of DL maybe ‘overhyped’ [166]. They predicted that 

DL expectations are inflated and that this bubble may burst. This is becoming a subject of 

heated debated. Abrol et al. [167] argued that DL models have the potential to substantially 

improve compared to traditional ML techniques if implemented following the prevalent DL 

practices in particular when applied to the applications with the presence of non-linearities in 

data such as brain imaging data. Based on the analysis of 12,314 sMRI images taken from the 

UK Biobank repository, they demonstrated that DL approaches significantly surpassed ML 

models and consistently achieved better performance with an increase of sample size. Song et 

al. [168] reported a CNN-based AI assistance system deployed at the Chinese PLA General 

Hospital for gastric cancer detection. It underwent a 3-month trial run with the daily gastric 

dataset and the stable performance with AUC above 0.98 was achieved across timeline. To 

prove its clinical utility, the system was tested using the data collected from o other hospitals, 

i.e. Peking Union Medical College Hospital and Cancer Hospital, Chinese Academy of Medical 

Sciences. Consistent performance was achieved, demonstrating the feasibility and benefits of 

using DL-based histopathological assistance systems in routine clinical practice scenarios. 

However, a recent investigation published by Nagendran et al. [169] highlights that while DL-

based approaches have the potential to improve clinical outcomes, claims of DL outperforming 

clinicians may be exaggerated which could pose a risk for patient safety. To avoid hype and 

protect patients, it has been suggested to enhance clinical relevance and develop a rigorous 

evidence base which are transparently reported in DL studies. 



Delivering clinical impact is one of the key challenges for applying DL in SM [160]. While 

several clinically applicable DL systems have been developed [168, 170, 171], it has been 

argued that translating advanced DL technologies from research to clinical practice requires 

careful consideration and system design [160]. Robust clinical evaluation and using clinically 

applicable metrics that go beyond traditional assessment from a technical perspective are 

essential. 

The challenges and future trends for DL and SM shall consider the available EU funding 

and networking opportunities and initiatives. Application of DL to SM has sparked many 

collaborative projects in industry and academia. For example, the interaction of young 

researchers with other scientific disciplines is ongoing on the crossroads of DL and multiscale 

computing within the COST Action OpenMultiMed (CA15120, 

https://www.cost.eu/actions/CA15120/).https://www.cost.eu/actions/CA15120/). Such 

collaborations also permit the reinforcement of the current scientific areas and the emerging of 

new scientific fields within the CIG-COST Innovating Grants [172]. The role played by DL in 

data analytics in biomedicine has been highlighted in the report [173] recently released by the 

Innovative Medicine Initiative (IMI) which includes the use of AI to select the best cancer 

treatment in its last Calls for proposals under the IMI2 programme 

(https://www.imi.europa.eu/news-events/press-releases/imi-launches-final-imi2-calls-

proposals). One of targeted impacts to be delivered by the next EU research and innovation 

framework program (2021 – 2027) i.e. Horizon Europe is to unlock the full potential of new 

tools, technologies and digital solutions for a healthy society [174]. It is envisaged that 

elements of new data analytics such as DL-base approaches would be found in the forthcoming 

programs. 

6 Conclusions  
 

https://www.cost.eu/actions/CA15120/#tabs|Name:overview
https://www.cost.eu/actions/CA15120/
https://www.imi.europa.eu/news-events/press-releases/imi-launches-final-imi2-calls-proposals
https://www.imi.europa.eu/news-events/press-releases/imi-launches-final-imi2-calls-proposals


Recent years have seen a growing interest in the adoption of DL models across various 

branches of SM research. This review paper addressed the main developments of DL 

algorithms and a set of general topics where DL is decisive; namely, within the SM landscape. 

It informs about the associated applications in SM with an emphasis on the applications to 

predictive, preventive and precision medicine. The key advantages and limitations were 

presented too, while challenges and future trends for the DL research are discussed.  

While DL models have achieved outstanding performance in SM recently, translating the 

research into clinically applicable systems and delivering clinical impact represents a big 

challenging task. One of the key requirements is a robust clinical evaluation that needs to be 

based on the metrics taking the quality of care and patient outcomes into consideration [160]. 

Other factors to be considered include further improvement of the interpretability of DL 

predictions and transformation of DL away from its current black box model, through for 

example visualisation of hidden layers and enhancement of human-algorithm interactions [21, 

160]. 

It has been highlighted that participatory medicine is becoming a driving force for 

revolutionizing healthcare [175]. The evolution toward participatory medicine can be boosted 

by the application of the IOT involving the use of DL [176]. Examples include detection of AF 

using a commercially available smartwatch coupled with a DNN [177] and CNN-based gesture 

pattern recognition [178]. Still, the application of DL to participatory medicine is at its early 

stage and its impact on patient care deserves further investigation [179].  

Deep learning is becoming an important computational tool to decipher the complexity of 

diseases and playing a significant role in analysing heterogeneous data generated in SM [120]. 

Nevertheless, it is important to mention that, DL is not a silver bullet [21] and some claims of 

DL superiority may constitute a hype which deserves further scrutiny [169]. Translating DL 

technologies into a clinically validated system is still a challenging task but significant progress 



has been made. The review presented offers valuable insights and informs the research in DL 

and SM. 
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Figure Legends 
 

• Figure 1 Illustration of the layer-by-layer processing in DL consisting of an input layer, 

multiple hidden layers and an output layer 

• Figure 2 Illustration of a basic building block in a deep neural network 

• Figure 3 An illustration of the basic structure of an unfolded RNN with an input unit 𝑋𝑡, a 

hidden unit ℎ𝑡, and an output unit 𝑌𝑡 at a sequence index t. The weight matrices 𝑊𝑋 , 𝑊𝑌,𝑎𝑛𝑑 𝑊𝑅 

representing input connection, output connection and recurrent connection respectively are 

shared across the sequence dimension. 

• Figure 4 A typical architecture of CNNs which includes 4 main operations, i.e. 

convolution, rectified linear units (ReLU), pooling and classification with convolutional 

layers, and pooling layers arranged in an alternating fashion 

• Figure 5 Main steps of the GAF image construction. Starting from an originating time series 

(A), its ordinate is first scaled to fit the interval [-1,1] (B), and then translated into polar 

coordinates (C), and finally to the GAF image (D). 

• Figure 6 DL for Integrative Biomarker Identification. Abbreviations: Seq-Sequencing, 

GWAS: Genome wide association  

  



Table Legend 

• Table 1 A summary of DL models including key benefits, main drawbacks and an 

example of successful applications 

  



Key points 

• As a multiscale, multidisciplinary approach to medicine, Systems Medicine is 

characterised by the presence of large amounts of high-dimensional, heterogeneous 

data. 

• In order to tackle complicated tasks such as the discovery of complex disease patterns 

with multiple facets from data and realize the full potential of machine learning in the 

era of big data, learning models need to go deep and Deep Learning architectures hold 

great promise in this endeavour. 

• This review paper addresses the main developments of Deep Learning algorithms and 

a set of general topics where Deep Learning is decisive; namely, within the Systems 

Medicine landscape. It informed about the associated applications in Systems Medicine 

with an emphasis on the applications to predictive, preventive and precision medicine. 

• Several key challenges have been highlighted including delivering clinical impact and 

improving interpretability. 
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